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The Privacy Dream 

Original Database Sanitized data set 

? 
C 

}  Census, financial, medical data; OTC drug purchases; social 
networks; MOOCs data; call and text records; energy 
consumption; loan, advertising, and applicant data; ad clicks 
product correlations, query logs,… 



Fundamental Law of Info Recovery 

“Overly accurate” estimates of “too many”  
statistics is blatantly non-private 

DinurNissim03; DworkMcSherryTalwar07; DworkYekhanin08, De12, MuthukrishnanNikolov12,… 
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Re-ID Not the Only Worry 
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Culprit: Diverse Background Info 
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Billing for Targeted Advertisements 
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[Korolova12] 



Product Recommendations 

}  X’s preferences influence Y’s experience 
}  Combining evolving similar items lists with a little knowledge (from 

your blog) of what you bought, an adversary can infer purchases 
you did not choose to publicize  

CalandrinoKilzerNarayananFeltenShmatikov11 

 People who bought this also bought… Blog 



SNP: Single Nucleotide (A,C,G,T) polymorphism 
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SNP statistics of Case Group 
 
“Can” Test Case Group Membership 
   using target’s DNA and HapMap 

GWAS Statistics  
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How Should We Approach Privacy? 
}  “Computer science got us into this mess, can computer science 

get us out of it?” (Sweeney, 2012) 

}  Complexity of this type requires a mathematically rigorous theory 
of privacy and its loss.  
}  We cannot discuss tradeoffs between privacy and statistical utility 

without a measure that captures cumulative harm over multiple uses.   
}  Other fields -- economics, ethics, policy -- cannot be brought to bear 

without a “currency,” or measure of privacy, with which to work.  

 



Useful Databases that Teach 
}  Database teaches that smoking causes cancer.   

}  Smoker S’s insurance premiums rise.  
}  Premiums rise even if S not in database! 

}  Learning that smoking causes cancer is the whole point. 
}  Smoker S enrolls in a smoking cessation program. 

}  Differential privacy: limit harms to the teachings, not participation 

The outcome of any analysis is essentially equally likely, independent 
of whether any individual joins, or refrains from joining, the database. 
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Useful Databases that Teach 
}  Database teaches that smoking causes cancer.   

}  Smoker S’s insurance premiums rise.  
}  Premiums rise even if S not in database! 

}  Learning that smoking causes cancer is the whole point. 
}  Smoker S enrolls in a smoking cessation program. 

}  Differential privacy: limit harms to the teachings, not participation 

High premiums, busted, purchases revealed to co-worker… 
Essentially equally likely when I’m in as when I’m out 
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Differential Privacy 
} Nuanced measure of privacy loss 
}  Captures cumulative harm over multiple uses, multiple 

databases 

}  Adversary’s background knowledge is irrelevant 
}  Immune to re-identification attacks, etc.  

}  “Programmable” 
}  Construct complicated private analyses from simple 

private building blocks 



Recall: Fundamental Law  

“Overly accurate” estimates of “too many”  
statistics is blatantly non-private 

DinurNissim03; DworkMcSherryTalwar07; DworkYekhanin08, De12, MuthukrishnanNikolov12,… 
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}  Want to compute 𝑓(𝐷)  
}  Adding     pulls 𝑓( ​𝐷↑′ )  

}  Add random noise to obscure difference 
                    𝑓(𝐷) vs 𝑓( ​𝐷↑′ ) 

Intuition 
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                                     |𝑓(𝐷)− 𝑓(​𝐷↑′ )|/𝜖 
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Algorithms, geometry,                   
learning theory,      
complexity theory, 
cryptography, statistics, 
machine learning, 
programming languages, 
verification, databases, 
economics,… 



Not a Panacea 
}  Fundamental Law of Information Recovery still holds 



Challenge: The Meaning of Loss 
}  Sometimes the theory gives exactly the right answer 

}  Large loss in differential privacy translates to “obvious” real life privacy 
breach, under circumstances known to be plausible 

}  Other times?   
}  Do all large losses translate to such realizable privacy breaches, or is 

the theory too pessimistic? 



Policy Recommendation 
}  Publish all Epsilons! 

}  Penalize when 𝜖=  ∞ 

Combines motivation for data breach notification statutes and 
environmental laws requiring disclosures of toxic releases with an 
incentive to start using (minimal) differential privacy 

DworkMulligan14 



“Just a Few”? 

Randomly choose a few rows; 
Publish in entirety. 

OK? 



Fundamental Law 
}  There is a (LARGE) set of statistics, S  

}  An analyst having even a remotely accurate estimate of EVERY 
statistic in S can completely violate any reasonable notion of privacy  

}  There is a very simple way of designing small sets of statistics, T 
}  An analyst having estimates of 80% of the statistics in T that beat the 

sampling error can completely violate any reasonable notion of privacy 

Must be very inaccurate on some statistic in S 

“Overly accurate” estimates of “too many”  
statistics is blatantly non-private 

DinurNissim03; DworkMcSherryTalwar07; DworkYekhanin08, De12, MuthukrishnanNikolov12,… 


