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The momentum autocorrelation function of a particle in a one-dimensional box is calculated both
classically and quantum mechanically. The classical function is found by using the eigenfunctions of the
Liouville operator for the system. The quantum-mechanical function is calculated and shown to be a non-

analytic function of #.

L INTRODUCTION

There are very few dynamical systems for which
exact calculations of time correlation functions' are
possible. In this article we investigate a simple
example—the momentum autocorrelation function (&)
of a single particle of mass # in a one-dimensional box
of length L. Our calculation has two points. First, it
illustrates that the choice of @ priori distribution func-
tion determines the decay of the classical autocorrela-
tion function. Second, a comparison of the classical
and quantum-mechanical correlation functions shows
that, even when the classical function decays, the cor-
responding quantum-mechanical function is periodic.
We show how the eigenfunctions of the Liouville opera-
tor may be used to compute the classical momentum
autocorrelation function

rat)= [ as [T ipnappp).  ®
0 —00

Here p(¢) is the momentum of the particle at time ¢,
given that the particle had momentum p at position
x at =0. The quantity p(¢) may be expressed as

p(8) = exp(iLh) p, (2)

where £ is the classical Liouville operator? of the system;
Peq(P) is the @ priori probability density of finding the
particle in the neighborhood of x and p at t=0. We
shall assume conditions appropriate to a canonical dis-
tribution,

poa(p) = L7 (2wmksT) ™" exp(—Bp*/2m).  (3)

For this choice one finds that m,(f) asymptotically de-
cays to zero and is neither a periodic or almost-periodic
function of the time.?

The quantum-mechanical symmetrized momentum
autocorrelation function for the particle in a box is

7(8) =3Tr{palp () p+2p () 1} (4)

Here peq is the equilibrium density matrix appropriate
to a canonical ensemble,

Pa=Z7'exp(—BH); Z=Trexp(—BH), (5)

H being the Hamiltonian and p the momentum operator
for the particle. We find that the quantum-mechanical
autocorrelation function is a periodic function of the

time, which raises the question of how to take the clas-
sical limit and obtain quantum ‘“‘corrections’ to the
classical autocorrelation function.

II. EVALUATION OF THE CLASSICAL
AUTOCORRELATION FUNCTION

An expression for the classical momentum autocorre-
lation function for a particle in a one-dimensional box
was obtained some time ago by Nossal.? His analysis
was based on a direct calculation of the dynamical mo-
tion of the particle. In this section we present an
instructive alternative analysis based on determining
the eigenfunctions of the Liouville equation* appropri-
ate to this problem.

Within the walls the particle satisfies the Liouville
equation for a free particle,

Op(w, p;8)  —pdp(x, p; 1) .

Lol ZERED — —iga(w 530, (6)
where p(zx, p; t) is the probability density of finding the
particle at position ¥ with momentum p at time ¢
Since collisions with the walls at x=0 and x= L occur
with specular reflection, the appropriate boundary con-

ditions are
P(Ly P;t)‘:P(L’ —P;t)y (7)
p(0, p;8) =p(0, —p; 1). (8)

In order to determine the eigenfunctions of Eq. (6)
we look for solutions of the form

p(x, p; 8) =€ *4(x, p), %)
which leads to the equation

(i€~ iu)Y(x, p) = —[ip+ (p/m) (3/3%) W (x, p) =0,

(10)
with boundary conditions
and
The function
Y(x, p | po) =e*0(p—po) e *6(p+p0) (13)
satisfies Eq. (10) provided that
p=(po/m)k. (14)
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In order to satisfy the boundary conditions e*Z must
equal plus or minus unity, which implies that % is
some multiple of (#/L). Thus the eigenfunctions are of
the form

¥a(%, £ | po) = an(po)

X[exp(iknx)a(P_pO)"l" exp(—ik,x) 3(p+po) l (15)
with corresponding eigenvalues
pn (Do) = pokn/m= (po/m) (nr/L). (16)
Note that since
Yon(x, p | —po) =yn(x, p | po), (17)

we have a choice in how to specify the set of integers #
and po. A suitable choice is to take po>>0 for #=0 and
— o < po<+ for all positive integers n=1, +++, 0,
With a, () =[1/(2L)Y2] the set of functions can easily
be shown to be orthonormal and to form a complete
set. Any function %(x,p), defined in the region
0<zx< L, —o0o <p<+ 0, may be expanded in this set
according to the prescription

x(%, p) = /w dpo{0, po | xWo(x, p | po)

0

+ 3 [ apotn, pol Xtz 51 0), (18)

n>1 Y~

where

L @
ool 0= [ de [Tyt o1 s p). (19)
0 —o0

In order to evaluate rq(f) in terms of these eigen-
functions we must determine the expansion coefficients
for x=9 and x=pe(p)p. An elementary calculation
shows that the nonvanishing coefficients are

2n+1, po| p)=2p(2L)/im (2n+1)  (20)

and

(2n+1, po| pea(p) )=2popea(po) (2L)V*/iw (2n+1).
(21)

Substitution of the expansions into the expression for

7(t) followed by use of the orthonormality property of
the eigenfunctions leads to

0 +-o00
Ta(f) = Z_:o dpo exp[ipania(po)£]

X{2n41, po| pooa(p) V{21, po p); (22)

the final integration may easily be accomplished to
obtain

1 47212
X ((k+%)2 - mBB)’ (23)
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which is precisely the expression obtained by Nossal.?
Clearly 71 (f) asymptotically approaches zero; numeri-
cal calculation (see Fig. 1) shows that . passes through
zero at a value of the reduced time T'= (27%/mBL*) %
of about unity (a better estimate is TRVZ).

The Liouville operator for this system is Hermitian;
consequently all the eigenvalues p.(po) are real and
the time factors occurring in Eq. (22) are all oscillating.
Our calculation clearly indicates how the superposition
of these oscillating terms may still lead to a decaying
correlation function. The eigenvalues of the propagator
need not have a positive imaginary part in order for the
correlation function to decay. Mathematically speaking
the correlation function may decay if the eigenvalue
spectrum of the Hermitian propogator is continuous
(or has a continuous part). Furthermore our example
illustrates that one need not take the thermodynamic
limit in order to arrive at a continuous eigenvalue
spectrum for the classical Liouville operator.

What feature is responsible for the temporal relaxa-
tion? As pointed out by Nossal the controlling feature
in this model is the nature of the initial distribution
peq(P). Initial distributions other than the canonical
distribution Eq. (3) need not lead to relaxation. For
example, we may examine an initial distribution appro-
priate to a microcanonical ensemble at energy E,

pea($) =Teq(p) = (2L)H{8[p— (2mE)*]
+8[p+ (2mE)2]). (24)

The nonvanishing coefficients of pT'(p) in the Liou-
ville eigenfunction expansion are

(2n4-1, po | Tea(p) £)=2pTeq(po) (2L)2/im(2n+1).
(25)

From Eq. (22) we may compute the momentum correla-
tion function appropriate to this initial condition
waZ(f); the result is

ne0= 1525 s [(%)/2 (5): ] '
(26)

Clearly this correlation function does not decay; indeed
it is a periodic function of the time with a recurrence
time ¢-= (2m/E)"2L.

The difference in the effect of the two initial condi-
tions may be understood on a physical basis. The im-
position of an initial Maxwell-Boltzmann distribution
for the single particle in the box implies the weak
coupling of the particle to some sort of infinite heat
bath that maintains a temperature. In this circumstance
we might alternatively describe the particle in the box
as a subsystem of a global microcanonical system of
particle plus bath. In the limit of an infinite bath and
very weak coupling we may expect relaxation. If one
uses an initial canonical distribution, the motion of the
particle in the box may usefully be regarded as a special
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limiting case of Brownian motion in a system of finite
size.

Our results for the classical correlation function lead
us in the next section to inquire into the behavior of
the quantum-mechanical momentum correlation func-
tion. We wish to note, in passing, that our qualitative
considerations apply equally well to eigenfunctions and
time correlation functions of a classical free rotor; this
system has recently been studied in detail by St. Pierre
and Stecle.®

III. EVALUATION OF THE QUANTUM-
MECHANICAL AUTOCORRELATION
FUNCTION

For a quantum-mechanical particle in a box the
orthonormal eigenfunctions are

|8Y=(2/LY 2 sin(nrx/L), n=1,2,+++, 0, (27)
with corresponding energy eigenvalues
E.=wnwn?/2M I3 (28)

The correlation function «(¢), Eq. (4), may be ex-
pressed as

()= E > exp(—

n=l m=1

BE,)

X Lt 1wy eos ((222) - (a0)
The matrix element (| p|m)is

(n|p|m)=(4mhi/iL)[n/ (W—m*) JA(n, m), (30)

where A(n, m) is equal to unity if # is even and m odd
or if # is odd and # even; otherwise A(#, m) is zero.

The A(n, m) factor leads to sums restricted to odd
and to even values in Eq. (28). Unrestricted sums will
prove more convenient so we change the sums to the
indices p and % where = p—k and m=p+ k1. After
considerable algebra we find that IT1(f) may be expressed
in the form

o) = (;U)Re )

p=—10 k=——o0

(eXN —(@B)[(2p+1)?

~ 417 0 (28D 241 )

(2p+1)?
(<2k+1)2 _1)>’ (31)
where
a=nn?/2mI2, (32)

In contrast to the classical case w(f) is completely
periodic with period To= (2r#/a). Furthermore for all
times which are odd multiples of (7%/2a), =(f) is
identically zero. For times that are odd multiples of
(rhi/e), w(¢) is equal to the negative of the initial
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Fic. 1. The momentum autocorrelation function as a function
of time. The curve is the classical result; the points are the
quantum-mechanical result.

value w(0). The question arises as to how one can take
the classical limit #—0 of this expression to recover the
classical result and how one should express quantum
corrections to the classical limit.

It is clear that Eq. (3) is a poor representation of
w(f) for small ¢B. In order to address the question of
quantum corrections, we shall convert the sum over p
into a integral in the following way:

B = [a 5 aepre. 69
But’
-+ +w bl
3 8(z—p)= Y exp(i2wpz)=14+23 coslpmz.
39
Thus,
+o0 +o LJ
E = [ @ 1+2 5 costepa); (39)

#(t) can now be written

7(f) = ZhﬁRe Z dz(1+2 Z cos2rpz)
X{exp[—(aB) ((22+1)2— (2k+1)2) ]}
. af\]/ (224-1)2

X [exp (z(2k+1) (2p+1) 7’{)] ((2k+1)2 -—1) . (36)

Keeping the leading term, we find

2 1/2 4w
20 (T) = (2Z>—*( ﬁ) F el 2kt

afL?

2 1
X [(W - 1‘2) cos(2k+1)4¢ T

—2¢T sin(2k+1 %{T], (37)
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TasLE I. The momentum autocorrelation function
#(T)=a(T) /7(0).

A,
T Tol #O(¢=0.1) #({=0.1)
0 1.000 1.000 1.000
O1lx 0.774 0.764 * 0.764
0.27 0.549 0.543 0.543
0.3x 0.323 0.319 0.319
0.47 0.099 0.095 0.096
0.5« —0.106 —0.110 ~0.111
0.67 —0.259 —0.263 ~0.264
0.7% —0.343 —0.345 -0.345
0.8# —0.361 —0.364 —0.365
0.97 —0.329 —0.330 —0.330
1.0x —-0.270 —0.272 —0.273
1.1x —0.204 —0.203 —0.203
1.2x —0.142 —0.137 —0.139
1.3» —0.092 —0.087 —0.089
147 —0.056 - —0.055 —0.055
1.5# —0.032 —0.026 —0.028
B.
T ol #OLE= (0. 1)¥2] #[¢=(0.1)2]
0 1.000 1.000 1.000
0.09 7 0.810 0.723 0.723
0.18 = 0.573 0.525 0.525
0.28 7 0.368 0.323 0.323
0.38 7 0.143 0.107 0.106
0.47 7 —0.048 —0.096 —0.096
0.57 =« —0.220 —0.269 —0.268
0.66 7 —0.318 —0.343 —0.345
0.76 —0.361 —0.380 —0.390
0.85 7 —0.350 —0.337 —0.342
0.957 —0.302 —0.286 —0.300
1.04 7 —0.244 —0.250 —0.247
1.4~ —0.178 —0.133 —0.132
1.23x —0.125 —0.130 —0.128
1.33 » —0.080 —0.053 —0.046
1.42x —0.050 —0.023 —0.023
where
T=1(2x*/mBIL2)12, (38)
and
§=(ap)V?~0(h). (39)

The resemblance of Eq. (36) to the classical resuit
[Eq. (23)] is obvious. In fact, for =0, Eq. (36)
reduces to Eq. (23). However, it should be noted that
7@ (T) is not periodic in time. The neglect of the higher
terms has removed the recurrences.

Before discussing the behavior of #®(T), we discuss
the partition function, Z, which also has some inter-
esting analytic properties as a function of { (which is
the ratio of the mean de Broglie wavelength to the
length of the box). Evaluating the partition function
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as above, or by the Poisson sum formula,” we find

7.—1/2 +o

© 24392
20 5 el =12 E (- 22) -

n=1 §-2
1[ fnl2
=31(F) 1]

1r1/2 o m21r2
-+ ?—mzzlexp (— z ) (40)

Since ¢ is proportional to #, it is clear that the partition
function is #not an analytic function of %#. However for
small ¢, it will be of order unity plus corrections of order
# and of order exp(—1/#2).

For small ¢, we expect from Eq. (36) that #©@(T)
will be very similar to 7 (T). However, when {T is of
order unity, we expect to see oscillations [at frequencies
equal to (2k-+1)23¢ for all £]. Indeed, numerical cal-
culations have shown this to be the case. These oscilla-
tions are completely quantum mechanical in character
and are absent from the classical approximations.

Let us now go back to Eq. (35) and calculate the re-
maining terms in x(T). Using the techniques of the
theta function transformations,® we find, after much
algebra,

2K2\ [rl2\ +o 4w
(1) = (;?E) (5;2) Z. .z,

X exp — ((2k+1)%T— "?”)2
s3]

(ser+nr-)

2 4
X {[(2k+1)2 C(2k+1)2

4¢

olep_ 2
X cos(2k+1)%%¢T e+ 1)

X sin(2k+1)%§T} . (41)

Thus, the approximate function, #@(T) is equivalent
to the neglect of all terms for which #0 in Eq. (40).

For small {, we expect that x(f) will consist of a
repeating alternating series of peaks: for ¢ which are
close to multiples of (27fi/a) the peak will closely re-
semble m,), while for ¢ which are close to odd multiples
of mh/a the peaks will closely resemble —mq. As ¢
becomes progressively smaller, the peaks become better
separated and the recurrence time gets larger. Notice
that from Eq. (40), =(¢) is a nonanalytic function of ¢
(and hence of #), in contradiction to the usual assump-
tion made, but not proven, for interacting many-parti-
cle systems.?

In order to compare the various forms of the correla-
tion function, we have calculated 7 (), 7@ (), and
7 () in the manner described below, We have calculated
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7©(t) and = () for {2=0.001, {2=0.01, and {?=0.1 for
0<T<1.5m.

For each value of T, we performed the sums in Egs.
(23) and (36) for 0<k<50000. For each value of T
and each value of 2 (up to 2= 50 000), we have summed
the two largest terms of the # series in Eq. (40). The
largest term of the series is that for which n{T/2n
(2k+1). For each value of & and ¢ T, we picked the
two values of # which bracketed {7(2k41)/2x. In
this way, for these values of &, we have neglected terms
of order exp(—u?/{2)[~ exp(—100)]. Table I lists
the values obtained for »(7T), #@(T), and xa(7T) in
terms of their values at T'=0. It is clear that for
¢<0.1, and for T<1.57, the quantum-mechanical cor-
relation function is very similar to the classical func-
tion. However, one should notice that the 70 terms
do contribute to w(#) ; hence there is no simple way to
write the quantum corrections to x(#). For {2=0.1, we
find pronounced oscillations of 7(¢) [and =® (¢) ] about
the classical value. As pointed out above, these arise
from the sinusoidal terms in = (f). We present the cal-
culated = (¢) for {?=0.1 as a set of points in Fig. 1. The
solid curve is the classical correlation function. In order
to check our numerical results, we have also calculated
w(t) from Eq. (30) for {2=0.1; the results agree with
those presented in Table 1.

Clearly, one can see from Eq. (40) that #(T) will
consist of two types of terms: (a) those analytic in 7
and (b) those nonanalytic in %. The terms for which #
is zero [i.e., those making up »®(T), Eq. (37)] all
belong in category (a); the terms for which # is non-
zero will, in general, belong in category (b). However,
at any value of T such that T'=2ngr/{ (2k+1) where
ny and ko are integers, then there will be many terms
(for which #>£0) which are analytic in #. One can cal-
culate the contribution of these terms to x(T). For
example, at T= (27/9¢) (i.e., at 1/18 of the recurrence
time), those terms for which #/(2k+1)=1% will be
analytic in #% [i.e., those for which »=(2p+1) and
(2k+1)=9(2p+1), for all p]. The contribution to
m(T) from these terms alone [6x(T) ] is

QRN flin\ +w 2
o (T) = (g) (a;z) RENTCTETE

2R wliz g

~ P %7 XD (42)
or
or(T=2x/9%) 1
o)~ e oo (43)

For ¢=(0.1)12, this corresponds to T'=0.7r, at which
point 7@ (T=0.77)~0.3; thus, the contribution to
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7(T) from these terms is approximately 3% of the
total. At later times, these terms will contribute even
more. Hence the contribution to v (T) from these terms
is considerable for moderate values of T. In fact, the
contribution of these terms is of the same order of
magnitude as the difference between 7@ (T') and we1(T)
(see Table I). At a value of T slightly larger than
2nomw/¢ (2ke-+1) these terms will be nonanalytic in #,
but their contribution will still be approximately the
same. We conclude that the nonanalytic terms cannot
be ignored in calculating corrections to the classical
results.

IV. SUMMARY AND CONCLUSIONS

In this article, we have calculated both the classical
and quantum-mechanical expressions for the momen-
tum autocorrelation function for a particle in a one-
dimensional box.® The derivation of the classical ex-
pression was based on the eigenfunctions and eigen-
values of the Liouville operator. In the limit that
£=0, we find that the quantum-mechanical expression
becomes identical to the classical; however for nonzero
k, we find that the quantal expression cannot be ex-
pressed simply as the classical expression plus correction
terms in k. The same is true of the partition function,
which can be shown to be nonanalytic in the variable
£ (or ¢, the ratio of the de Broglie wavelength to the
length of the box). Our calculation suggests that some
care must be taken when discussing quantum correc-
tions to correlation functions.
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