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The linear (Redfield) form of the equation of motion for the density matrix of a spin system immersed
in a heat bath is derived. The usual derivations employ perturbation theory which suffers from the presence
of secular terms familiar from nonlinear mechanics. We employ the multiple-time-scale technique as
developed by Frieman and Sandri to eliminate the secular terms and render the expansions valid for all
time. The method introduces explicit time variables to exploit the multiplicity of time scales inherent to

the problem.

I. INTRODUCTION

Nuclear magnetic relaxation (NMR) is one example
of a general class of relaxation processes which may, to
a certain degree of approximation, be described by a
master equation. The essential feature of such processes
is the existence of a large heat bath or reservoir which is
weakly coupled to the subsystem. For these non-
equilibrium systems one finds that the equation of
motion for the density matrix of the subsystem (spins
in the NMR case) has the form of a master equation.
The purpose of this paper is to derive the well-known
equation of motion for the spin density matrix!

30°% [0t = —03aar0®+ D Roargpra® (L1)
88/

by use of the multiple-time-scale (MTS) method.
In Eq. (1.1) ¢*' is the a, o’ matrix element of the spin
density matrix, weer=[(Eq—FEa«)/h], where E. is
energy of the spin state @, and Raargs is the “relaxation
matrix.” Our motivation for presenting this alternative
derivation is based on the conviction that the MTS
method provides considerable advantage in displaying
the physics of the relaxation process.

The microscopic description of the relaxation of
nuclear spins in a fluid was first formulated by Bloem-
bergen, Purcell, and Pound.? Subsequent derivations
of the equation of motion for the spin density matrix
have been presented by Wangness and Bloch,? Bloch,?*
Redfield,! Fano,® Hubbard,® and Abragam.” All these
methods proceed by a sophisticated version of or-
dinary time-dependent perturbation theory applied to
the density matrix rather than the wavefunction. The
restriction of ordinary perturbation theory still applies,
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namely within the time interval considered the density
matrix cannot change substantially. The following
assumptions are common to these developments: (a)
The bath and spin subsystems are uncorrelated for all
times, i.e.,, the density matrix factors into spin and
bath partst; (b) the bath remains in thermodynamic
equilibrium for all times'7; (c) the correlation time of
the bath 7, is much shorter than the spin relaxation
time 7z. The first assumption can only be true in the
case of vanishing interaction between spins and bath
but yields useful results when properly employed. The
second assumption implies a random phase condition
for all times (actually discrete time points). The last
condition insures that the equation of motion for the
spin density matrix will refer to one time and not to the
system’s history. As long as one does not require a
description for times short compared to 7., the last
condition assures that a “Markovian” master equation
can be obtained for the spin density matrix.

General techniques have been developed to cir-
cumvent these assumptions. The pioneering effort was
undertaken by Van Hove® who rederived the Pauli
equation? (a prototype master equation) using the
techniques of quantum field theory. Zwanzig!® demon-
strated that the Pauli equation could be derived by
more direct methods by using projection operator
techniques. Many applications of his formulation have
followed 102

In the field of spin relaxation, Zwanzig’s techniques
were first employed by Argyres and Kelley,!* The
random phase approximation, as manifested in the
assumption of thermal equilibrium for the bath,
appears only once as an initial condition. Argyres and
Kelley remove the restriction 7.<rg and derive an
equation of motion for the spin density matrix that
depends on the history of the system. For the case
r.<7g they obtain the standard result Eq. (1.1} by
keeping terms to second order in the spin-lattice
coupling and taking a weak-coupling limit. This limit-
ing procedure, introduced by Van Hove? consists of
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SPIN RELAXATION 37

letting the coupling parameter A approach zero and the
time approach infinity such that the product (A%)
remains constant. This procedure has been extensively
applied to generate “Markovian” equations of motion
for the density matrix of the subsystem.

In this article we present an alternative for cir-
cumventing the difficulties of the standard techniques
for deriving an equation of motion for the spin density
matrix, i.e., see Redfield,! Slichter,”* or Abragam.
The difficulties of the standard methods are associated
with a failure of the perturbation theory. In the usual
treatments one encounters secular terms (those which
grow linearly in time) which destroy the smallness of
the terms in the perturbation expansion. The problem
is to find an expansion procedure that avoids the
secular behavior. A similar problem occurs in the field
of nonlinear mechanics and has been extensively con-
sidered by Krylov and Bogoliubov.®® Their techniques
have been modified by Frieman™ and Sandri!® who de-
veloped the MTS method in order to treat a variety of
problems that arise in the kinetic theory of gases. We
have used the MTS method to present a microscopic
derivation of the Fokker-Planck equation for a heavy,
Brownian particle in a classical fluid.** The MTS
method is applicable to systems whose key feature is
the existence of processes occurring on widely separated
time scales. This feature is quite general for weakly
coupled many-body systems. In the NMR case the
bath changes on the fast time scale characterized by
7. while the spins change on the slow time scale char-
acterized by 7z. The virtue of the MTS method is
that it focuses attention, at the outset, on the existence
of different time scales,

In the next section we establish notation and ex-
plicitly demonstrate the secular behavior of the
NMR problem. The third section contains the deriva-
tion of the equation of motion using the MTS method.
The final section contains some concluding remarks con-
cerning the MTS method.

II. SECULAR BEHAVIOR IN NMR

The system consists of a spin subsystem plus a heat
bath which for concreteness we think of as a liquid.
The system Hamiltonian is

H=H,+H+\H =Hy-+\H, (2.1)

where H, is the Hamiltonian of the spin subsystem in a
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static magnetic field, Hy, is the bath Hamiltonian, and
H' is the interaction between spins and bath responsible
for the relaxation. The parameter N measures the
strength of this interaction. The Liouville equation
describing the time evolution of the system density
matrix, p(f) is

i(8/0t)p(t) =h7'[H, p]=Lp. (2.2)
The operator L is
A-[H, $]=L9, (2.3)
where ® is an arbitrary function.
We decompose L as
L=LAL;4+ L' =L\’ (24)

The system is prepared such that initially (¢=0) the
system density matrix is the product of an equilibrium
bath density matrix and an arbitrary spin density
matrix:

p(0) =pz(0), (2.5)

where ¢(¢) is the spin density matrix and pz the bath
density matrix,

pr=exp[—BH.]/Z;  Z=Tri[exp(—BHL)].

The arbitrary initial spin state, produced by some
constraint introduced in the distant past, will evolve in
time toward its equilibrium value ¢., when the con-
straint is removed at ¢=0. The spin energy term H, is
defined to include the thermal equilibrium average of
the interaction term. This implies

Tr{ (A, peq ]} =Trz{NL'peq} =0.

To obtain the spin density matrix from the system
density matrix we must take a trace over the bath

(2.6)

(2.7)

variables
Trp(8) =a (8 (2.8)
so that o(f) satisfies the equation
1(da/38) =Tri[Lo(t) ]. (2.9)

We proceed to exhibit explicitly the breakdown of
perturbation theory in the derivation of the equation
of motion for ¢(#). To facilitate the discussion we cast
the Liouville equation in the interaction picture:

i[0p*(£) /L] =NL™* (1) p* () (2.10)
with
A*(t) =exp[ (i/h)Ht]A exp[ — (i/R)Hit].  (2.10')
We expand p*(Z) in powers of A,
P*(8) =pa* (1) +2or*(£) +Mpe* () +- -+, (2.11)

substitute this in Eq. (2.10) and equate powers of A to
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38 R. I.

obtain
iL0pe*(1)/0]=0;  pg*(0) =pz0(0); (2.12a)
iL0pr*(2) /0] =L"™*(£) po* (8) ; (2.12b)
iL0ps*(8) /98] = L"™* () pa*(1). (2.12¢)
With the use of Eq. (2.8) and the expansion
o*(8) =ao* (8) +Nar* () + Mo * (1) +- -+ (2.13)
we obtain
i[d00*(£) /0t]=0;  00*(0) =¢(0); (2.14a)
iL0oi*(8)/0f]=TrL{L*()p* () };  (2.14b)
i[doa*(8) /Ot ]=Trr{L*({) ;*(£)}.  (2.14c)

Inserting the solution of Eq. (2.12a) into Eq. (2.12b)
and introducing the solution of Eq. (2.12b) into Eq.
(2.14c¢) yields

30'2*(t)

t
EY =‘Trf~/ L*(8) L'*(¢') 1 poqa (0) ~7.Gor (0),
0

(2.15)

where 7, is some correlation time after which the inte-
grand is negligible and .G the value of the integral
(see Ref. 7, p. 276). Solving Eq. (2.15) for ox*(f)
yields

a* (t) ~trGa(0). (2.16)

This quantity grows linearly in time (secular behavior)
and for times ~(1/7.G) the supposed correction is of
the same size as the zero-order term. The expansion
procedure, valid for short times, will break down when
we try to describe the long-time behavior of the system.
The original derivations were successful because they
deal with time intervals A¢ satisfying the inequality!

> A>T (2.17)

While this procedure yields the proper equations of
motion the previously mentioned restrictive assump-
tions must be imposed. Abragam’s iteration scheme’
requires the replacement of the initial density matrix
by its value at time ¢ to avoid secular behavior. Finally,
the Zwanzig technique in conjunction with a weak
coupling limit circumvents secular behavior by con-

i ap0(70> Ty *°° ’)

67’0
i l:aPl(T(), Ty, " ° >) + apﬂ("'o; T1, **° 7)
dro o

apl(TO; T1, *°° a)

apo(To, Ty *° ':)

CUKIER AND J. M. DEUTCH

sidering the limit of an infinitely slow process. The
condition A¥=const for all { prevents the secular
behavior of the expansion terms.

The MTS method deals explicitly with secular
behavior by introducing a set of time variables which
permit the construction of a perturbation theory valid
for all times. The single time variable of p(f) and
o(t) is replaced by the set of time variables 7o, 7,
7+ - ~each of which is treated as an independent vari-
able. Thus

P(t)_’Q(TO; Tt 7'1!) (218)
and
o(§)—>8(ro, 71, ***, ). (2.19)

We shall seek solutions of Eqgs. (2.2) and (2.9) of the
form

e=oo Nt Nyt -+ (2.20)

and
d=26yF+Ad N2y} ¢ (221)

with
6n=Tr[ 0] (2.22)

Within the framework of the MTS method one asserts
that the new time variables {r,} are related to the real
time by

Tn=A". (2.23)
This enables us to formally expand the time derivative
as

8/9t=(8/d70) +-N(8/071) +22(8/d72) 4+ +. (2.24)

When we restrict the extended functions g and ¢ to the
physical time line according to Eq. (2.24) we recover
p(t) and ¢ (d).

The heart of the MTS method is the proviso that the
increased flexibility which accompanies the extended
definition of the functions may be used to eliminate
secular behavior whenever it occurs.

A more detailed discussion of the MTS method may
be found in Refs. 15 and 14.

III. MTS DERIVATION OF THE
EQUATION OF MOTION

We now substitute Eqgs. (2.20) and (2.24) in Eq.
(2.2) and equate powers of A\. To order M\ one obtains

. ap?(roy 7L *° .7)
(]
[ I + an +

a’rg

=L0p0(70; Ti, *°°* )) (3'1)
:|=L,p0(7-0, T, *°* 7) +Lopl(7'07 T, *° ')) (3'2)
:|=L’p1(1'0, 71, * ;) +LOP2(7'07 T1, °°° 7) . (3'3)
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SPIN RELAXATION 39

In these equations the dependence of the extended
functions on {7,} is explicitly indicated; in the following
time arguments will only be included where required
for clarity. For simplicity we have suppressed the use
of boldface for indicating extended function.

If we place the expansion for ¢ Eq. (2.21) into Eq.
(2.9) and employ Eq. (2.24) an analogous set of
equations is obtained for the spin density matrix

1(d00/d79) =TrL[ Lopo], (3.4)
i (901/870) + (800/d71) J=Trz[ L'+ Lom],  (3.5)
i[ (8a2/870) + (801/871) + (800/d72) 1="Tro[ L' pr+ Lopz].

(3.6)
The solution of Eq. (3.1) is

po(7o, 71, +++,) =exp(—iLoro) po(0, 71, = +,).  (3.7)

In order to proceed we must formulate appropriate
initial conditions for the extended functions. In terms
of the extended functions the initial condition Eq. (2.5)
is

(3.8)

The independence of the time scales permits us to adopt
the customary initial condition, Eq. (2.5), for ar-
bitrary 11, 7, *++ when 7,=0. A similar assumption
about the initial conditions is present in all MTS
developments. It is possible to choose

P(07 T, ';) =pL0'(O, 71 " '7) .

0'0(0) Ty *° ':) =6(O; Ti, **" 1) (3'9)
and
P’(Or Ty 'J) =PL¢70(0, T, *° '7) . (310)
Accordingly we have
000, 71, *++,) =pa(0, 71, »++,})=0 n>1. (3.11)

With these initial conditions Eq. (3.7) becomes
po(To, T, °° ';) =pL eXP(—"iLoTO)UO(O; T, ':)y (3'12)

since Lopz =0. The result may be introduced in Eq. (3.4)
to yield the equation

£(da0/070) = Lo exp(—iLyro) 00(0, 71, *++,).
The solution to this equation is

ao(r0, 71, * = +,) =exp(—1Lgr) ao(0, 71, + ++,). (3.14)

We now turn to Eq. (3.5) and write it in the form

1(dao/d71) =Trz[—i(dm/d70) + Lop], (3.15)

where we have used Eq. (2.22) and Eq. (2.7). This
equation may be rearranged to yield

$ exp(iLoro) [doo(70, 71, =+ ;) /071]
=1[80¢(0, 71°+*) /371]

(3.13)

= —'I:(a/a’ro) TILECXp(iLoTo)p],], (3.16)
where we have used the fact
Try, exp(iLet) A =exp(iLyf) Tri[A] (3.17)

with ATan arbitrary operator depending on bath and
spin variables. The solution of Eq. (3.16) is

1:7'0[(90'0(0, T, ,)/81'1] =—1 TrL[exp(iLoro) p1] (3.18)

which may be rearranged using Egs. (2.22), (3.17),
and (3.14) to

to1(7g, 71, ** +,) = —ir[dao(7e, 71, *+*,) /O], (3.19)

In order to prevent the secular growth of a1 as =g
increases we must set

(600/81-1)%:0 and 0’1(1’0, T1, ** ‘,):Fo=0, (3.20)

where the notation 7o means asymptotically on the 7,
scale. We stress that asymptotically on the r, scale
means® for a few units of a clock that measures time in
units of 7o. The explicit recognition of the existence of
many time scales has created sufficient freedom to
eliminate the secular behavior which destroys ordinary
perturbation theory. If we are willing to forego a
description of the relaxation for a few units of 7, we

may choose 03=0 and consequently
(3.21)

0'o=0'0(1'o, Toy ** '7)7

i.e., o9 does not vary on the 7, scale.
We now turn to Eq. (3.2) and integrate with respect
to 7o,

T0
i exp(iLorahm(ro,m, +++,) =i [ exp(iLer)
0
X [6p0(x) 7L " '7)

31'1

The first term on the rhs of Eq. (3.22) is zero by virtue
of the fact that

exp(iLox) [Opo(, 71, + ++,) /91 ]=[8p0(0, 71, * »,) /O71]
(3.23)
and Egs. (3.10)"and (3.21). As a consequence we find

+iL'po(x, 71, -~ ,)]dx. (3.22)

ip1(70, 73, =+ 7)) = /m exp[iLy(x—79) ]
0

XL’pLO'(](x, T2y *° ',) dx, (324)

which may be rewritten using Eq. (3.14) and the
definition of L’ as

":Pl(‘fo, T2y *° ',)

= %‘/"0 [H'(x—-'ro), PLO'Q(To, Ty, ** .,)]dx. (3.25)
0

In Eq. (3.25) we have used the notation
H' (1) =exp(iLot) H'

=exp[+ (/h) Hit JH' exp[— (4/%) Hot]. (3.26)
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40 R. I.

Note that o3=Trzp1=0 directly from Eq. (3.24) by
use of Eq. (2.7).

As the final step of our analysis we integrate Eq.
(3.6) with respect to 7o. We find after some manipu-
lation

. . 0ao(7o, 72, ***,)
ioy(T0, T2, *++,) =—To (t bubk A L Ak T 14
072

_1 /m Trr{exp[iLo(x—70) 1L p1(x, 72, **+,) }dx) .
Todyg

(3.27)

When we introduce Eq. (3.25) for p; into the integral
term of Eq. (3.27) and employ Egs. (3.14) and (3.26)

a“o“’(To; T2 *°° 7)
672

1622 (19, T2, ***,) = —i'ro(

CUKIER AND J. M. DEUTCH

we obtain:
. . {0
Wz(To, Tgy ** ',) =—=170 (_U'o (To, T2y *° ‘;)
ors
L (M
+hT-ro[° x/; y

X Tr[H' (x—~70), [H' (y—10), proo(ro, 72, ***,) Il) .

(3.28)

In order to determine the asymptotic time behavior of
this operator equation we must examine matrix ele-
ments. The ao’ matrix element of Eq. (3.28) is

1 70 T
+f_ﬁ_m,/; dxf dy(a|TFL[H'(x—To),[H'(y-fo),pwo(ro,rz,~-',)]]la’)). (3.29)

0
We shall expand the interaction term H' as

H'= 3 S,Fh,
q

(3.30)

where the S, are spin operators and the F, are lattice operators.
" The structure of the matrix elements of the integral term 7 in Eq. (3.29) is

68/

0 T
I=1 3 [ s [ dyFomt (5=3) exp(iba)omm (10,75, -+,
0 0

(3.31)

where we have introduced the intermediate states | 8) | 8’) and defined

A=(E,—Eo—Esg+Eg)/h.

In Eq. (3.31) Foupe (1) is
Fowpp (1) = — Z {SeBSE " [gay (1) exp(+iwpat) +goo'

a¢’

with g.r(¢) the lattice correlation function

Zaar(8) =TrrpLF () Fr (0).

(3.32)

~—1) exp(—twgrart) ]—8prar Z Se®1S¢Pgee (8) exp(iws,d)
v

— 08« Z S8y gogr (—1) exp(—twpiyt) b, (3.33)
v

(3.34)

We now invert the order of integration in Eq. (3.31), replace (x—v) by s and express the quantity as the sum of

two terms

o 70 0 ] !
w5l ( / ds f dx— / ds / dx)F,,.,',gg'(s) exp(1Ax)ogp (70, 72, ** ).
0 0 0 0

-4

Provided that F..rgs(f) decays on the fast time scale
the second term on the right-hand side of Eq. (3.35)
may be neglected. This second term is a small cor-
rection that describes the short-time behavior of the
system. In the limit r,— o0 it is the first term that must
be considered.

For the first term of Eq. (3.35) there are two cases
of interest. The first case is when A#0. Under these
circumstances as re— (i.e. for times long compared

(3.35)

to 1/A) the x integration approaches zero. Conse-
quently the terms with A0 asymptotically do not
give rise to secular behavior on the rhs of Eq. (3.29).

In the case when A=0, the x integration may be
performed and we obtain for the integral term asymp-
totically as ry—o0

== % Reorgprogs (70, 72, ***), (3.36)
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SPIN RELAXATION 41

where Raegsr is the relaxation matrix defined by

S / " Faspr (D) dL.
0

After a great deal of manipulation we find, from Eq.
(3.33), that Ru.gs may be expressed as

Roargpr = Z { SqaﬂSq’ﬁ'“,[jqq' (‘*’nﬂ) +jqq’ (wa'ﬂ’) ]

[

—dgrar Z S*7Se " eq (wsy) exp(h‘*’ﬁv/kT)
v

=88 O SL 1S fogr (wpry) €xplliopn/kT)}, (3.38)
Y

(3.37)

where
o) = SRR [ oo i) ().

(3.39)

Small terms corresponding to the static second-order
shift in the spin eigenfunctions have been omitted!”
from Eq. (3.38); we will ignore these terms here.

Thus if we include only the terms that have secular
growth in Eq. (3.29) we have

,ia.zaa’(.ro’ T, * ’) = —-'i’ro{[aa—oaa’(TO’ To, ** ’) /67-2]

- Z' Raafaﬂ'vow(‘fo, T2, * ;) }; (340)
;-4

where the prime restricts the summation to those terms
for which A=0. The terms with A=0 result in secular
behavior on the right-hand side of Eq. (3.40). These
terms correspond to processes in which the spin energy
is conserved during a transition, i.e., waa=warg.

The elimination of the secular behavior in Eq. (3.40)
yields the equation of motion that determines the
variation of gy on the slow time scale:

(80 (ro, 72, =+ *,) /072]= D' Ruarppod® (70,72, ***,).
&

(341)
In operator form Eq. (3.41) is

[aa'o(’ro, Tgy *° ',)/6T2]=R0'0(T0, Toy ** ',), (342)

where R is a tetradic operator with elements Raasgs:.
It follows from Eq. (3.41) that (except for short times)
0‘2=0.

When we add doo/dr [Eq. (3.13)] to doy/dr: [Eq.
(3.42) 7] according to Eq. (2.24) we find

aa'o/at = (660/610) +k2 (600/812) +O()\3)

= —i[Hz, 0'0(70; To, **° ))]+)\2RU0(TO: T2y ** '7) . (343)
The restriction of o, to the real time ¢ yields
dao(£) /9t =—1i[H,, ao(£) J+NRay(1). (3.44)

When we take matrix elements of this operator equation
Eq. (1.1) results. This result is identical to that of
Redfield !

We remark in passing that the equilibrium spin
density matrix

o de exp(—Eg/kT)
U Xsexp(—Ey/kT)

(3.45)

results in

Z Raa'ﬂﬂ’a'eqﬁﬁ’ =0
-4

(3.46)

which means that the system will approach the proper
equilibrium state. It is easy to show that in the high-
temperature “semiclassical” limit when fiw/k7T<1 that

R=RC= Z {SqaﬂSa’ﬁla,[Jqq’ (waﬂ) +J o (wa’ﬁ’)]

qq’

—grar Z Sqaysq’w] qq’(wﬂv)
¥
—0pa Z SE1S" T o (“’ﬂ"y)} , (3.47)
7

where we have taken #iw/kT =0 and defined
Jogr (@) =exp(iws/kT) fogr (@) .

IV. CONCLUDING REMARKS

The MTS method has provided a compact derivation
of the NMR equation of motion. The recognition of the
existence of time scales has permitted us to perform
the derivation under more general conditions and ex-
plicitly demonstrate some key features of previous
work. The restriction to a factored density matrix for
all time has been removed and appears only as an
initial condition. Eq. (2.5).

The initial condition has been chosen to facilitate
comparison with existing equations. We feel that our
analysis can be generalized to include some initial
correlation between spins and lattice. However there
is no assurance that in the presence of some initial
correlation the same transport equation will be valid
for long times. In accord with the general theories?”
of weakly coupled systems we find that the behavior
on the macroscopic time scale 7, is determined by
events occurring on the fast 7, time scale. In addition,
the processes which contribute strongly to the long-
time behavior of the system are explicitly shown to be
the secular (energy conserving) terms while the non-
secular terms are averaged to zero for these times.

The MTS method suggests a systematic procedure
for obtaining higher order corrections to Eq. (1.1).
This would entail studying the behavior of o4 on time
scales slower than 7, and the calculation of o2, o3+ -+
etc. These corrections will be valid for all macroscopic
times since the method eliminates secular behavior in
each order of \. We are currently considering this
problem.

(3.48)

17T, Prigogine, Non-Equilibrium Statistical Mechanics (Inter-

science Publishers, Inc., New York, 1962), and Ref. 10.
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