LIGHT SCATTERING FROM BINARY SOLUTIONS

in terms of the jump frequency »=6D/d* and spectral
densities 1@ defined by

I9= 3 gu@~1 3 gi@.
k ik

The first sum is over all sites but one, and the second is
over all nearest neighbor pairs (j, k), not including that
one. In terms of the polar coordinates of the vectors
to the special site, the functions g;@ are given by

(C4a)

2;x® = sinf; sinby cosd; cosy cos{@;—r) /113,

(C4b)

gin® = sin?; sin®y, cos(2¢;—2¢x) /7.
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We have evaluated Eq. (C4:) for a magnetic field
aligned along the ¢ axis, including terms arising from
sites no more distant than the third-neighbor distance.
This results in the values /®=0.341, I®=2.564, and

(717 inter =0.36 1A%/ (b%w?) (Cs)

expressed in terms of the intramolecular proton distance
b for comparison with Eq. (46). An additive combina-
tion of (Tl—l) inter a.nd (Tl_l) intra Would inld (Tl) total =
0.675(T1) intra; since our estimate of (7171 inter is likely
a lower bound, we adopt as a working equation (7)+ota1
=0.6(T1) intra for Table IV,

1 FEBRUARY 1969

Light Scattering from Binary Solutions™®

Raymonp D. MOUNTAIN
National Bureau of Standards, Washington, D. C. 20234
AND
J. M. Deurcat
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
(Received 9 August 1968)

The spectrum of the light scattered by a binary solution is calculated from thermodynamic fluctuation
theory and the linearized hydrodynamic equations appropriate to a two-component fluid. The spectrum
consists of three peaks. Expressions are obtained for the positions and widths of the two-side, Brillouin
peaks. In general the central, unshifted Rayleigh peak is found to consist of a superposition of two
Lorentzians that involve the combined dynamical effects of heat conduction and diffusion. The condition
is stated under which it is possible to separate the central peak simply into two contributions, one arising
from diffusion and one from thermal conduction. For many binary systems this separation is justified. In
these cases measurement of the spectrum of the scattered light should prove to be an attractive alternative
means of measuring the diffusion coefficient of binary solutions.

I. INTRODUCTION

In recent years there has been considerable interest
in studying the spectral distribution of light scattered
from fluid systems. Although the spectrum of the
scattered light is confined to a narrow range of fre-
quencies it is now possible to investigate the spectrum
using a gas laser and an optical mixing system.! In this
article we are concerned with the spectrum arising from
a binary solution, away from its critical point. Our
motivation for addressing this problem is twofold. First,
we wish to investigate the kinds of information that
may be obtained from binary solution Brillouin scatter-
ing. Second, we wish to provide an analysis that can be
used as a reference point for investigations of more
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S. S. Alpert, Y. Yeh, and E. Lipworth, 7bid. 14, 486 (1965); N. C.
Ford and G. B. Benedek, ibid. 15, 649 (1965); J. B. Lastovka
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complicated situations, i.e., light scattering from multi-
component solutions or solutions where exchange of
energy between internal modes?? and/or where chemical
reactions occur.*

The intensity of the scattered light is related to the
space-time Fourier transform of the auto-correlation
function of the local dielectric constant. To calculate this
quantity we used the approach suggested by Landau
and Placzek.® The space and time response of the system
to a deviation from the equilibrium state is calculated
using (i) linearized hydrodynamic equations to deter-
mine the modes by which the system returns to equilib-
rium as well as the relative amplitudes for each mode
and (i) thermodynamic fluctuation theory to provide

(1;&. D. Mountain, J. Res. Natl. Bur. Std. (U.S.) A70, 207
).
( ‘R.) D. Mountain, J. Res. Natl. Bur. Std. (U.S.) A72, 95
1968).

¢ B. J. Berne and H. L. Frisch, J. Chem. Phys. 47, 3675 (1967);
L. Blum and Z. W. Salsburg, sbd. 48, 2292 (1968).

SL. Landau and G. Placzek, Physik Z. Sowjetunion 5, 172
(1934). For more details of the method see, for example, R.
Pecora, J. Chem. Phys. 40, 1604 (1964), R. D. Mountain, Rev.
Mod. Phys. 38, 205 (1966), or J. A. McLennan, Helv. Phys. Acta
40, 645 (1967).
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initial values for the correlation functions. We include
all hydrodynamic effects appropriate to a two-com-
ponent fluid.

As might be expected the spectrum we calculate
consists of three components; an unshifted central
(Rayleigh) component and two shifted Brillouin com-
ponents. The shifted Brillouin doublet arises from pres-
sure fluctuations at constant entropy. These fluctua-
tions have a frequency spectrum associated with sound
waves or phonons with the adiabatic speed of sound

c0=[(3p/0p)e.c ], (L.1)

where p, p, 5, and ¢ are respectively the pressure, density,
entropy, and concentration of the mixture. Two lines
are observed because the sound waves propagate in
opposite directions at the speed ¢g. These lines are broad-
ened by the dissipative processes in the solution which
lead to sound absorption.

The central Rayleigh component contains the com-
bined effects of entropy (or temperature) fluctuations
at constant pressure and concentration fluctuations. An
important conclusion of our analysis is that, in general,
the effects of heat conduction and diffusion on the width
of the Rayleigh component cannot be separated in a
simple way. The cross effects between energy transport
and diffusion that are present in a binary fluid result in
a more complicated structure for the Rayleigh line.
These cross effects are well known in nonequilibrium
thermodynamics® as the Dufour effect (a concentration
gradient inducing heat flow) and Soret effect (a tem-
perature gradient inducing a diffusion flux).

We point out the conditions under which a simple
separation of the effects of heat conduction and diffu-
sion occur. Many binary systems satisfy these conditions
so that light scattering will be useful for the determina-
tion of diffusion coefficients.

II. LIGHT-SCATTERING FORMALISM

In thermodynamic fluctuation theory the random
thermal motion of molecules in a fluid is considered to
produce fluctuations in a set of complete, local thermo-
dynamic variables. These fluctuations result in local
variations in the dielectric constant and therefore in
scattering of light. The intensity of the scattered light
is given by the expression’

I(Ry, k, ) =I(Nke/327°Rs*) sin?®S(k, w), (2.1)

where k is the change in wave vector and w the change

(measured in radians per second) in frequency of the
light upon scattering, R, is the distance from the origin

¢S. R. de Groot and P. Mazur, Non-Equilibrium Thermo-
dynamics (North-Holland Publ. Co., Amsterdam, 1962), Chap.
11, p. 278 et. seq.

7]. Landau and E. Lifshitz, FElectrodynamics o
Media (Addison~Wesley Publ. Co., Inc., Reading,
Chap. 14,

Continuous
ass., 1960),

R. D. MOUNTAIN AND J. M. DEUTCH

to the point of observation, ® is the angle between the
electric vector of the incident intensity Jy and Ro. The
relationship between the magnitudes of k and the in-
cident wave vector ko is

fe=2nky 5in (6/2), (2.2)

where # is the average index of refraction of the medium
and @ is the scattering angle. In Eq. (2.1) S(k, ) is the
generalized structure factor

S(k, w) =2 Ref“’ dt/drdr’
(1]

X Be(r+1', £)de(r’, 0) ) expli(k-r—wit)], (2.3)
where 8e(r, f) is the fluctuation in the local dielectric

constant at the point r at time £ In terms of Fourier—
Laplace transforms

S(k, w) =2 Re(e(k, iw)e(—k) ), (24)

where
e(k, ) = f " / drse(r, ) explik-r—zt] (2.5)
0
and

(k)= [ drie(r,0) exp(ikn).  (26)
The caret is used to indicate a Laplace-time transform.
If only % is indicated as a variable, the time-independent
initial value is implied. The angular bracket (:--)
indicates an average over the initial states of the system.
Our basic concern is to compute S(k,w) for a two-
component solution.

We begin by relating the fluctuations in the local
dielectric constant to fluctuations in the local thermo-
dynamic quantities such as the pressure, concentration,
and temperature:

de(r, 1) = (9¢/0p) 1. Sp (1, 1)
+(3¢/0T) ST (T, )+ (3¢/9C) ,.18C(x, £).

We shall use the linearized hydrodynamic equations
to describe the time dependence of the fluctuations. For
this system these equations are the continuity equation®

(8p/8t) +po dive=0, (2.8)
the longitudinal part of the Navier-Stokes equation
po(0v/at) = — gradp+nV3v

+ (3natn,) grad dive,

2.7)

(2.9)

8 L. Landau and E. Lifshitz, Fluid Mechanics (Addison-Wesley
Publ. Co., Inc., Reading, Mass., 1959), Chap. 6. The heat-flux
vector introduced here differs from that of Ref. 6, p. 26 by a
term ki, where A is the difference of the partial specific enthalpies
of the components and i is the diffusion flux of one of the
components.
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the diffusion equation
dC/ot=D[Vic+ (kr/To) VT4 (kp/ o)V ],

and the energy transport equation

aS\ op
—pok T(ac>,,,T ath °(ap)“ o ~ VT
(2.11)

In these equations T is the temperature; u the chemical
potential of the mixture?;C,the specific heat at constant
pressure, v the mass velocity, &k, the thermodynamic
quantity

(2.10)

oT
pCop— 1

(po/pd?) (8p/0¢C) p.r
(3p/9¢) p,r

Equilibrium values are denoted by a subscript zero.
Other quantities appearing in these equations are the
transport coefficients: & is the thermal conductivity, 1,
and », are the shear and volume viscosities, respectively,
D is the diffusion coefficient, and &7 is the thermal dif-
fusion ratio.

Next, we must express Eqs. (2.8)—(2.11) in terms of
the variables that have been chosen to characterize the
local state of the fluid. For a binary system we must
choose three such state variables. While any three
independent variables will suffice for the calculation
certain choices will prove a good deal more convenient
than others. The criterion we shall use to select the
three state variables (#y, %, x3) is that the probability
of a fluctuation w(x;, %, x3) is statistically independent;
i.e., w(x1, %, %3) =h1 (%) b2 (22) k3 () 5 The Boltzmann
principle gives the probability w as

we exp(ASr/kg), (2.12)

where ASr is the change in entropy of system plus
surroundings caused by the fluctuation. If for con-
venience we choose our system to contain one gram of
solution then'

ASt/kg=—(1/2kgT)) [555T—5V5?+5M56].
(2.13)

It is easy to show that the Gaussian approximation
(8T6p)>=0 and (8séc)>=0. Hence the two obvious can-
didate choices (T, p, ¢) and (9, s, ¢) do not satisfy our
criterion of statistical independence.

ky=—

¢ For one gram of solution u= pl/ml—m/m,, where m; and my
are the masses and u and g, are the chemical potentials of the
two species. See Ref, 8, p. 221.

%= Note added in proof: P. C. Jordan and J. R. Jordan [J. Chem.
Phys. 45, 2492 (1966) ] describe a scheme for choosing variables.
Some of the results of the present paper are quoted there. We wish
to thank the referee for calling our attention to this work.

© 1. Landau and E. Lifshitz, Statistical Physics (Addison—
Wesley Publ. Co., Inc., Reading, Mass 1958), Chap. 12. We have
assumed that ﬂuctua.tlons in y are not correlated with fluctuations
in the thermodynamic variables. Since 65/ 3y =0 we have not
included the probability of a fluctuation in ¢ in Egs. (2.12)~(2.15).
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If we consider the set of variables (4, p, ¢), where

¢=T—(Toar/Cppo) p; [8¢=8T—(Toar/Cyopo)dp],
(2.14)

then it is easily shown in the Gaussian approximation

that
Adr 1 [ (ap)2+( )ﬂ (b‘c)”].
(2.15)

—_— e —] 2
kp 2ksTo T, Ger+

In these equations ar is the isothermal expansion coef-
ficient, 8, is the adiabatic compressibility

_1%) _Br
Be ;;(ap.,c v’

where y=C,/C, and Br is the isothermal compressi-
bility. The set of variables (¢, p, ¢) is the unique linear
combination of the variables (T, p, ¢) which is a statis-
tically independent set. We express fluctuations in the
local dielectric constant, in terms of spatial Fourier
transforms, as

Jd¢
e(k, 1) = (5;)%6 p(k, )

(2.16)

de Oe
— k, 1 —) (k). (2.17
+(5) oo+ (5) e,
The probability distribution obtained by substituting
Eq. (2.15) in Eq. (2.12) will be used to obtain the
quantities { | p(k) [2), (| (k) |2) and (| c(k) [?). Since
k! is much greater than the range of molecular correla-
tions this is an acceptable procedure. Near the critical
point this breaks down as the range of molecular corre-
lations is comparable to &7 Also, the expansions used
to obtain Eq. (2.15) are of doubtful validity near the
critical point.1t

Our next task is to use Egs. (2.8)-(2.11) to obtain
p(k, 1), ¢(k, t) and ¢(k, ¢) in terms of the initial fluc-
tuations p(Kk), ¢(k), ¢(k).

III. CALCULATION OF THE CORRELATION
FUNCTION MATRIX

We now rewrite the linearized hydrodynamic equa-
tions (2.8)-(2.11) in terms of the variables p, ¢, ¢, and
¢= divv. In terms of Fourier~Laplace transforms this
set of equations, in matrix form, is

M-N(k, 2)=T-N(k), (3.1)

where N (k, z) is a column vector with elements

é(k, z), p(k, 2), 6(k, 2), ¥(k, 2).

1 M. E. Fisher, J. Math, Phys. 5, 944 (1964).
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The 4X4 matrix M has the form
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[ 2(8p/00)pr z/ce? 2(8p/0T)p.  po |
0 —k/py 0 2-+-bk?
M= (3.2)
z+Dk? D[ (kp/ po) + (kraz/piCp)] D:kr/To) 0
| ~2(ke/Cy) (9u/d0) iz x4 (Toerr/puC) shx 0
and the 4X4 matrix T has the form
[ (3p/00)pr &2 (8p/0T)pe O]
0 0 0 1
T= (3.3)
1 0 0 0
. (kT/Cp) (al-‘/ac)p.T 0 1 OJ
We have introduced In the next approximation when linear terms in the
small quantities are retained one obtains
x=/pCop (34)

and
b= (%776"}"']7) /PO-

The solution of Eq. (3.1) is straightforward and the
algebraic details will not be included here. The general
structure of the solutions is

R i(k, z) =[det(M (k, 2) I 3 Pus(k, ) N;(K),

(3.5)

where the P,; are algebraic fuuctions. We are interested
in correlation functions of the form (V;(k, z) N;(—k) ).
From Eq. (3.5) it follows that

Nk, 5)N;(—k))
=[Pis(k, 2)/det(M) J(| N;(k) [2) (3.6)

as we have assumed that the {N;} are statistically
independent.

An expression for the correlation functions is ob-
tained by taking the inverse Laplace transform of Eq.
(3.6):

Wik, YNy (—k) )=

(| N;(k) |2>/°° dwe*'Py; (K, iw)
2n o det(M (K, i) |
(3.7)

In order to perform this inversion we must obtain the
roots of det(M). We seek approximate roots of det(M)
considering as small the dimensionless parameters
(x%k/co), (bk/co), and (Dk/co). In typical experiments
k>~10° cm™t, c¢=210° cm/sec so that these quantities are
on the order of 102, 10~2, and 10~*, respectively. To
lowest order the roots of det(M) =0 are =0, 0, %ick.

det(M(k, 2)) = —co*(z+21) (5420)
X (z—tcok+Tk?) (2-+icok+Tk).
The roots related to the two propagating modes are

(3.9)

(3.8)

2= :l:‘l:Cok —Tk?
with

1 (4/3)776+’7v Dei
T fi /el - -
2{ PR T 7

).+ e, o))
X [(66),,,T + C,\dT/, \dc/ o)) (3.10)

The roots z; and 2, related to the nonpropagating modes
are

a =30+ ORI+ § {[x+ DR —dx DIt} 2

(3.11)
and
29 =3[ xk*+ DR |3 { [ xB2+DEE R — 4x DR},
(3.12)
where
D=D[1+ (kr*/ToCyp) (0u/8¢) pr].  (3.13)

These roots which determine the modes by which a two-
component system responds to deviations from thermal
equilibrium have been previously obtained by Martin.12

We are now in a position to take the inverse Laplace
transform indicated in Eq. (3.7). To terms linear in the

2P, Martin in Statistical Mechanics of Equilibrium and Non-
Equilibrium, J. Meixner, Ed. (North-Holland Publ. Co., Amster-
dam, 1965), p. 124.
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designated small quantities one finds®
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(p(k, )p(—k))/{| p(k) [)= exp(—Tk) cos(cokt) (3.14)
an () owton + (55 swic @
e = (o) ovoe () vt a0

<¢(<k|, :2;() = 1):) ) _ Dk;k:((zﬂ_/js)p,r Cexp(—) — exp(—zt)]= & <kl, :(i()—l:){) >(T.,<a:/pac>,,r) 31D

With these results and use of Eqs. (2.4) and (2.16) we obtain our final expression for S(k, ):

Tk?

Tk?

Sk, @)= (%j—)i kB;“”"(

T (otak)? T (Pk2)2+(w—cok)2)

L)
3¢/ 5,6 \(3p/0¢) p, 7/ \22— 1

)( (2.— DR*) 2

(21— DE?) z2)

L e

#Gol, (e ek

+

We have replaced the equilibrium averages appearing
in Eqgs. (3.15)-(3.18) by their #—0 limit. These aver-
ages have been computed from Egs. (2.12) and (2.15).

It is interesting to observe that the last term in Eq.
(3.19) is of purely dynamical origin and is unexpected
from thermodynamic fluctuation theory considera-
tions. This term does not effect the intensity ratio of
the Rayleigh and Brillouin components as the integrated
intensity is zero.

Finally we note that it is possible to show from ele-
mentary thermodynamic considerations that

(3¢/3¢) 5.6 = (3€/0¢) 5,1,

(0¢/06) .= (3¢/0T) .c, (3.19)
de Je de Toar{ de
(ap)¢,c B <5;)a,c h (5;)T,c + POCp (5‘]:),,,0.

13 In order to satisfy the initial condition {p(k, 0)¢(—k))=0
one must take small terms, which have been neglected in Eq.
(3.14), into account. This changes cos(cokf) to cos(cokt—e)
where the phase angle ¢ is a small quantity. A nonzero value of ¢
leads to non-Lorentzian terms in the Brillouin components, See
L. P. Kadanoff and P. C. Martin, Ann. Phys. (N'Y.) 24, 419
(1963), C. J. Montrose, V. A. Solovyev, and T. A. Litovitz, J.
Acoust. Soc. Am. 43, 117 (1968) for discussion of this point. Such
terms were not included here since the effect of them is usually
too small to be observed in systems which do not exhibit internal
relaxation processes.

1 G. A. Miller, J. Phys. Chem. 71, 2305 (1967).

de

(Dk2—21) 21 _ (Dkz‘"Zz) Zz)

212+(02

z22+w2
de 2kp T)(ZDkWJT)( %1 2z )
- - . (3.18
)p,c(ac)p,¢< Cp 21—2%2 212_'_0}2 222+O)2 ( )

This relates the dielectric constant derivatives to meas-
urable quantities.

IV. DISCUSSION

The spectrum associated with a binary solution
consists of three peaks. The two Brillouin peaks are
centered at frequencies w=xcok and have a Lorentzian
shape with width T'4%. The central peak consists of the
superposition of two Lorentzians with amplitudes
involving many parameters. The complex structure of
the expression describing the central Rayleigh peak is a
direct consequence of the coupling between diffusion
and heat flow that exists in binary systems. In general,
the central peak cannot be simply considered as the
superposition of two Lorentzians, the first arising from
thermal conduction and the second from diffusion.

There are, however, a number of conditions, met by a
wide variety of binary systems, that result in a sim-
plified expression for the central component line shape.
The implication is that in these cases it will be possible
to obtain information about a specific transport coeffi-
cient from the width of the central line.

We wish to mention that precisely the same expres-
sion for the spectrum of the central peak is obtained if
one considers a uniform pressure system where only
concentration and temperature fluctuations take place.
In this case one uses the hydrodynamic Eqgs. (2.10) and
(2.11) with the pressure terms absent.
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The ratio J of the intensity of the central peak 4, to that of the two Brillouin peaks 2iz is

J=i¢/2’i3

Miller! has recently obtained this value of J from ther-
modynamic arguments. He points out the interesting
possibility of using measured values of J to obtain
activity coefficients.

There is one reported measurement of linewidths of
Brillouin components in binary solutions. Fabelinskii
et al., have measured the widths and positions of the
Brillouin doublets in the system ¢-butyl-alcohol/H;0 at
21°C for a number of concentrations.'® The splittings
were used to obtain a hypersound velocity 2. The widths
are not interpreted on the basis of Eq. (3.10) but rather
are used to estimate the dispersion of v on the basis of a
frequency-dependent volume viscosity.!

In certain situations the general expression for
S(k, w) will simplify. For example, as the solute con-
centration becomes small the diffusion constant D
approaches a finite value and the thermal diffusion
ratio kr tends to zero. In this case the widths of the
Brillouin peaks approaches

1] (4/3)1.+710 Dcgf d dp\?
e o] )
po po* \Ou/p,r\0c/ 5,7

(4.2)

and zr—xk?, z.—>DkE% The central part of the spectrum
now has the form

stwo= (], (oo o )

+ (o), (6 )+

Since in the limit £7—0 heat conduction and diffusion
are uncoupled the central Rayleigh line consists of the
superposition of two Lorentzians with widths which are
directly proportional to the thermal diffusivity x and
the diffusion coefficient D. In this limiting case it may
be possible to resolve the two components of the central
peak and hence obtain an experimental determination
of D and x.

For many binary solutions one finds x>>D. Under
these circumstances zi_xk? and z_2Dk?. The central
part of the spectrum has the form of Eq. (4.3) Since
x>>D the part arising from diffusion appears as a sharp
narrow peak superimposed over a much broader peak
arising from heat conduction. Assuming reasonable
values for the factors multiplying the two Lorentzian
contributions it may frequently be possible to assign the
measured central peak solely to diffusion. Many binary

15T, M. Are’fev, V. S. Starunov, and 1. L. Fabelinskii, ZhETF
Pis. Red. 6, 677 (1967) [JETP Letters 6, 163 (1967) ].

16 For a discussion of the consequences of including frequency

dependence in 5, see Ref. 2 and I. L. Fabelinskii, Molecudar
Scattering of Light (Plenum Press, Inc., New York, 1968), Chap. 6.

_ [£5To/ (8p/96) ».r1(3¢/96) % r+ (kB T6'/Cy) (8¢/3T) % .c
(k8T opo/Bs) (9¢/3p) o

(4.1)

solutions satisfy the condition x>>D, and it is probably
on this class of systems that experiments can most
profitably be performed.

Recently Fabelinskii ef al.” measured the width of
the central peak in the binary solutions carbon di-
sulfide/acetone and #-propanol/bromoform. These
authors attribute the entire central peak to diffusion
and for the #n-propanol/bromoform system report the
variation of the diffusion constant with concentration.
The reported values of D are of the order of 107®
cm?/sec. One may easily estimate x for these solutions
using measured values of X for the pure components and
empirical combination rules.’® One finds that x is of the
order of 1073 cm?/sec so that the condition x>>D, is
easily met. In an analogous experiment Dubin, Lunacek,
and Benedek! determined the diffusion constant of a
number of biologically interesting macromolecules
[D~10"" cm?/sec] by measuring the width of the
central Rayleigh line. These experiments indicate that
for a wide class of systems light scattering provides a
practical alternative to the complicated conventional
methods for measuring diffusion coefficients.

We may also consider the opposite case where the
mixture has a very high heat capacity and hence tem-
perature variations may be neglected. In this case the
width of the Brillouin peaks approaches

fuonss, 25 (2] J

and 20, zr—>Dk?2. The central part of the spectrum has
the form

I'—

e (), (G N ). s

In this approximation (d¢/3p).,s=5(d¢/dp)..r and ¢y may
be replaced by the isothermal speed of sound. Exactly
the same spectrum is obtained if one begins by consider-
ing a uniform temperature system so that the tempera-
ture system so that the temperature terms are absent in
the hydrodynamic equations.

We wish to call attention to the work of Blum™ on
light scattering from multicomponent systems. He con-
siders the problem of calculating the spectrum of light
scattered by multicomponent fluid. The binary system
is examined by way of illustration.

7T, M. Are’fev, B. D. Kopylovskii, D. Sh. Mash, and I. L.
Fabelinskii, ZhETF Pis. Red. 5, 438 (1967) [JETP Letters 5,
355 (1967) 1.

8N, V. Tsederberg, Thermal Conductivity of Gases and Liquids
(The MIT Press, Cambridge, Mass., 1965), Chap. 9.

S, B. Dubin, J. H. Lunacek, and G. B. Benedek, Proc. Natl.
Acad. Sci. U.S. 57, 1164 (1967).

2 T,, Blum, J. Chem. Phys. 49, 1972 (1968).
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