RODLIKE MODEL FOR A POLYELECTROLYTE SOLUTION

The values of the degree of ion binding, Fig. 5,
calculated according to any of the three definitions
show almost the same dependence on ;. In the whole
interval of N; the divalent counterions are more bound
than the monovalent counterions. Further, the degree
of ion binding of the less bound monovalent ionic
species increases and that of the more bound divalent
ionic species decreases with increasing of the corre-
sponding equivalent fractions. This finding reminds us
of a similar rule about the dependence of the selectivity
coefficient of ion exchange on the fraction of ionic
species within the resin phase.
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It is necessary to emphasize that the calculations
presented in this paper are exclusively based on electro-
static interaction and therefore may be only compared
with experimental results obtained with polyelectrolyte
solutions exhibiting no specific interactions.
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Quantum Corrections to the Momentum Relaxation Time of a Brownian Particle*
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The long-time, heavy-mass limit of the quantum-mechanical momentum autocorrelation function of
a massive particle immersed in a bath of light particles is considered. An expression for the momentum
relaxation time is obtained. It is found that the symmetrized and canonical correlation functions yield
identical results in this limit. The momentum relaxation time, which is the inverse of the friction constant
of the quantum Fokker-Planck equation, is expanded in powers of Planck’s constant to obtain the first
quantum correction to the classical result. Quantum corrections for canonical correlation functions are

discussed.

I. INTRODUCTION

In recent years, the availability of time correlation
function expressions for transport coefficients has
prompted considerable interest in these functions.!
In the present article, we investigate the long-time
behavior of the quantum-mechanical momentum auto-
correlation function of a Brownian (B) particle of mass
M immersed in a bath of particles of mass m in the
limit that M>>m. For long times, the correlation func-
tion decays exponentially and we obtain a quantum-
mechanical expression for the relaxation time. The
first quantum correction to the classical relaxation time
is then obtained by an expansion of this expression in
powers of Planck’s constant,

Our starting point in Sec. II is the definition of the
canonical and symmetrized correlation functions.?
With the aid of Mori’s generalized theory of Brownian
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1 For an excellent review of the formalism and application of the
time correlation function method, see R. Zwanzig, Ann. Rev.
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Lectures in Theoretical Physics (Interscience Publishers, Inc.,
New York, 1959), Vol. 1.

motion,? we show that both these correlation functions
satisfy an integro-differential equation of the now
familiar form.* In Sec. III, these equations are recast
by the use of the Wigner equivalent technique®® in a
form which facilitates the development of Sec. IV,
where by employing a heavy-mass limiting procedure,
we obtain an explicit expression for the momentum
relaxation time for each of the two correlation function
definitions. The identity of these two expressions is
demonstrated and the relationship of our results to the
friction constant expressions obtained in several
studies™™® of the quantum Fokker-Planck equation is
discussed.

In Sec. V, we find an explicit expression for the
first quantum correction to the classical momentum

$ H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).
‘R. Zwanzig, Lectures in Theoretical Physics (Interscience
Publishers, Inc., New York, 1961), Vol. 3.
5 K. Imre, E. Ozizmir, M. Rosenbaum, and P. F, Zweifel, J.
Math. Phys. 8, 1097 (1967).
¢ J. T. Hynes, J. M. Deutch, C. H. Wang, and I. Oppenheim, J.
Chem. Phys, 48, 3085 (1968).
179%-15) T. Davis, K. Hiroike, and S. Rice, J. Chem. Phys. 43, 2633
{ .
8 J. McKenna and H. L. Frisch, Phys. Letters 19, 112 (1965);
H. L. Frisch and J. McKenna, Phys. Rev. 145, 93 (1966).
(199?6.) Dagonnier and P. Résibois, Bull. Acad. Sci. Belg. 52, 229
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relaxation time. Finally, in the appendix, we discuss
quantum corrections for general canonical correlation
functions.

II. BROWNIAN PARTICLE MOMENTUM
CORRELATION FUNCTIONS

The Hamiltonian operator of the quantum-mechan-
ical system composed of the B particle and N bath
pa.rticles is

Epﬁ P.+ Izv:lu‘(‘ r;—R])

N
+ 2 o5l n—15]), (2.0)

i<j
or in condensed notation,
H=(P-P/2M)+(p-p/2m)+ U (R, r)+%(1), (2.2)

where P, R and p;, r; denote the momentum and
position operators of the B particle and bath particle
1, ® is the interaction of the bath particles, and U is the
interaction of the B particle with the bath.l? We assume
that the entire equilibrium system is enclosed in a large
volume ¥ and that Boltzmann statistics are obeyed.

We define a time autocorrelation function of the B
particle momentum operator by

g(t) = (Pﬂ(t); PF) = (PIM Pu(t))’ (2-3)
where
P,(t) =exp[ (i/R) Bt P, exp[ — (i/F) Ht J=exp(iLt) P,,
(2.4)

with the quantum Liouville operator defined by the

commutator
iL(e-+)=G/R)[H, (++-)].

In Eq. (2.3), u=x, 9, 2 and we have used the convention
of summation over repeated Greek indices.

Following Mori? we shall consider two possible
definitions for the bracket (4,, B,) of two Hermitian
operators A and B. The canonical bracket is char-
acterized by the presence of a Kubo transform,?

(2.5)

(40 B)o=p" [ D Telolesp(AL) 4,1B,), (26)

while the symmetrized bracket is defined as
(4s, B))s=3% Tr{p[4u B, 14}, (2.7)

where the - subscript denotes the anticommutator.
In Eqgs. (2.6) and (2.7), 8=(kT)~! and p is the nor-
malized canonical ensemble density operator:

p={Trlexp(—~BH) )" exp(—BH).  (2.8)

1 Tn our notation, we do not explicitly distinguish between a
qua.ntum-mechamcal operator and the corresponding variable or
function, i.e., Pop, is denoted P. It should be apparent from the
context, however, which meaning is intended.
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Depending upon the choice of bracket, there are two
alternatives for the definition of the correlation func-
tion g(¢). The Fourier transforms of these two cor-
relation functions are related by?

/— - dt exp(—iwt) g(t) = [?ﬁz:n tanh$ (8fiw)

X [ " dexp(—iv) g (). (2.9)

As correlations of the form Eq. (2.6) are obtained in
linear response theory,® we accept g,(f) as the ap-
propriate definition. We shall find in Sec. IV, however,
that g.(¢) =g,(!) in the heavy-mass limit. Since in the
remainder of this section we obtain an equation for
g(¢) which is valid for either definition, we omit the
bracket subscripts.

We now wish to obtain an operator equation of
motion for the B particle momentum. By the use of
projection operator techniques,® Mori has derived a
generalized operator Langevin equation which may be
employed for this purpose. If a projection operator @
is defined by

®A=(A, P,)(P,, P,)"'P,, (2.10)
then Mori’s analysis yields
dP(1) _ :
=50~ [ 656, BO)
X (P,, P,)"'P,(t~s), (2.11)

where in this generalized Langevin equation the
“random force” is given by

E(t) =exp[(1—@®)iL{ iLP,
with the property
(E(®), P)=0. (2.13)

It follows from Egs. (2.3), (2.11), and (2.12) that
the correlation function g(¢) satisfies

(2.12)

dg(t) / ng(f—-S)K(S), g(O)=(P,., PM)}
(2.14)
where y2= (m/M) and
K (s)=[v*(P,, P,) TUE(s), Eu(0)). (2.15)

In obtaining this result, we have noted that the tensor
(P(5), P) is diagonal for an isotropic fluid.

III. REFORMULATION OF THE CORRELATION
FUNCTION EQUATIONS

We now employ the Wigner equivalent formalism to
express Eq. (2.14) in a form which facilitates our sub-
sequent analysis. As the properties and utilization of
Wigner equivalents are discussed elsewhere® we
simply quote here the relationships we require.
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For the system of interest, the Wigner equivalent A of an operator 4 is defined as the function

AR Pixp=[gom|  [Rden|- f ®RQ+0) [P-10,p-da| 41 PHO.pHD), (3
where the kets | P, p) in coordinate representation are normalized plane waves:
Wp p= (V) W+D12 exp[ (i/F) (R-P+r-p)]. (3.2)
It will prove convenient to redefine the Wigner equivalent in terms of the scaled momentum variable P'=+P:
A® s =[] 7 [ dQaed] - rRQtrg |
(2#H)? )

X P'—3v1Q,p—4q| 4 | v P'+3v1Q, p+3q). (3.3)

As our analysis will proceed in terms of the variable P/, we suppress the prime for ease of notation.
With the aid of definition Eq. (3.3), a canonical ensemble average of an operator 4 may be written as

Tr(od)= [ dRdPirdpf(R, P; 1, p;6)A(R, Pix, p)= [ dxdyf(x, 3:8)Ax, ), (34)

where f is the system Wigner distribution function® [see Eq. (3.11) below]. Commutator and anticommutator
Wigner equivalents have the form

(4B)— (BA)=24[B sin(AT/2) 4], (3.5)
(AB)+(BA)=2[A cos(AT/2) B]. (3.6)

The operator T is
T(2,9) =V " V"=V, V> +¥ V" Vg~ VR Vp~, 3.7

where the arrows indicate in which direction the gradients are to be applied.
We may now reformulate Eq. (2.14) for the canonical correlation function g.(f) = (P,, Pu(t)).:

dgc(t) _ ¢ _ .
T__,Yz/o dsg.(t—s5) K.(s);

£:(0) = (Py, Py)e. (38)
Application of Egs. (3.3)-(3.7) enables us to write g,(¢) as
g.,(l) = (Pm Pp(’))c

=g f " Tr{p[exp(MiL)P]-exp(iLt) P}
0

= (By1) /u i [ dxdy{ fem(%)[em(mﬁ)P]}- exp(ilt) P, (3.9)
where the operator il is
iL(x, y) = (p/m) - Vet (P/m) - Va— (2/%) sin (}iVs+ V,)8(r) ~ (2/%) sin[$5(Vs+ oty Va- V) JUR, 1), (3.10)
and the Wigner distribution function (wdf) f is the normalized solution to
fizy? #2 P.-P p'p

af
— . = —_— 2 —— 2L - V. V.
8 (x; y: B) = { A% 3 Vit 2 + 2 + COS(%ﬁ T ,,)<I>(r)

+cos[3% (V. V,+7Vre Ve) JU(R, r)}f'(!, y;8), (3.11)
with f'(x, y; 0) =[ (wfi)®¥+*]1, In Eqs. (3.10) and (3.11), the position gradients in the arguments of the sine

and cosine operators are understood to act only upon the potentials. In the appendix, we outline how the above
procedure may be used to obtain quantum corrections for time correlation functions of the form Eq. (2.6).

11 H. Mori, I. Oppenheim, and J. Ross, in Studies in Statistical Mechanics (North-Holland Publ. Co., Amsterdam, 1962), Vol. 1.
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While the initial value g.(0) may be obtained from the Wigner form in Eq. (3.9), the calculation is most readily
effected with the aid of the following identity due to Kubo?:

%[A, /1= [ * DMaLexp(AL)LAT). (3.12)

0
With the use of this relation and the commutation properties of R and P, we find

8= [ &\ Te(olexp(ML)P]-P)
0

= (im/Bhy*) Tr{[R, p]-P}=3m/By*. (3.13)

We now cast the kernel K.(s) in terms of Wigner equivalents. Using Egs. (2.15), (2.6), and (3.13), we have
after some manipulation

6
Ko(s)= (3m)~ [ d\ Tr{o[exp(MiL)E.]-E.(s)}. (3.14)
0
Application of Egs. (3.3)-(3.7) enables us to write this in the Wigner formalism as

K.(s)= (3m)~ /ﬂ " i f dxdy{ f exp (?)[exp()\ﬁfz)ﬁc]}-ﬁc(s), (3.15)

1
where E(s) = ﬁc(x, y; s) is the Wigner equivalent of E,(s). The function Ec(s) is obtained by consideration of the
operator equation satisfied by E.(s). Differentiation of Eq. (2.12) and use of the definitions Egs. (2.10) and
(2.6) yield
(¢/ds)Ee(s) = (1= @) iLE(s)

~iLE.(s)+ "1;3 - ( f " O Tr(pLexp (VL) E.JEq(s) }) , (3.16)
0

with Ec(0) =iLP. Forming the Wigner equivalent of both sides of Eq. (3.16), we find
3 - s - P p ’ -
;9:_ Ec(x: y; S) =’LL(X, Y) Ec(x7 y; 8)+ " / dx / dx dy/ f(x ¥ 16)

m 0

Xexp (f;—f:) {expDViL(x', y) JE.(x', ¥') }) E(x,y;s), (17)
with
Bu(x,7;0)= = VaU(R, )= 3. Voan(| r-R ) =F(R, 1), (3.19)

where F is the force exerted on the B particle by the N bath particles.
Combining Eqs. (3.8), (3.13), and (3.15), we find that the canonical correlation function satisfies

dg.l) o f aT YR B ()
=== 3m./; dsg.(t s)[0 dx/dxdy{fexp(Zi)[eXp(VlL)Ec]} Ec(s);

8:.(0) = (3m/Bv?). (3.19)
One may show in an analogous fashion that the symmetrized correlation function may be written in the form®
g0y =7* [ dxiyfP-[exp(ife)P] (3.20)

and satisfies

dg.(8) t .
—_—L = —2(P-P)? dsg,(t— dxd AT)E, - E,(s);
o =~ PO [ dstis) [ axisl feosGATIED-Bulo)
8.(0) =v*(P-P)=v [ dxiyfP-P, (3.21)
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where E,(s) is the solution to

3019

% E.(x,y;5)=il(x, )E.(x, y; 5)+3v(P-P)~1P- / dx'dy'[ f(x',¥'; B) cos(AT) E. (X, y) B, (X', ¥'; 5);

E.(x,y;0)=F(R,1).

In the next section, we shall find that in the limit
¥—0 (if the temperature is not too low), Egs. (3.17)
and (3.22) are identical. In this limit, these equations
may be integrated to yield an expression for the force
on the B particle whose time dependence is calculated
with the B particle fixed at R.

IV. HEAVY-MASS LIMIT

In this section, we apply the heavy-mass limit*!*13

¥y—0, t—w; y¥=r=constant (4.1)
to Egs. (3.19) and (3.21) to extract the long-time
exponential behavior of the correlation functions.
Before proceeding with the formal analysis, we briefly
consider the basis for the application of this limit and
its interpretation.

In a classical dense fluid, the ratio of the magnitude
of the B particle momentum to that of a bath particle
is of order 4! and we expect that P changes very
slowly compared to p as a result of collisions. In order
of magnitude, the relative change of P during the
B-particle-bath-particle time of collision rs~Ro(mf3)**

.

18

AP/Pr~(to/ Ro) Ro(mB)2(8/ M) o~y

where we have taken the potential # to have strength

(4.2)

(3.22)

wuy~kT and a characteristic length R;. During this
same interval, the relative change of the momentum
of a bath particle is approximately Ap/p~1.

We recall from Eq. (2.14) that the momentum cor-
relation functions satisfy

d5t) _

7 4.3)

¢
=y [ dsgt=)K(s),
0

where K(s) is the correlation function of a modified
force acting on the B particle. As the change of g(f)
is extremely slow (~+%) on the time scale ¢ for y<«<1,
introduction of the time scale r=+% will enable us to
follow significant changes of g(¢). Roughly speaking, we
may interpret the limit y—0 as expressing the con-
dition that the mass ratio be small enough to insure
that the relaxation time of g(#) (~+v%) be widely
separated from the relevant microscopic times. In our
problem, the relevant time will be the relaxation time
of the modified force correlation function, which we
assume to be several units of 7. In the same spirit,
we may view the limit > as indicating that times
are to be considered which are much greater than this
microscopic time. With this orientation, we proceed
with the formal limiting argument.

We first consider the canonical correlation function.
With the change of variables r=+% and the definition
v*g.(£) =1.(7), Eq. (3.19) becomes

é%(:)- =— " dsg.(r—7%) [(3m)"1 fﬂ dz [ dxdy { fexp (H)[exp(xﬁﬁ)ﬁcj}-ﬁc(s)] , (4.4)
r 0 o 2
with 2.(0) = (3m/B). Executing the limit Eq, (4.1) and reverting to our original variables, we find
8:(1) = (3M/B) exp(—t/r0);  t>0, (4.5)
where the momentum relaxation time 7. is
rl= % /o " ds 13;1310 ( /: A f dxdy { fexp (%)[em(mﬁ) E,,], -ﬁc(s)) . (4.6)

To obtain the limiting form of the phase integral in Eq. (4.6), we expand the operators and functions appearing
there in powers of y. With the aid of Egs. (3.10), (3.11), (3.17), and (3.18), we find

iL(x, y) =iLs(R; 1, p)+0(7)
and

From Eq. (3.11), we obtain f=£,-+0(v), where

= (p/m) + Ve~ (2/£) sin[}4(V, V) LU (R, 1) +&(x) 1+0(7), (4.7
E.(x, y;5) =exp[ila(R; 1, p)sTF (R, 1) +O(). (4.8)
fo(x, ¥; 8) = (8/2wm) ¥ exp(—BP-P/2m) 1fs(R; 1, p; 8), (4.9)

11, Van Hove, Physica 21, 517 (1955).
B R. Zwanzig, J. Chem. Phys. 40, 2527 (1964).
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with f;, the bath wdf, the solution to

(6/s'/08) = — { — (7¢/8m) V:2+ (p-p/2m) +cos[ 3 (V.- V) LU (R, 1) +&(x) JIfy/

T. HYNES AND J.
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(4.10)

normalized with respect to R, r, and p. Both f; and s are appropriate to a system of interacting bath particles in

the field of the B particle fixed at R.

To complete the calculation, we note from Eq. (3.7) that

T(x) y) = TO(ry P) +0(7) = Vp‘_' vr-"" vr‘-' vp¢+o(7) .

(4.11)

In consequence of Egs. (4.6)—(4.9) and Eq. (4.11), the relaxation time for g.(¢) is

£ 8
i< ["as [ o [ awasap (fb(R; £, 0:8) exp (52 lexpDVLa(R; 1, 2) TP (R, 0 })

where [see Eq. (4.10)]

FR;1,0i6)= | [ Rardpi/ ;5,0 | R 5,58).

{explila(R; 1, p)sTF(R, 1)}, (4.12)

(4.13)

Noting that the intggrations in Eq. (4.12) over the bath variables r and p yield quantities independent of R (as
may be seen by letting R—R’, r,i—1/4-R’), we may perform the R integrations to obtain

= (3M) '[:ds/: dx/drdp(f,,(R; 1,p; 8) exp (%Tf)

X {exp[MiLy(R; 1, p) IF (R, 1) })° {expliLo(R; 1, p)sTR(R, 1)}, (4.14)

where we have retained the same notation for the bath
wdf f;, now redefined as the solution to Eq. (4.10)
normalized with respect to r and p.

In order to obtain an expression for the symmetrized
correlation function in the heavy-mass limit, we shall
require the y=0 limits of the quantities appearing in
the kernel of Eq. (3.21). From Eq. (4.9) we find

®-P)= [ axisf(x,y; )PP

= (3m/B)+0(v). (4.15)

[Note that this average also appears in the initial
condition of Eq. (3.21).] From Egs. (3.22), (4.7},
(4.9), (4.11), and (4.15), we obtain

E.(x,y;5) =exp[iLo(R; 1, p)sTF(R, 1) +0(v). (4.16)
Finally, we have from Eq. (4.11),
cos{3AT (x, y) J=cos[$ATo(r, p) J+O(v).

With these resuits and Egs. (4.7) and (4.9), we may
apply the limit Eq. (4.1) in the same manner as above
to Eq. (3.21) to find for the symmetrized correlation
function

(4.17)

>0, (4.18)

& ()= (3M/B) exp(—i/);

where the relaxation time is

ﬂ =
LA L ) f drdp
3,

X[ fo(R; 1, p; B) cos(3iV," V") F(R, 1) ]
-{explils(R; 1, p)sTF(R, 1)}. (4.19)

In obtaining Eq. (4.19), we have again formally inte-
grated over R and redefined f, to be normalized with
respect to r and p.

Equation (4.19) for 7,7 may easily be shown to be
equivalent to the friction constant expression obtained
by Davis e al7 in a study of the quantum Fokker-
Planck equation.”

The Wigner equivalent formulations for 7. and 7,
may be “inverted” to yield the following expressions
of the more usual quantum-mechanical form:

X Try{ oL exp(ViLy) G, J[exp(iLss)Gul), (4.20)
= % / ® ds} Tro(n{Gor Lexp (L) G} 4), (4:21)

#Tn Ref. 7, the factor M~ is not included in the definition of
the friction constant. A factor of 4 should appear in the definition
Eq. (ITT-62) of this reference.
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where Tr, indicates a trace over bath variables and

G=(i/R)[U,p]
- n

is the quantum mechanical force exerted on the bath
particles by the B particle fixed at R. Here p; and L,
are the demsity and Liouville operators [cf. Egs.
(2.5) and (2.8)] containing the Hamiltonian of the
bath including the bath interaction with the fixed B
particle. The quantities G, g, and L, depend on R,
regarded as a parameter which locates the source of a
prescribed field in which the bath particle motion
occurs. Equation (4.21) is identical in form to the
{riction constant expression obtained by Dagonnier
and Résibois® in their treatment of the Fokker—Planck
equation for a system composed of a B particle im-
mersed in a Bose fluid.

The equivalence of 7, and 7, may be established by
noting that an equation of the form Eq. (2.9) holds?
for the correlation functions in Egs. (4.20) and (4.21).
For w=0,

(4.22)

[ ae [ ’ D Tro{po[exp(ViLs) G, [exp L) G, T}
—c0 4]

= [ 8 ToalGo expLG,T0). - (425)

As both correlation functions are even in ¢, we see that
Te=Ts.

We note that our results will not be valid for large
but finite ¢ and M in all circumstances. Difficulties of
this nature were first noted by McKenna and Frisch,?
who observed that the quantum Fokker-Planck equa-
tion was invalid for sufficiently low temperatures. As
further discussed by Résibois and Dagonnier,!® at low
temperatures, where quantum effects are dominant, the
magnitudes of the momenta of the B particle and the
bath particles are determined essentially by their zero-
point motion and are independent of mass. Hence, the
ratio of the momenta will not be of order v~ and the
basis for the limiting procedure discussed previously is
not appropriate. This difficulty is evident if one examines
the higher-order terms in the v expansion of the
kernels appearing in Eqs. (3.19) and (3.21), While the
exact behavior of these terms is difficult to ascertain,
it may be readily verified that the series will contain
terms proportional to the factor (A/Ry)"(\/Ry)™,
where

A=+h/2(mkT) 2=y (4.24)

is the mean de Broglie wavelength of the B particle.
Thus we see that the large mass of the B particle will

B (a) P, Résibois and R. Dagonnier, Phys. Letters 22, 252
(1966). (b) P. Résibois and R. Dagonnier, Bull, Acad. Sci. Belg.
52, 1475 (1966).
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not be sufficient to render these higher-order terms
negligible in the low-temperature limit.

This interesting low-temperature regime has been
discussed in detail from the point of view of the quan-
tum Fokker-Planck equation by Résibois and Dagon-
nier.”® The complications arising when Fermi statistics
are obeyed by the system have been examined by
Dayvis and Dagonnier.!

We restrict our further discussion to intermediate
temperatures where quantum effects are so slight that
Eqs. (4.5) and (4.18) are valid descriptions of the
relaxation. In particular, we assume that the ratios of
the mean de Broglie wavelength A=7/2(mkT)'2 of a
bath particle to the characteristic lengths R, and 7,
of the potentials are small but not negligible compared
to unity. In view of Eq. (4.24), this implies that for the
B particle de Broglie wavelength,

A/Ry=y\/ReK1

for large M, and therefore the system may be described
as a classical B particle immersed in a slightly quantum-
mechanical bath. Under these circumstances, the
particle momenta will stand in the ratio

P/p~y[1+O0(N/Ro)*+0(A/r)*],  (4.26)

and the difficulties associated with the low-temperature
regime will not be encountered.

V. QUANTUM CORRECTIONS TO THE
RELAXATION TIME

(4.25)

In this section, we obtain the first quantum cor-
rection to the classical momentum relaxation time (or,
equivalently, the friction constant) by expanding
Eq. (4.19) for 7,7t in powers of %. Our result will be
appropriate for the temperature regime where the bath
quantum effects are slight, i.e., \/Ry, A/re<1. As
expansions of this type are considered in detail else-
where,® we give only a brief account here.

From Eq. (4.10), we find for the bath wdf:

fo(R; 1, p; B)=fr'(R; 1, p; B)

X{1+72[8(R; 1, p; B) — (O)ar ]} +O(BY),
where (Up=U+®)
6(R; 1, p; B) = (6*/8m)
X{—=V2Ur+38[(V:Ur)*+ V. V. Ur: (pp/m) ]}, (5.2)

and the angle brackets with subscript ¢l denote an
average over the classical bath distribution

S (R; 1, p; B) =Zy* exp{—BL(p-p/2m)+Ur(R, 1) 1};

Z= / drdp exp{—-ﬁ[p—z.’g +Un(R, r)]]. (5.3)

(5.1)

(1196612). T. Davis and R. Dagonnier, J. Chem. Phys. 44, 4030
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From Egs. (4.7) and (4.16), the time-dependent
force, correct to O(#2), is

exp[iLps JF = exp[iLyls TR+ (%2/24)
X [ dz exp[iL'z(V:*+ V) 2Up
0

X {exp[iLy'(s—3z) JF}, (5.4)
where L' is the classical bath Liouville operator
il (R; 1, p) = (p/m) - V:— V:Ur(R, 1) - ¥y, (5.5)

and the asterisk has been placed upon V; to indicate
that V, operates only on Uy.
The correction arising from the cosine operator is

cos[ (V" Vi) J=1— (#2/8) (V,"+ V") 24O (i4).
(5.6)
With these results, it follows that, to O(#2), Eq.
(4.19) is
o= = fat R, (5.7

where the classical friction constant is given by"

A “IF . [exp (iLs*
fa= 37 /; dt f drdpfy'F-[exp(iL, 1) F],  (5.8)

and the first quantum correction consists of three
terms'®:

H=H0+HO+4HO, (5.9)

f it f drdpfi' [0~ (8)a TP+ [exp L) F,
0
(5.10)

B -]
fo= 2 / dt [ drdpfie
YT, / ’

X{[—ﬂ— Vi— £ pp:V,V,]F}{exp(iLb“t)F], (5.11)
8m?

ﬂ o
fo= - f dt [ ardpfi®
VTR

t
(/ dz exp(iLy'z) (V,*- V) 3Ur
4]

X {exp[iLyt(t—32) ]F}) . (5.12)

177, L. Lebowitz and E. Rubin, Phys. Rev, 131, 2381 (1963).

8 The analysis of McKenna and Frisch (Ref. 8) utilizes the
Husimi transform method to obtain a Fokker-Planck equation.
We have been unable to verify the identity of our & with the
results of these authors. We note, however, that the over-all
quantum correction to the friction constant obtained by these
authors may be shown to be of order %2 [see Ref. 15(b)]. The
advantage of the McKenna—Frisch analysis is the demonstration
that the B-particle distribution function satisfies a Fokker-Planck
equation, For this purpose, it is advantageous to employ a Husimi
transform which is both real and nonnegative (unlike the wdf)
and hence may serve as a probability density in phase space.

J. T. HYNES AND J.

M. DEUTCH

If Eq. (4.14) is expanded to obtain the first quantum
correction to {, we find, in addition to Egs. (5.8)~
(5.12), the term

B BR [

d
—_ el 7. ol . s T el
Wil e f drdpfyt GLO'F) -[exp L) F],

(5.13)

which vanishes if we assume that F(¢=) is uncor-
related with the initial rate of change of F.

VI. CONCLUDING REMARKS

We have shown that, except at low temperatures,
both the canonical and the symmetrized B particle
momentum correlation functions decay exponentially
in the heavy-mass limit with the same relaxation time,
The first quantum correction to the inverse of this
relaxation time (the friction constant) was then ob-
tained by an expansion in 7. This expansion may be
used to obtain quantum corrections to the diffusion
constant of a massive particle immersed in a quantum
fluid, as this constant may be expressed as a time
integral of the momentum correlation function.! As
these corrections will involve the mass of the bath
particles through the factor A=7%/2(mkT)12, isotope
effects for this transport coefficient may be investi-
gated.

The procedure outlined in the appendix for obtaining
quantum corrections for canonical correlation func-
tions may be employed to find quantum corrections for
a variety of hydrodynamic transport coefficients,
which may be expressed as time integrals of these
functions.!

In a recent, related article’® McLaughlin, Palyvos,
and Davis consider quantum corrections to the friction
coefficient in a system where there is weak coupling
between the particles. As their treatment involves
the weak coupling limit as opposed to the heavy-mass
limit considered in the present work, no direct com-
parison between results is appropriate. The virtue of
the very interesting article of McLaughlin ef al.®
is that approximate numerical values for the quantum
correction are presented. It is our intent to compute
numerical values for the correction term {; obtained
here [Eq. (5.9)] by use of the “linear trajectory
approximation.”® In this way we hope to estimate the
quantum effect on diffusion of a heavy particle, e.g.,
Ne, Kr, in liquid H; and D,.
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RELAXATION TIME OF A BROWNIAN PARTICLE

APPENDIX

We outline in this appendix how the Wigner tech-
nique may be employed to obtain quantum corrections
for a canonical correlation function of the form

8
C(t) =g [ i\ Tr{p[exp(\E) 4 exp(—\H) A ()}
o .
(A1)
Our procedure is to recast Eq. (A1) in terms of Wigner
equivalents and obtain an expansion of the recast
expression in powers of Planck’s constant. For sim-
plicity we consider an N-particle system with H=

Y/2m-+U(r), so that the appropriate form of defi-
nition Eq. (3.1) is

it (ot o= i)
X(p—iq|4 |p+iq). (A2)

If the given operator 4 is an arbitrary function of
position and momentum operators, then 4 will in
general be % dependent and additional terms in the
expansion given below will result. As extension of the
expansion procedure to such cases is straightforward, we
restrict the discussion to an operator of the form

A(r, p)=g(r)+4(p), (A3)

so that 4 has no #% dependence and is the same function
of position and momentum variables as 4 is of the cor-
responding operators.

With the aid of the analogs of Egs. (3.4)-(3.7),
C(t) may be written as

8
Ct)=8"1{ d\ | drd
® ﬂ'/o /rp
f
X(f(r, p; B) exp [Ez (Vo e Vo — V,".Vp")]

X {exp[MiL(r, p) JA (1, p) })

X {exp[iL(r, p)£]A (1, D)}, (A4)
where

iL(x, p)= (p/m) - Ve~ (2/R) sin[3i( V- ¥;) JU (1)
(AS)

and f is the normalized wdf appropriate to the system.!
Expansion of Eq. (A4) in powers of # and subsequent
integration over A yields

ct)= / drdpfa(r, p; B)A(r, p) Aalr, p; 1)

+#C()+O0(#), (A6)

3023
with
Aa(r, p; f) =exp[ila(r, p)1JA(r,p), (A7)

where {L,, the classical Liouville operator, is the i—0
limit of Eq. (AS). The first term in Eq. (A6) is the
classical autocorrelation function of 4,! while the first
quantum correction consists of four terms:

Ci() =G (£) +Ci@ (1) +Ci® (8) +C:¥(2), (A8)
COO)=([o(r, p; B)— (B)aJA(r, P)Aalr, P; 1))et, (A9)
Ci® () = (—1/8) {[Aop(r, p; B) A(1, p) J4ui(1, P; ¥) ),

(A10)

cww=(1/29) [ ds

]

X{4a(r, p; s—=)[(Ve*+ V) 2U(r) JAalr, P; 5) o,

(A11)
Ci® () = (—8/12) (A (r, p)Aalr, p; 1) )a, (A12)
where
oy B (va
O(r,p,ﬁ)—&n{ (VAT)
+18 [(VrU)’-i-V,V,U: l’l’]} . (A13)
m
Ao (1, p; B)=[(8/m)*(p+ V:)?
~(26/m)pV:U:V,Vt-B2(V,U-V,)?
—(8/m)Vi—pv.v.U: vpvp], (A14)

and the angular bracket with subscript cl indicates an
average over the classical distribution function. We
note that, to O(#2), the canonical correlation function
differs from the symmetrized function® by the presence
of the classical correlation function of the time deriva-
tive 4 in Eq. (A12).

An alternate procedure may be employed when the
operator 4 is the time derivative of some operator B:

A= (i/h)[H, B]=B. (A15)

In this event, one may perform the A\ integration in
Eq. (A1) with the aid of the identity Eq. (3.12) to

yield
C(8)=(i/#B) Tr{[B, p]A()}. (A16)

Quantum corrections may then be obtained by ap-
plication of the Wigner formalism and subsequent
expansion in powers of %,

Expansions similar to those in this appendix and a
discussion of applications of quantum corrections for
time correlation functions may be found in Ref. 6.
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