# Using cryptography in databases and web applications

#### Nickolai Zeldovich MIT CSAIL

Joint work with Raluca Ada Popa, Stephen Tu, Emily Stark, Jonas Helfer, Steven Valdez, Hari Balakrishnan, Frans Kaashoek, Sam Madden

### Problem: private data breaches



no computation

storage



#### computation

databases, web applications, mobile applications, machine learning, etc.



#### Common approach: prevent break-ins



Enforced at many levels: operating system, hardware, network, programming language, ...

### Bad guys find ways to break in

- Complex software has bugs
  - Attackers find and exploit vulnerabilities

- Many people have access to infrastructure
  - Server administrators
  - Cloud / data center employees
  - Anyone that breaks into their accounts

Compromises are inevitable

# New approach: practical processing of encrypted data



#### **CryptDB** setup













### **Techniques**

- Compute on encrypted data at the server
  - Use SQL-aware set of efficient encryption schemes
  - Adjust encryption of data based on queries
- Compute on decrypted data at the proxy
  - Can decrypt → can perform any computation
  - Choose optimal split to reduce bandwidth, proxy load

#### **SQL-aware encryption schemes**



## **Onion of encryptions**



Adjust encryption: strip off layer of the onion

#### CryptDB works well in practice

- Supports many database applications
  - Web sites, transactional processing, data analytics
  - Never reveals plaintext data on database server
- Modest performance overheads
  - 20-30% throughput loss for typical benchmarks
- Approach now used by Google (among others)
  - Encrypted BigQuery service

### Compromised app. server?





#### Mylar: browser-side encryption



Decrypted data exists only in users' browsers

# Challenge: computation in web applications

- 1. Client-side application framework
  - Most computation happens in client's web browser (Javascript code)
- 2. Non client-side computation:
  - Data sharing need a way to manage keys
  - Keyword search need new cryptosystem: documents encrypted with many keys

### Mylar supports many applications

- Ported 6 applications to Mylar
- Performance overheads are modest
- Data privacy despite server compromises



#### **Future research directions**

- Practical cryptography
  - Computing on data encrypted w/ many keys
  - Delegating limited functions over encrypted data

- Practical systems
  - Auditing for data disclosures
  - Protecting end-user computers