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The first quantum correction to a time correlation function is obtained by expanding the quantum-
mechanical correlation function in powers of Planck’s constant. Quantum corrections to time correlation
functions are of interest because they may be used to obtain quantum corrections to transport properties.
An application of the formalism to nuclear spin-lattice relaxation is included. A formal expression is obtained
for the first quantum correction to the lattice time correlation functions. The effect of this correction on
the relaxation time is indicated. The possibility of using the first quantum correction to calculate isotope

effects on transport properties is discussed.

I. INTRODUCTION

During the past several years there has been con-
siderable interest in expressing transport coefficients in
terms of time correlation functions. An excellent recent
review by Zwanzig' summarizes the status of the time
correlation function method and describes its applica-
tion to a variety of nonequilibrium problems.

The purpose of the present article is to obtain
explicit expressions for the first quantum corrections
to classical time correlation functions. Our method for
obtaining the quantum correction is simple and direct.
First the quantum-mechanical correlation function is
cast in a form convenient for displaying the classical
limit and computing quantum corrections. This step
is accomplished by defining the “Wigner equivalent”
A(R, P) of a quantum-mechanical operator A (Rep,
P,,) and by use of the Wigner distribution function
f(R, P; 8). The development parallels and extends? a
recent analysis by Imre ef al.?

The second step is to expand the recast expression for
the correlation function in powers of #. In the limit of
i—0 we obtain the classical expression and then
compute the first nonvanishing correction in powers of
. It is easy to show that the expansion parameter #
corresponds to the physically relevant dimensionless
ratio of the mean de Broglie wavelength to the char-
acteristic length over which the intermolecular potential
varies. Roughly speaking our analysis is relevant when
this ratio is small, but not negligible, compared to
unity.

The system we consider contains NV identical particles,
without internal structure, which obey Boltzmann
statistics. For this system the first nonvanishing
correction is of order #2. If one wishes to approach the
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problem of quantal systems that obey Bose-Einstein
or Fermi-Dirac statistics, modification of the present
scheme is required. However, by using methods sug-
gested by Oppenheim and Ross* one may show that the
effect of quantum statistics are first exhibited in the
correction of order 2. It is reasonable to suppose that
quantum-statistical effects may be ignored so long as
the mean de Broglie length is small compared to the
average distance between particles.

The primary advantage in having quantum cor-
rections to time correlation functions is that it permits
one to compute quantum corrections to transport
coefficients. In the latter part of this paper we illustrate
this point by applying the formalism to the theory of
nuclear spin relaxation in gases. The concluding section
discusses other important applications.

II. QUANTUM-MECHANICAL TIME
CORRELATION FUNCTIONS

We direct attention to quantum-mechanical time
correlation functions that have the general form,

CH)=4% Tr(P{A[Rop(t): P, (1) 14 (Rop, P,)

+4 (Rop, Pop) A[Rop (), Pop () ]}),  (I11)
where
Aop (l) =A[Rop(t), Pop(t)]
=exp(itH/h) A (Rop, Poy) exp(—itH/R)  (112)

and p is the normalized canonical ensemble density
matrix operator [8=(1/kT)],

p=exp(—BH)/Tr[exp(—BH)]. (113)
Here H is the Hamiltonian of the N-particle system,
H=—(#/2m) ve*+ U (R), (114)

in coordinate representation, and U (R) is the potential
energy. We adopt the notation that R,, (R) is a
3N-dimensional operator (vector) denoting the position
of the N particles and P, is a 3N-dimensional operator

¢ I. Oppenheim and J. Ross, Phys. Rev, 107, 28 (1957).

3085

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3086 HYNES,
denoting their momenta. An operator or vector with a
subscript refers to a particular particle. Our first task
is to transform C(#) into a form that facilitates the
subsequent analysis. For this purpose it is necessary to
define two auxiliary quantities and to summarize their
properties.

We define the Wigner equivalent A(R P) % to an
operator A (R,y,, Poy) by the equation,

iR 2= G [ agen] - (o]
X (P—1q| 4 | P+iq).

It is convenient but not necessary to consider the kets
| P) in the coordinate representation to be plane waves
normalized in a large volume V,

¥p(R) =V-¥2exp[+ (i/f) P-R].
In this representation the matrix element
(P| A(Rop, Pop) | P')

(115)

(116)

is

(P [ A(Rop, Pop) | P)

-f dR:pp*(R)A[R, (ﬁi)vR »(R), (I7)

and the trace of the operator may be computed as

Te[A]= /dP(P]A | P)

(2 ﬁ)sN

Ti
dPdRyr*(R) A v R).
= o [ @R ® AR, (v . (9
One may immediately demonstrate that

(1) If A=A(Ro;) then 4=4(R),
(2) If A=A(P,,) then A=A(P),
(3) If A=g(Rop)+h(Py) then A=g(R)+A(P).

(119)

If A(Rop, Pop) involves more complicated combinations
of position and momenta than summarized in Eq.
(119), it will not in general be true that A(R, P) =
A(R, P). For example if 4 is the square of the Hamil-
tonian operator H(Rqp, Pop) it will not be true that
A= HX(R, P). For these more complicated combina-
tions it is prudent to consider each case individually.

From the definition of the Wigner equivalent of an
operator one may show

Tr[ AB]= (20)~¥ / dRIPA(R, P)B(R, P). (II10)

If we define the Wigner distribution function (wdf) to
be

f(R, P; §) = (22%)~*"5(R, P), (1I11)

DEUTCH, WANG, AND OPPENHEIM

it follows from Eq. (IT10) that a quantum-mechanical
average may be written in the alternative form

(A)=Tr[pA]= / dRJP/(R, P; 8)A(R, P). (II12)

The explicit expression for the wdf is

SR, P = —C [ g (3 aR)
] bl - (Zwﬁ)sN q €Xpl ﬁ q
X(P—iq|p|P+iq),
which is equivalent to the more usual definition

(wh)—
Tr[exp(—BH)] =

(I113)

f(R,P;8) = 2 exp(—BE,)

X / dY exp (%;z P-Y>¢,.*(R+Y)¢,,(R—Y), (I114)

where E, and ¢, are the eigenvalues and eigenfunc-
tions of the system Hamiltonian. The important proper-
ties of the wdf are presented in a review article by
Mori, Oppenheim, and Ross® and will not be discussed
here.

In order to recast the correlation function in a more
convenient form one must consider the Wigner equiv-
alent ~

(4B)
of a product of two operators 4 B. Groenewold® showed
that the Wigner equivalent of the product of two
operators is given by the expression

(AB) =A(R, P) exp(AiT/2)B(R, P)
=B(R, P) exp(~#T/2)A(R, P), (II15)

where T is an operator that operates on the functions
to the right and left of the exponential.” The explicit
form of the operator T is

T=[Vp+Vr—Vzr*Vp], (1116)
with the arrows indicating the direction in which the
gradient operators are applied. A proof of the relations
expressed in Eq. (II15) may also be found in Ref. 3.

With the results of Eqs. (II12) and (II15) the
quantum-mechanical time correlation function may be

expressed as

C(t) = / JdRAP[ f(R, P; 8) cosk (AT)A (R, P)JA (1),
(1117)

8 H. Mori, I. Oppenheim, and J. Ross, in Studies in Statistical
Mechanics (North Holland Publ. Co., Amsterdam 1962), Vol. 1.

6H. J. Groenewold, Physica 12, 405 (1946).

7 See Ref. 4 and references therein to earlier work on the classical
limit of the wdf.,
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TIME CORRELATION FUNCTIONS

where A())=A(R, P; ) is the Wigner equivalent
computed according to Eq. (II5), of the quantum-
mechanical operator 4,,(f) defined in Eq. (TI12).

The equation of motion of the operator Aq(t) is

0Aop(8) /0t = (i/F) [HAop (1) — Aoy () H]. (I118)

If we take the Wigner equivalent of both sides of this
expression and use the product rule in Eq. (II15) we
obtain

0A(#) Jor=(2/RYH (R, P) sink(AT) A (1) (I119)

or R R
a4 (1) Jat=iL(R, PYA(1).

The operator L(R, P) is
iL(R, P) = (P/m) - Va—(2/F) sin(3#Ve: V) U(R),
(1121)

where it is understood that the configuration gradient
operator in the argument of the sine operates only on
the potential energy. In the limit #—0 the operator L
reduces to the classical Liouville operator. Mori,
Oppenheim, and Ross® have obtained the form of the
operator L and discuss its connection to the time
evolution of a quantum-mechanical system.

If Eq. (I120) is integrated and substituted into Eq.
(IT117) we obtain the form of C(f) that will serve as the
basis of our subsequent analysis,

(1120)

C)= [ dRaPLS(R, P;6) cosh(AT)A(R, P)]

X {exp[iL(R, P){JA(R, P)}. (1I22)

For a particular choice of operator 4A(R,;,, Pop) the
structure of C(f) will be simpler. If A =A4(R,,) then

C)= [ dRAPL J(R, P;6) cosh(h¥e: Va) A (R)]

X {exp[iL(R, P){JA(R)}.
If A=A(P,,) then

(1123)

c= [ dRaPL SR, P;p) cosh (AVx- Vo) A(P)]
X {exp[iL(R, P){]JA(P)}. (III24)

In the special, interesting case when A4 is just the
momentum operator of a single particle, the cosine
operator in Eq. (II24) may be replaced by unity.

IIT. CLASSICAL LIMIT OF TIME CORRELATION
FUNCTIONS

The expression for the quantum-mechanical time
correlation function given in Eq. (II22) bears a close
formal similarity to the classical time correlation
function Cei(#). In this section we obtain an explicit
form for Ca(?) by taking the #—0 lmit of C(¢).

3087

In the limit #—0 the wdf approaches the classical
distribution fu (R, P; 8),7

fa(R, P; B) =[(20h) N/ Z.1]

Xexp{—8L(P-P/2m)+U(R) ]}, (III1)
where Z,, is the classical partition function,
Za=(2at)= [ RaP

Xexp{—BL(P-P/2m)+U(R)J}. (II12)

Similarly in the limit #—0, L(R, P) approaches the
classical Liouville operator L (R, P),

iLa(R, P) =[(P/m)-Vr—VRrU(R)-vp] (III3)

Clearly in the limit #—0 the cosine operator in Eq.
(1122) approaches unity.

Finally we must consider the #—0 limit of the Wigner
equivalent A(R, P). If we assume that the original
operators when written in the form 4 (R,,, Pop) have
no additional 7 dependence then the limit 7—0 of
A(R, P) is just A(R, P). However cases will arise
where A (R, P,,) has additional explicit # dependence.
An important example is provided by the time cor-
relation function associated with neutron scattering?
In this situation it is necessary to examine each case
individually in order to determine the correct classical
limit and first quantum correction. For the remainder
of this discussion we assume that A(R,,, Pop) has no
additional % dependence, i.e., in the position repre-
sentation, 4 has no # dependence other than that
arising from Py,

This analysis of the limiting behavior of the various
components of C(¢) shows that the classical limit of the
correlation function is

Call) = / dRdPf4(R, P;8)A(R, P)

X {exp[iLa(R, P)JA(R, P)}. (II14)

The classical Liouville operator has the property
exp(iLa(R, P)JA(R, P) =A[R(1), P(1)].  (III5)

Here R(/) and P(¢) are the positions and momenta of
the NV particles at time ¢. These quantities depend upon
the initial positions R and momenta P of the V particles
through the classical equations of motion. From
Eq. (III5) it follows that the classical correlation
function may be written as

Ca(t) = / dRdPf, (R, P; §)A(R, P)A[R(f), P(1)].

(T1I6)

8 Quantum corrections to the correlation function associated
with neutron scattering have been discussed by M. Rosenbaum
and P, F. Zweifel, Phys. Rev, 137, B271 (1965). See also Ref, 3.
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Our next task is to determine the quantum cor-
rections to this classical expression.

IV. QUANTUM CORRECTIONS TO THE
CORRELATION FUNCTIONS

In this section we obtain quantum corrections to the
correlation function Ca(#). The procedure we follow is
to expand the various terms appearing in the expression
for C(#) given in Eq. (1122).

We begin with the Wigner distribution function.
Oppenheim and Ross* have shown that the unnor-
malized wdf (R, P;8) obeys the differential equation,
a fi? P2 i
a—g = (gn Vg?— ;n —cos(3# Vr* Vp) U(R))[, (Ivy
with f(R, P; 0) =(x%)=*". In this equation the Vg
in the argument of the cosine operates only on U.
These authors assume a solution to Eq. (IV1) of the
form

J(R, P; B)=fa(R, P; 8) > #®,(R,P;8), (IV2)
=0
where f.(R, P; §) is the unnormalized classical canoni-
cal distribution function,
Ta(R, P; 8) = (wh)~% exp{—BL(P*/2m)+U(R)]}.
(1Iv3)

Oppenheim and Ross expand the cosine operator in
powers of #i and obtain expressions for the coefficients
®,. The explicit forms for the first two are

‘bozl
and
®1=(8%/8m) { — (Vr?U) +48[(VrU)?
+VeVrU: (PP/m)]}, (IV4)

where ab:cd=(a-d) (b-c).

The normalization constant for the wdf is obtained
to any order in 7 by integrating f(R, P; 8) as given in
Eq. (IV2) over R and P. It follows that to order #2

dA (R, P; 1) /o1=[(P/m) Va— (2/%) sin(3iVe*- Vp) U(R)JA(R, P; 1),

HYNES, DEUTCH, WANG, AND OPPENHEIM

the normalized wdf may be written as®

(R, P;B) =fu(R, P; 8) {14+-A[#1(R, P; 8) — (&1)a]},
(1IVS)

where fu(R, P; 8) is given in Eq. (III1) and the
angular bracket with subscript cl indicates an average
over the classical distribution function

(A(R, P))a= / dRPA(R, P)fa(R,P;6). (IV6)

As previously mentioned, 4(R, P) will in general
depend upon 7. The 7 dependence arises either because
A(Rgyy, Pyy) involves # in an explicit way or because
the position and momentum operators occur in 4 in a
complicated fashion. In the general case one would take
into account the # dependence of 4 by writing

AR, P)=g(R,P) = L 1A (R, P), (IV])
n=0
with the specific form of A,(R, P) depending upon the
form of the original operator 4(R,,, P.,). For sim-
plicity the most general form of 4(R,,, P.,) we shall
consider here is

A(Rop, Pop) =g (Rop) +h(Pyy,), (IV8)

and we shall assume that there is no additional explicit
7i dependence. In this case [see Eq. (I19)] A does not
depend upon # and has the form

A(R, P)=¢(R)+1(P) =A(R, P).

The special cases when A is only a function of R,,
or of P,, are subsumed under the more general case of
Eq. (IV9). Our method can be extended in an evident
manner to the more general case of Eq. (IV7) pro-
vided A is expandable in a power series in 7.

We next consider the correction arising from

A(R, P; ) ={exp[iL(R, P)JA(R, P)}. (IV10)

The quantity A(R, P; ¢) satisfies the equation of
motion

(1V9)

(IV11)

with initial condition 4 (R, P; 0) equals A (R, P). An asterisk has been placed on Vg to remind us that Vy only

operates on U(R). We seek a solution of the form

(IV12)

AR, P =3 md,(R P;).
n=0

If the sine operator in Eq. (IV11) is expanded in powers of % the following equation is obtained for the coefficients
An:

4, (R,P;t) P ,. ol (—1)d
—_— = — . VA,(R, P; ¢
LU R XX TTS o

= V13
L (2j—1) 12272 (1V13)

(VR*+ Vp) ¥ W A1y

? One might be concerned in considering the structure of the first quantum corrected wdf that the two terms ®; and (®; )e1 will
lead to different N dependence when the quantum corrected average of some function g is performed. In general this will not be the case;
the effect of the subtracted (g)e(® o is to cancel contributions from the term (g&),. This may be verified in special cases, e.g.,
g=g(Ry) and g=P,. We assume that when g is a function of time, a similar cancellation is present and the two terms do not have
different N dependence.
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For n=0, we obtain the classical equation of motion,

Ay(R, P; 1) =exp[iLa(R, P){JA(R, P).

3089

(Iv14)

The first quantum correction A; may be found by setting n=1in Eq. (IV13). This yields the differential equation,

[041(R, P; 1) /0]—iLa(R, P)A1(R, P; ) =4[ (Va*- Ve)3U (R) JAu(R, P; 8),

(IV15)

with initial condition A;(R, P; 0) equals to zero. The solution to this equation is

AR, P;1) = 2—14 /t dr exp(iLar)[(Ve*- Ve)3U(R) ] exp[iLa(i—7) JA(R, P).
0

(Iv1e)

There will also be a correction arising from the operator cos}(A7). The effect of this correction can easily be

determined by expanding the cosine in a power series,

[=-)

cosy(AT) = D,

n=0

=1-—g

#2T*4-0(h).

(=D ®T/2)™

(2n)!
(IvVi7)

All that remains to complete the calculation is to collect the terms arising from the various corrections in powers
of . In the course of collecting these terms one encounters the quantity ( fuZ724). A simple calculation shows

(JaT?4) =fal A (R, P; $)A(R, P) ],

where

Axp(R, P; B) =[(82/m?) (P+Vr)2— (26*/m)P VU : VpVr+B2(VRU+ V) 2— (8/m) Ve?—BVr VR U: Ve Vr .

(IV18)

(IV19)

We find that up to order 72 the time correlation function can be written as

C(O) =Ca()+#{([21(R, P; B) —(@1)a JA(R, P)A[R(®), P(&) Da—4{[ A (R, P; 8) A (R, P) JA[R(1), P () D

where Ay(R, P;¢) is given by Eq. (IV16) and
A (R, P; 8) by Eq. (IV19). The quantum correction
to Ca(?) consists of three terms. The first term arises
from the quantum correction to the equilibrium dis-
tribution function. The second term arises from the
cosine operator which does not have an analog in the
classical correlation function expression. The third
term arises from the correction to the classical dynam-
ical motion. Our method, of course, permits one to
obtain higher corrections in powers of % to Cu(f).
However, these higher corrections rapidly increase in
complexity.

The evaluation of the first quantum corrected
Ca(#) Eq. (IV20) still presents a formidable problem,
since it is necessary to calculate classical time cor-
relation functions. In general (e.g., liquids) this will
be a difficult task unless one resorts to approximations.
In the next section we mention one approximation that,
under certain circumstances, is useful for this purpose.

V. APPLICATION TO NUCLEAR MAGNETIC
RELAXATION

In this section we discuss the application of the
previous analysis to nuclear relaxation in gases and
liquids. It is well known that the spin-lattice relaxation
time T and the spin-spin relaxation time 7% can be
expressed as Fourier transforms of lattice time cor-

+(4(R, PYA\(R, P; 1) Ya} +O(%), (I1V20)

relation functions.®® A typical case is a system of N
particles of spin I where the important interaction
coupling the spins to the translation degrees of freedom
is the magnetic dipole-dipole interaction between the
spins.

In most systems of interest one is justified in assum-
ing that the lattice motions may be treated classically
and the correlation functions calculated in the classical
limit. However, there are situations when it is necessary
to employ quantum mechanics to evaluate the lattice
correlation functions. The method we have developed
for obtaining quantum corrections is directly applicable
to these situations.

As a specific example we consider relaxation in H,
and adulterated H, systems. The relaxation time T
may be shown to be given by

Tt =3(v*h?) Julwo) +[9v*H"2/ (2T —1)2(2J+3)%]
X [3721(wo) +2725(20) J,

where v is the proton gyromagnetic ratio, w, is the
Larmor frequency, #'=27 G is the spin-rotation
coupling constant, and 4" =34 G is the dipolar coupling
constant between the two protons. The J;,(w) are
Fourier transforms of the rotational angular momentum

(V1)

1 A, Abragam, The Principles of Nuclear Magnetism (Oxford
University Press, London, 1961), Chap, 8.
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time correlation functions,

T (w) = /+m exp( —twl) gm (8) di,

gin()=3 Tr{p[ Kim() K i (0)+Kin(0) Kt (1)1} (V3)

The K. operators are combinations of components of
the rotational angular momentum J of the Hy molecule,

Ku=Kiqt=J,,
Kn=K, st=JJ +JJ.;
Kp=K, ot=J.2,
Kao=2137 2~ (J4+1) . (V4)

In H, systems the spins are relaxed as a result of
collisions which cause J to change.

Bloom and Oppenheim have developed a theory of
nuclear spin relaxation' and have applied this theory
to the Hy molecule.’? This theory directly relates the
time development of J to the enisotropic intermolecular
interactions » that are responsible for changing J
during a collision; [, JJ]#0. In relating the inira-
molecular correlation function g, to inmtermolecular
correlation functions Bloom and Oppenheim assume
that the coupling v between the J degree of freedom
and the translational degrees of freedom is “weak.”
In this limit one finds

gin(8) = (KinK " ) exp(—t/71), (V5)

where the subscript J on the bracket implies a trace
over the (27+1) sublevels of the J manifold.

(V2)

J:t =Jz:|:]y’

DEUTCH, WANG,

AND OPPENHEIM

The precise form of the correlation times 7; depend
upon the system in which the H, is relaxing. Here we
shall restrict our attention to the case when H, is
infinitely dilute in an inert gas such as He. Our remarks
apply with appropriate minor modifications to other
H, systems where quantum effects on the translational
motion are expected to be important.

In the laboratory frame the anisotropic potential
between the relaxing ortho-H, (assumed to be in the
state J=1) and the spherically symmetric inert atom
X is

o(Rus) =b(Re) ; Vou*(0) Yan( ), (V6)

where b(Ry2) is some function of the scalar distance R;»
between the center of mass of H; and X, {y, is the solid
angle that gives the orientation of Ry, relative to the
space-fixed z axis, and €y gives the orientation of the
symmetry axis of ortho-H, to the z axis.

The form of 7; which results from the adopted form
of v(R) is, in the limit of low density,

_ A(67/5) oo ;
T A(2T-1) (2]+3)]2f0 Siyat, (V7)

it

where

A, =4(2T—1) (2J+3),
Ay=12(424+4T~T). (V8)

In Eq. {V7), S(?) is an intermolecular time correlation
function of the form

S() =[3(N—1)] Tr(o{d[Ry2(t) ¥ am[ () JO[ R12(0) jyzm*[Qm(O)]

+8[R12(0) ¥ om[12(0) [ Rz (1) TV o [ (8) J}). (V9)

At higher densities a three-particle intermolecular correlation function contributes to 7,'*!* but this need not
concern us here. The Hamiltonian with which S(¢) is computed consists of the kinetic energy of the particles and,
as a result of the assumption of weak anisotropic forces, only the isotropic intermolecular forces. Consequently
S(#) is independent of m. For a more detailed discussion of the Bloom-Oppenheim theory as applied to H, the
reader is referred to the original article!? or a recent review.?

If we now wish to compute quantum corrections to 74 in gaseous Hy-X mixtures it is necessary to compute
quantum corrections to S(#). From the previous analysis we know that up to orders #* S(¢) will be

S(2) = Se(8) +72LS1() + Sa(t) +Ss(1) ], (V10)
where

Se1(£) = (0 (Ruz) Yoo (Qu2) b Ruz(2) 1¥ 2o[ a2 (8) ey (viy)
S1(t) = ([ P1— (P1)a1 16 (Riz) Yoo (Qu2) B[ R12() 1V 20[ () Der, (V12)
Sa(8) = =3 {{Bop (R, P; 8) b(Ruz) Vao(h2) 16[ Ruz(£) J¥20[ Qa2 (2) D)o, (V13)
Ss(£) = (B(Ruz) Yoo ) I (R, P | £) )ar. (V14)

The quantity I(R, P | {) is
IR,P|1)= 2—14 f “dr exp(iLar) (Ve*- Vp)3U (R) exp[iLa(t—7) Jo(Riz) Vao (o), (V135)

" 1T, Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961).

2 M. Bloom and I. Oppenheim, Can. J. Phys. 41, 1580 (1963).

3], M. Deutch and I. Oppenheim, in Advances in Magnetic Resonance, J. S. Waugh, Ed. (Academic Press Inc., New York,
1966), Vol. 2.

1# ] M. Deutch and I. Oppenheim, J. Chem. Phys. 44, 2843 (1966).
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which may be rewritten as

IR,P|1)= 514/‘ dr(Vrn** Vo) 2U[R(r) 0[R2 () 1V a0l Qe () ]

We note that Eq. (V10) contains quantum corrections
additional to those considered in the original work of
Oppenheim and Bloom." In that work only the term
S1(t) arising from quantum corrections to the equilib-
rium distribution was included.

Bloom and Oppenheim! have developed a technique
for approximately calculating intermolecular time
correlation functions. This approximation, termed the
“constant acceleration approximation” consists of
replacing the time-dependent force experienced by a
particle in the exact equations of motion by a time-in-
dependent average force. The virtue of the approxima-
tion is that it permits explicit calculation of classical
time correlation functions over a wide range of temper-
ature and density for a variety of systems. The CAA has
successfully described relaxation in H, gas®; H, liquid,“
and Xe gas.1®

The CAA has been employed by Bloom and Op-
penheim to evaluate [Su(#)+S:(£)] in the low-
density limit.'% This calculation has been used by
Bloom ef al. to interpret T'; measurements for a variety
of gaseous systems,” including the H,-He system,
where quantum effects are expected to be of im-
portance.

The quantum corrections to Ty arising from Sy(¢)
and S3(f) have not previously been obtained. We
expect that these corrections will be relatively more
important for steep anisotropic potentials [8(Ry,) «
Ris] since the correction Sy(f) involves spatial
derivatives. In order to obtain all the corrections of
order #? to T, it is necessary to calculate S:(f) and
S3(f), see Eq. (V10). We intend to employ the CAA to
approximately evaluate S.(f) and S3(¢) and then
proceed to compute the entire correction to order %2
for T in H, systems.

Recently Riehl, Kinsey, and Waugh!? carried out an
elegant quantum-mechanical scattering calculation of
T:1 in low-temperature dilute Hy-He mixtures. Their
procedure was to directly compute transition probabili-
ties between the sublevels of J arising from He-
ortho-Hj collisions. Clearly this calculation is free from
three approximations present in the Bloom~Op-
penheim theory as applied to H; systems: (a) use of
the CAA; (b) trajectories computed using only the
spherically symmetrical part of the intermolecular

%5 M. Bloom, I. Oppenheim, M. Lipsicas, C. G. Wade, and C. F.
Yarnell, J. Chem. Phys. 43, 1036 (1965).

¢ T. Oppenheim, M. Bloom, and H. C. Torrey, Can. J. Phys. 42,
70 (1964).

17 J. W. Rieh], J. L. Kinsey, and J. S. Waugh, J. Chem. Phys. 46
4546 (1967). & J i
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potential; and (c) quantum effects on the transla-
tional motion. The 7 predicted by the scattering
calculation and the 7 predicted by the Bloom~—
Oppenheim theory shows a discrepancy at low temper-
atures when quantum effects are expected to be of
importance. This disagreement is apparently not due
to Assumption (b).” At the present time it is not
possible to conclude if the disagreement is attributable
to use of the CAA or to the omission of the contribution
Sy(t) and S3(f) to the quantum correction in the
previous calculations.

VI. CONCLUDING REMARKS

There are many applications of the formalism de-
veloped in this article. The most interesting possibil-
ity is the determination of quantum corrections to
transport coefficients. Since one can express the
transport coefficient in terms of an equilibrium time
correlation function,! a knowledge of the quantum
corrections to the time correlation function will yield
quantum corrections to the transport coefficients. In
the previous section we indicated how this procedure
can be applied to nuclear magnetic relaxation. The
procedure is applicable to a wide variety of non-
equilibrium phenomenon, e.g., hydrodynamic transport
coefficients such as the shear viscosity and the diffusion
constant.

Without too great difficulty it should be possible to
obtain quantum corrections to transport coeflicients
in a dilute gas. To accomplish this all that is necessary
is to obtain the low-density limit of the quantum
corrections to the correlation function corresponding
to the transport coefficients. This result could be
compared with the quantum correction to the transport
coefficient obtained from the Chapman-Enskog theory
when the classical differential scattering cross section
is replaced by the corresponding first quantum cor-
rected cross section.’®

First quantum corrected transport coefficients may
serve as the basis of a theory of isotope effects. This is
because the factor #? will always appear, when the
correction is put in dimensionless form, as (A)2. The
mean de Broglie wavelength A is

A= (8/2m)"*h, (Vi1)

which clearly depends upon the mass. We are presently
investigating this possibility for liquid-hydrogen and
deuterium systems.

18 S.-I. Choi and J. Ross, J. Chem. Phys. 33, 1325 (1961).
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