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The evaluation of correlation functions by means of approximation of the time evolution operator is
discussed. It is shown that different approximations may be obtained depending upon the particular factori-
zation of the equilibrium distribution function in the averages to be computed. With the approximation
of free particle dynamics, generalized linear trajectory approximations for correlation functions are obtained.
The circumvention in the generalized approximation of the separation of the intermolecular potential
employed in the linear trajectory approximation introduced by Helfand is discussed. For low density, it is
demonstrated that the constant acceleration approximation introduced by Bloom and Oppenheim is exactly
equivalent to a generalized linear trajectory approximation. An explicit expression for the deviation of the
constant acceleration approximation result from the exact correlation function expression is obtained. The
differences between the constant acceleration and generalized linear trajectory approximations at higher

densities are discussed.

I. INTRODUCTION

A variety of relaxation and line-shape experiments
is currently being interpreted in terms of time correla-
tion functions of the general form

C(t) = (peat T (1)}
= (poq] exp(iLE)T ). (1.1)
Here J is a dynamical variable, pq the initial equilib-
rium distribution function, and L the Liouville time
evolution operator of the system. The angular bracket
denotes an integration over the positions R¥ and mo-
menta P¥ of the N-particle system.! Attention will be

restricted here to conditions appropriate to a canonical
ensemble so that

pea=[{exp(—BH) )T exp(—BH), (1.2)

where H is the Hamiltonian of the system and 8= (¢T") 1.

For most fluid systems the evaluation of C(#) is not
possible and one must resort to approximations. In one
class of these approximations the Liouville operator is

separated into two parts,
L=L+L, (1.3)

and the evolution operator is decomposed according to
the operator identity

exp(iLt) =exp(iLot)
+ f * ds expliLo(i—s) il exp(iLs). (1.4)
0

The correlation function C(¢) is approximated by
Co(t) = {peq] exp(iLlot)J)

and the remainder term

(1.5)

Cr(t)= / t ds{peqJ exp[iLo(i—s) Jil' exp[iLs]J)
0

(1.6)

is neglected in the hope that it is a small correction to
Co(t). Under favorable circumstances, according to the
separation of L, the approximate correlation function
Co(t) can be explicitly evaluated and be considered an
adequate estimate for C(¢).

The purpose of this paper is threefold. First it will
be shown that the approximation procedure just de-
scribed is a special case of a more general approxima-
tion scheme. This general scheme does not depend on
any particular choice of separation of L into Ly and L.
Second, a particular separation of L that has been
referred to in the literature as the linear trajectory
approximation?—® (LTA) is examined. In this approxi-
mation, introduced by Helfand,? Lo is taken to include
only the free streaming motion of the particles,

N P,

ilo= 3, — * Vg, (1.7)
i=1
while the interaction Liouville operator is
N
iL/= - Z VRiU'Vp;, (18)

7=1

where U (RY) is the intermolecular potential. The gen-
eral scheme we consider suggests a wider range of
generalized linear trajectory approximations (GLTA).

We direct our main discussion to the relationship of
the generalized linear trajectory approximation to the
“constant acceleration approximation” introduced by
Bloom and Oppenheim®? to evaluate certain correla-
tion functions arising in nuclear magnetic relaxation.
Bloom and Oppenheim applied the CAA approximation
in two steps. First, in the equations of motion for the
particles it is assumed that the initial force on each
particle does not change with time. Second, in the
course of their calculation a symmetrization is intro-
duced (consistent with the assumption of constant ac-
celeration) between the positions of the particles at
time f and at the initial time. Because the CAA ap-
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proximation of Bloom and Oppenheim involves both
a short time expansion and symmetrization, it has
proven difficult to identify and evaluate the correction
terms to the CAA. We demonstrate that for low density
the CAA is exactly equivalent lo a generalized linear tra-
jectory approximation and explicitly identify the terms
excluded from the exact expression by the CAA. An assess-
ment of the CAA is of some importance. The CAA
has proved useful in interpreting experimental nuclear
magnetic relaxation measurements in gases®'® and may
be employed to interpret other relaxation measure-
ments such as microwave line broadening. For higher
densities there is a difference between the CAA and
the GLTA (generalized linear trajectory approxima-
tions) ; the sources of this discrepancy are discussed.

II. THE GENERAL APPROXIMATION SCHEME

The equilibrium distribution function g, is an eigen-
function of the exact Liouville operator with eigenvalue
zero. Due to this fact and the special form of the
canonical distribution function Eq. (1.2}, the correla-
tion function C(f) may be exactly expressed as

C(8) = <pe™ 7 exp(ili)Jpea®), (2.1)
where j is some number between zero and one. If the
Liouville operator is now separated according to Eq.
(1.3) and use is made of the operator identity Eq. (1.4),
one finds

C() =Co@ (1)+Cr1 (1), (2.2)
where
CoD (1) = {peq T exp(iLef) T peq™) (2.3)
and
11
= [ s
0
X {pe DT exp[iLo(t—s) L' exp[iLs Jpeg@). (2.4)

The important point to note is that since peq is not
necessarily an eigenfunction of the approximate Liou-
ville operator Ly, every different choice of j will result in
a different correlation function Co?(f), when iLgpeq5<0.
Hence, if C({) is approximated by Co?(£), each choice
of j will yield a different result. In the past the approx-
imation procedure adopted has always corresponded
to the choice of j equal to zero, according to Eq. (1.5)
(cf. Sec. ITI). Here a much wider range of generalized
approximations is suggested according to Eq. (2.3).

In Eq. (2.1) only one type of separation of pe is
presented. Clearly more general separations are also
possible. For simplicity, attention will be restricted to
the special choice j=% that results in a symmetric
form for Co@ (). Criteria for the choice of j that results
in the “best” approximation of C(#) by Ce®(f) will
not be examined here.
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We also limit the present discussion to the Liouville
operator decomposition Egs. (1.7) and (1.8) so that
dynamics are approximated by free particle motion.
With this choice, restrictions must be imposed upon
the form of J. In particular, J must vanish for large
interparticle distances in order for Co(¢) and/or its time
integral to exist.

III. LINEAR TRAJECTORY APPROXIMATION

In this section, we discuss the relationship between
the GLTA and the LTA, which has been employed in
recent years in the approximation of correlation func-
tions. This approximation has recently been extended
to general hydrodynamic transport coefficients.! As an
example, we consider the force correlation function

A(t)={paFr-Fi(2) )
= (peqll2F1 . [exp (’LLt) Flpeq”Z]))

where F is the total force on a particle in a fluid, 5

(3.1)

N
Fi= ) Fu,.
=2
The analysis of A(f) proceeds by a division of the
force into hard and soft terms Fi# and Fy5, correspond-
ing to the same division of the intermolecular potential.
With neglect of cross correlations > 4 (£) may be writ-
ten as

A () = {peaFr7 - Fi (£) )+ (PeqFIS'Fls(t) )
=Ag()+A45(t).

Hard-sphere mechanics is used to compute 45 (¢) (see,
however, Ref. 4). The LTA enters the analysis by the
retention in the soft-force correlation As(f) of only
the contribution of the free particle dynamics [cf. Eqgs.
(1.4) and (1.7)7]. Thus, in the LTA, Ag(f) takes the
form Eq. (2.3) with j=0:

Ag(t)= <PeqF1S . [eXP(iLot) Fls] )

Detailed discussion of the potential division and the
LTA may be found in Refs. 2-5.

In the GLTA, no separation of forces is made and
A(t) is approximated as in Egs. (2.2) and (1.7) for
Jj=1%as

(3.2)

3.3)

Ao(t) = (peg*Fr- [exp(iLof) Fipea2]).  (3.4)
From Egs. (3.4), (3.1), and (2.1), it is evident that
in the GLTA, the full evolution operator is replaced
by the free particle operator when acting upon the
combination (Fiee!/%). This feature partially mitigates
the apparent severity of the approximation of free
particle dynamics. Along the true configuration space
trajectories R¥ (1), the force Fy; vanishes for large sepa-
rations | Ry(#) | and pey!? vanishes for | Ry;(¢) | on the
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order of and less than the repulsive core of the poten-
tial. Along the approximate free particle linear trajec-
tories, (Fupe''?) exhibits behavior of the same nature.
In particular, in the region of overlap of the hard cores,
{exp(iLof) [F1ipeq'?]} vanishes. This behavior is guaran-
teed in the LTA by the prior division into hard and
soft forces.!t

In the present article, we focus on the consequences
of the GLTA in low-density systems, where the results
may be compared with the predictions of the CAA.

IV. CONSTANT ACCELERATION
APPROXIMATION

Bloom and Oppenheim® have introduced the CAA
in the evaluation of time integrals of certain inter-
molecular correlation functions S(f) of the form Eq.
(1.1) with J= | Rio "V 1 (Qu2) . Here Y, (Q212) denotes
a spherical harmonic of the solid angle Qi of the inter-
molecular vector Ry with a lab-fixed axis. A detailed
account of the utilization of this approximation in nu-
clear magnetic relaxation theory may be found in
Refs. 6-10.

The analysis of these authors proceeds in terms of the
time-dependent pair distribution function (TDPDF)

A(R2 R2 ) =N(N—1) [ dPYdR"pq(RY, PV)
Xexp(iLt)6(R"2—R?)
=N(N—1) [ dPYdR*dR'"p.!2(RY, PV)

Xexp(iLt)3(R™V—R¥)pe*(RY, PY), (4.1)

where n=N—2. S({) may be written in terms of the
TDPDF as

S(t) = (N—1) {{pea* (Ruz) ] exp (1Lt} [peq""J (R12) 1)
=N-1 [ dRMARZ(R)J(REA(R, R 1), (4.2)

By an analysis of first form of Eq. (4.1), Bloom and
Oppenheim® have shown that according to the CAA,
the TDPDF in the low-density limit is

he® (R2, R, 1) = p*[g0(R?) go(R") 1 11(2) 12 (1),
where go(R?) =exp[—BU (Ry2) ] is the low-density equi-
librium pair distribution function (PDF). The time
dependence of the TDPDF enters via the factors
vi(R/ =Ry, 1) =7;(2)
= (mB/2mi?)3?
Xexp[— (m8/2£) (R —R;)*].

We first direct attention to the evaluation of Eq.
(4.1) for A(¢) in the GLTA for low-density systems
and demonstrate the equivalence of this result to Eq.

(4.3)

(4.4)

4707

(4.3). For simplicity, we here pass to the low-density
limit of Eq. (4.1) prior to employing the GLTA. The
direct low-density expansion of the GLTA form of
Eq. (4.1) is presented in the Appendix.

In the low-density limit, the exact TDPDF involves
only the dynamics and statistics of two particles and
may be obtained by a straightforward application of
standard cluster expansion techniques™ as

RO(8) = p* [ AP $(P?) go(R?) ]
Xexp[iLa(R2, P2)1]J5(R?—R2). (4.5)

In Eq. (4.5), $(P?) is the product of normalized Max-
wellian distributions of particles 1 and 2 and L. is the
full Liouville operator for the two-particle system. As
the bracketed term in Eq. (4.3) is a function only of
H,(R?, P?), the Hamiltonian of the two-particle system,
and ¢L,H,=0, Eq. (4.5) may be rewritten exactly as

hO (1) =p* [ dP*[$(P?) go(R?) ]7* exp[iLz(R?, P?)1]
X3(R”—R%)[o(PHgo(R™*) ]2 (4.6)

The corresponding low-density correlation function is
thus

SO(f) = (N—1) [ dR*P¢(P?) go(R?) ]2 (R?)
Xexp[iLaot ][ ¢(P?) go(R?) ]2 (R"?) 6(RY2—R?)
= N1 [ dR%R"J(RD)J(RDEO (R, R, §).  (4.7)

If we now apply the separation Egs. (1.4), (1.7), and
(1.8) to Eq. (4.6), we obtain in the GLTA

169 (1) = p* | 4P (P?) [go(R) go(R) ]2
Xexp[iLo(R?, P2){]6(R2—R2) 5 (R"*—R?)

=p"[5(R?) go(R") "™ n1() 7 (1), (4.8)
where we have used the identity
[ dPp(P;) exp[ (P;/m)- VritJs(R/—R;)=7(). (4.9)

Equation (4.8) is identical to the CAA result Eq. (4.3).
As previously noted, Bloom and Oppenheim® intro-
duced the CAA in two steps: (1) approximation of
dynamics by the assumption of forces constant in time
and (2) subsequent symmetrization in R? and R (con-
sistent with the CAA) to satisfy symmetry require-
ments evident in the second line of Eq. (4.7). The et
result of these procedures is free particle dynamics
(momenta constant in time) with modified equilibrium
DF’s. In the GLTA as applied in Eqs. (4.8) and (4.7),
symmetry requirements are automatically satisfied and
the assumption of linear trajectories explicitly revealed.
One may easily show that, at low density, the iden-
tity between the CAA and GLTA is maintained for
time-dependent DF’s for any number of particles.
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The remainder term, which is due solely to the devi-
ation from free particle dynamics in 2@ (%), is given by

hze“”(f)=p2/tdS/dP2[¢(P2)g0(R2)]”2
Xexp{iLo(R? P?)[i—s]} XiL'(R2, P?)
Xexplils(R, P2)5)a(R*—RE)[o(P?) go(R%) 1%,
(4.10)

where L' is the interaction part of the two-particle
Liouville operator. Bloom and Oppenheim® have em-
ployed the result Eq. (4.8) in Eq. (4.7) to obtain the
CAA value of the time integral

Jo= / " 4S9 (1).
0

We may now obtain an explicit expression for the dif-
ference, Sz, between the exact and CAA results for
SO, By substitution of Eq. (4.10) into Eq. (4.7), one
may show by standard methods!? that

Br0=—plim | dP"2(P) (0| [J (R?) gi*(R%)]

XGoV TGl J (R?) g0 (R*) ] 0)92(P?) }. - (4.11)

The binary collision operator T3, is defined in terms of
the Laplace transforms Go(e) and Ga(e) of exp(iLy)
and exp(iLaf), respectively, as

G2= Go* GonGo.

The angular closed brackets in Eq. (4.11) denote a
spatial average over R2

The preceding GLTA analysis may be extended to
the case where J depends on momentum iz addition
to relative position. This important case has been con-
sidered in the CAA by Oppenheim, Bloom, and Torrey®
in connection with nuclear relaxation in **Xe gas. One
then obtains the CAA result of these authors and the
correction to this approximation.

Next we discuss the difference between the GLTA
and the CAA for %(f) at arbitrary density. Similar
considerations apply to time-dependent DF’s that in-
volve more than two particles. The GLTA expression
for (¢) is from Egs. (4.1) and (1.4)

ho(£) = Zy~1[N (N—1)] [ dP¥dR¢(P¥)
Xexp[—18U (R, R*)]
X {exp(iLot) exp[—38U (R R") J5(R*—R?)},
(4.13)

where Zy= [ dR¥ exp(—BU). In order to obtain the
CAA result, we neglect the dynamics of particles
3++-N, so that

ho()=Zy '[N (N—=1) 71 (D v2(?)
X [ dR» exp{—1p[U(R?, R*)4+ U (R, R*) ]},
(4.14)

(4.12)
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where we have used Eq. (4.9). With neglect of terms
of order of the square of the force (an assumption
explicitly made in the CAA), we obtain

ho()=Zy7 LN (N=1) In (1) 72(8)
X [ dR" exp{—BLU(R¥)+%(R/—Ry) - Vg, U(RY)
+2(R%—=Rs) - Ve,U(RY) ]}, (4.15)

Equation (4.15) has been shown’ to reduce to the gen-
eral CAA result for arbitrary density,

he(t) = pPr()v2()[g(R?) g(R™) T,

with neglect of terms of order of the square of the force.

From this discussion, it is clear that at higher densi-
ties the GLTA and the CAA will differ. The explicit
difference between the GLTA and the CAA to first
order in the density, 4™ and /e, respectively, is
given in the Appendix. There are two important dif-
ferences at higher density. First, the CAA neglects the
dynamics of all but two particles while the GLTA
includes linear trajectories for all particles. Second,
the CAA requires the neglect of gradients and powers
of the forces.

(4.16)

APPENDIX

Here we obtain the first density correction to the
low density form of the TDPDF Eq. (4.8) in the
GLTA. The expression for 2(¢), Eq. (4.1), is not con-
veniently analyzed in terms of standard low-density
expansion methods!>? as the usual equilibrium reduced
distribution functions do not naturally enter the analy-
sis. Here we sketch an alternate derivation which is
based upon van Kampen’s product expansion of equi-
librium distribution functions and partition functions.*

With the identity Eq. (4.9), the momentum inte-
grations in Eq. (4.1) may be performed. The terms
involving only particles one and two are then extracted
from the remaining space integrals to obtain

ho() =11(£) v2(t) [go(R?) go(R"?) Wa(2).
The quantity ys(2) is (N —2=n)
Y(f) = pz[VQZ (8)/Zx(8)]{[ dR"dR™P(R", R")

X H ¥i (1) [go(Ry;) go(Rs;) go(Raj") go(Rs;") 112}

i>3
=p[V?Z.(8)/Zy(B) JIL(2),

where
PR R™)=Z,(B)exp{ —38[UR")+UR™)]}
is a “‘symmetrized” distribution function for # particles.
Here Z,(8) and U(R") are the configuration integral
and potential energy of the n-particle system 3--- N,

Each of the two bracketed terms in Eq. (A2) is a
function of p. In order to obtain the lowest-order (p?)

result, we replace all configuration integrals by their
zero-density value Z,=7V" and in the space integra-

(A1)

(A2)

(A3)
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tions neglect all interactions of the » particles. Writing

V() =pn® @O +au®O+---1, (A4

we then obtain ¥1,® (f) =1 so that with Eq. (Al) we
recover the low-density CAA result Eq. (4.8).

In order to compute the first density correction
Y1 (£), we require each of the two bracketed terms
in Eq. (A2) correct to first order in p. This resuit for the
ratio [ V?Z,/Zx] has been obtained by van Kampen.*
To obtain the space integral term II(#) correct to order
p, we note that neglect of the effects of the interaction
among the » particles in P(R?, R'*) reduces II(f) to a
spatial average of the n-fold product in Eq. (A2). This
average may be expressed as the product of # equiva-
lent factors,

(1) = { V- | dRyRy75(1)
X [go(Rus) go( Ras) go(Rus") go(Ras’) JH2}m,

which includes only the effects of a typical third par-
ticle. As inclusion of the #-particle mutual interaction
in P(R", R’?) introduces at least four-particle contri-
butions (and thus higher-order p corrections) to IL(Z),
Eq. (AS) will yield II(#) correct to O(p).

IV (¢) may be evaluated by an application of van
Kampen’s method,* and with the aid of van Kampen'’s
result™ for [ V2Z,/Zx] correct to O{p) and Eq. (A2),
the density correction ¢12™(f) may be obtained by
straightforward calculation. ¥4, (f) may then be em-
ployed in Eq. (Al) to obtain the TDPDF in the
GLTA, correct to O(p*), AW (1), as

ho® () = p?Lg1(R?) g1 (R"?) T2y (1) 72 (2)
+0°[20(R?) go(R) JV271(£) va () [A1+42(H) . (A6)

The first term in Eq. (A6) is the CAA result® which
includes the equilibrium PDF’s correct to O(p). The
remaining terms in Eq. (A6) are

Ay=3 [ dR{{G(Ry, Re, Rs) —G(R/, R, Ry) I, (AT)
which is the deviation from the CAA equilibrium PDF

(AS5)

4709
dependence in Eq. (A6) and

i
As(D) = — ﬁ f dss / dRydPs(P;)G(Ry, Re, Ry)
[}
P,
XF3;(Ry, Ry, R;) - [exp (Z -VRss)

XG(RY, Ry, Re)F3(Ry, R, Rs)] , (A8)

which includes the effect of free particle motion of a
third particle. In Eqs. (A7) and (AS8),

G(Ry, R, Rg) =[go(Rus) go(Res) ]2,

and F; is the force exerted on particle 3 by particles 1
and 2. The terms (A7) and (A8), when employed in
Eqgs. (A6) and (4.2), are formally of the order of the
square of the forces and thus discarded in the CAA.

(A9)
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