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Computational architecture for object-driven cortex

Objects in motion activate multiple cortical regions in every lobe of

the human brain. Do these regions represent a collection of

independent systems, or is there an overarching functional

architecture spanning all of object-driven cortex? Inspired by

recent work in artificial intelligence (AI), machine learning, and

cognitive science, we consider the hypothesis that these regions

can be understood as a coherent network implementing an

integrative computationalsystemthat unifies the functionsneeded

to perceive, predict, reason about, and plan with physical

objects—as in the paradigmatic case of using or making tools. Our

proposal draws on a modeling framework that combines multiple

AI methods, including causal generative models, hybrid symbolic-

continuous planning algorithms, and neural recognition networks,

with object-centric, physics-based representations. We review

evidence relating specific components of our proposal to the

specific regions that comprise object-driven cortex, and lay out

future research directions with the goal of building a complete

functional and mechanistic account of this system.
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Introduction
Many everyday activities revolve around objects—seeing,

reasoning about, planning with, and manipulating them—
www.sciencedirect.com 
in flexible and often creative ways. We see an object’s

three-dimensional (3D) shape and appearance; we per-

ceive or reason about how it supports or is supported by

other objects and surfaces (Figure 1a); when it moves, we

track and predict its position and infer its physical prop-

erties (e.g. mass) (Figure 1c). These percepts support

planning and production of complex motor behaviors

(Figure 1b): We reach, grasp, push, pull, pick up, stack,

balance, cut, throw, or sit on objects.

Commensurate with the centrality of objects in percep-

tion and cognition, large and diverse regions of the human

brain are driven by dynamic object stimuli (e.g. Ref. [1])

compared to scrambled versions of the stimuli (Figure 1d,

e). These regions include the traditional object-selective

occipitotemporal regions (e.g. Ref. [2]), such as the lateral

occipital cortex (LOC) and posterior fusiform (pFus), as

well as regions in the intraparietal sulcus [3��,4,5,6�] and

frontal cortex that show large overlaps with networks

implicated in tool use and action planning [3��]. Presum-

ably, these different regions process dynamic objects in

different ways and for different functional purposes [7��].
But is there also a unified function that all regions,

working together, might subserve?

Here, we present a computational hypothesis for the

integrated function of these brain regions, which we

collectively refer to as ‘object-driven cortex’

(Figure 1e). Our proposed architecture integrates the

computations involved in seeing an object at an initial

glance, tracking it dynamically as it moves, updating

estimates of its physical properties based on its motion,

reasoning about its likely and possible future behaviors,

contingent on forces applied, and planning actions toward

it to achieve goals. This hypothesis draws on and extends

recent work in the fields of cognitive science, artificial

intelligence (AI), and machine learning (ML), bringing

together causal generative models, neural networks for

efficiently approximating Bayesian inferences in those

models, and hybrid task-and-motion planning algorithms

to explain how humans understand and interact with

physical scenes, and how robots might do the same.

The expanse of activations comprising object-driven cor-

tex overlaps with cortical regions that have been dis-

cussed extensively in other theoretical contexts. These

include the multiple demand network [8], and cortical

systems engaged in numerical cognition [9], object-

directed action [3��], logical reasoning [10], and action
Current Opinion in Neurobiology 2019, 55:73–81
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Figure 1
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(a) We can predict whether the pile would topple if the indicated apple were removed, and readily plan how to pick it up without making the rest

unstable. (b) Some of these abilities are likely shared across other species, particularly non-human primates. Snapshot is extracted from https://

www.youtube.com/watch?v=7GiQkxsje5c. (c) In some dynamic scenes, unfolding motion reveals physical object properties (e.g. mass; [49��,67]).
(d) Example dynamic stimuli used in fMRI experiments (from Ref. [1]). (e) Group-level random-effects analysis of the contrast of viewing dynamic

objects > scrambled objects (N = 52; p-values range from 0.001 to 10�7, red to yellow).
emulation [11�]. Here, we consider a particular end-goal

or functionality of this system, that of ‘object cognition’,

encompassing the computations underlying how we see,

think about, and manipulate objects. This framework

may ultimately subsume or reduce to other proposals

for functional interpretations of these regions; how our

framework relates to prior proposals is an important

question and we cannot hope to comprehensively review

that literature here. Our goal is simply to take the initial

step of articulating a framework for understanding the

neural basis of object cognition in precise and interpret-

able functional terms, which we hope will spur further

thinking and empirical work.

We focus on three main components of our computational

architecture — generative models for simulating object

dynamics, planning algorithms that use these generative

models together with simulatable body models to con-

struct action plans, and recognition models for efficiently

perceiving the properties of objects critical to their

dynamics — and discuss evidence linking each compo-

nent to specific regions of object-driven cortex. We con-

clude with a discussion of future research directions.

Physical scene understanding via causal
generative models
Scene understanding entails not just recognizing what

objects are where, but reasoning about their physical
Current Opinion in Neurobiology 2019, 55:73–81 
dynamics and relations. We see not only one thing on

top of another, but the fact that one is supporting the other;

this includes whether objects are stably balanced or likely

to fall, and if one falls, which way it is likely to fall. If an

object does not fall as expected, we may infer it has a

different mass or mass distribution than we first thought.

What computations support such intuitive physical rea-

soning abilities?

The first component of our computational architecture

addresses this challenge using generative models of

physical object representations and their dynamics. Spe-

cifically, we have implemented these models in proba-

bilistic extensions of video game engine [12] compo-

nents, especially graphics engines and physics engines

[13–15], which instantiate our basic knowledge of how

objects work in simplified but algorithmically efficient

simulators. In these systems, objects are described by

just those attributes needed to simulate natural-looking

motion over short time scales (�2 s): their geometry

(shape, size), and the material properties that govern

their dynamics (e.g. rigidity, mass, surface friction).

Game-engine physics instantiates a causal generative

model for object motion in the sense that the mecha-

nisms by which motion trajectories are generated have

some abstract resemblance to the corresponding real-

world processes — but in a form that is efficient enough

to support real-time interactive simulation. A diagram of
www.sciencedirect.com
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Figure 2
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(a) A schematic of our integrative computational architecture. The architecture consists of three elements: (red) generative models of object

dynamics and image formation implemented using physics and graphics engines, (green) planners to compute actions that achieve goals, subject

to physical and geometric constraints, and (blue) recognition models for online perception (inverse graphics). The generative model enables not

only predictions about the near-term future states of objects but also integration of motion and interactions for dynamic updates to physical object

properties such as an object’s mass. It can also support a form of visual imagery through its graphics components. The planner, given a goal,

enables sequencing of action primitives based on the constraints arising from physics and geometry for complex object manipulation tasks

including tool use. Inverse graphics maps individual frames to 3D physical scene descriptions, the core latent variables of the generative model.

(b) A schematic summary of the mappings between our computational architecture and object-driven cortex. The highlighted regions in the insets

above overlap with regions that are involved in object perception (blue; e.g. Ref. [2]), physical reasoning (right panel in red; [26��]), and action

planning (middle panel in green; [3��]) and tool use (right panel in green; [3��]).
such a generative model is shown in Figure 2a (red

rectangle).

Battaglia et al. proposed such a model, which they called

an ‘intuitive physics engine’, as an account of physical

scene understanding [16��]. They showed how approxi-

mate probabilistic inferences over simulations in a game-

style physics engine could explain how people perform a

wide variety of tasks in blocks-world scenes, including

both familiar tasks (e.g. Will this tower fall? Which way

will it fall?), and novel tasks in novel scenarios (e.g. If a

table supporting a complex configuration of blocks is

bumped, which of these blocks might fall off the table?).

Humans can perform these tasks with little or no training,

and the ability to do so is a key advantage of generative

models over pattern recognition approaches such as neu-

ral network classifiers [17]. Subsequent work has shown

how the framework extends more broadly across many

aspects of intuitive physics, including predictions of

future motion for rigidly colliding objects [18,19], predic-

tions about the behavior of liquids (e.g. water, honey)

[20,21] and granular materials (e.g. sand) [22,23], and

judgments about objects’ dynamic properties and inter-

actions from how they move under gravity as well as latent

forces such as magnetism [24,25].
www.sciencedirect.com 
Do parts of object-driven cortex contribute to intuitive

physical reasoning? Recent imaging work in humans

identified a network of parietal and premotor regions that

are activated more by these same kinds of physical

reasoning tasks (e.g. Where will a tower of blocks fall?)

than non-physical tasks (e.g. Are there more blue or

yellow blocks in the tower?). These regions overlap

substantially with parts of object-driven cortex in parietal

and frontal regions [26��]. Further support for a link

comes from an fMRI study with macaque monkeys. Sliwa

and Freiwald [27�] found that passive viewing of videos of

interacting objects compared to still or non-interacting

objects selectively activated parietal and pre-motors

regions. These results are suggestive of a neural physics

engine implemented in this network of regions across

parietal and frontal cortex.

Planning with physical and geometric
constraints
Why would the brain devote circuitry for predicting

object dynamics and interactions, and why would that

circuitry overlap regions involved in action planning and

tool use? One hypothesis comes from the recent robotics

literature, where it has been argued that modeling and

exploiting constraints from the geometry and physics of
Current Opinion in Neurobiology 2019, 55:73–81
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objects is essential for flexible action planning in robots

that will interact with objects in human-like ways (e.g.

Refs. [28–30]). For example, stacking a tower requires

sensing, predicting, and maintaining its stability

(Figure 1b), grasping a cup requires knowing and reacting

to its weight and the slipperiness of its surface, and

reaching for a far object using a hook requires knowing

about the constraints imposed by the layout of objects and

their geometries and how they interact. These require-

ments are in addition to the need for a simulatable body

model (similar to the forward models proposed in the

motor control literature, e.g. Refs. [31–33]) that can be

used by embodied agents to foresee and evaluate the

consequences of their actions on objects before actually

performing them (see Ref. [34] for a discussion in the

context of mammalian somatosensory cortex).

Some of the most advanced humanoid robot motion plan-

ners, or hybrid task and motion planners, combine physics-

engine representations of object dynamics with a simula-

table body model or part of a body model (e.g. an articulated

hand), and aim to jointly and efficiently solve for effective

action sequences subject to the physical constraints of

object dynamics and interactions [e.g. Refs. 35��,36,37��].
The use of differentiable physics engines allows these

systems to support gradient-based optimization for effi-

cient model-based control. These planners can generate

remarkably complex and human-like sequences of action,

including improvised use of objects as tools to accomplish

non-trivial tasks, such as reaching for a small hook, which

can then be used to retrieve a large hook, which can then be

used to retrieve an otherwise out-of-reach goal object.

Yildirim et al. [38�] showed that such a planning framework

not only produces physically stable simulated solutions in

tower-building scenarios (e.g. re-configure a tower), but

also matches human intuitions on how to build the target

tower. These results support the idea that reasoning about

geometry and physics facilitate planning complex motor

actions and using tools.

If the brain adopts similar mechanisms for flexible action

planning, that could explain why the network of physical

reasoning regions described in the previous section

appears to closely overlap with regions involved in motor

planning and tool use in humans [3��], and with the mirror

neuron network in monkeys that is thought to be involved

in action understanding [39]. These parietal and premotor

regions might implement a planning system based on

simulatable body models and object models, encoding

physical and geometric constraints in something like the

form of a physics engine, as in analogous robotics systems.

In AI, the same physics engine-based systems that sup-

port these object-directed action plans, such as Mujoco

[29], can be used (and frequently are used) for efficient

approximate simulation of complex multi-object interac-

tions even in the absence of any body model or action

planning task; the same could be true of the human brain.
Current Opinion in Neurobiology 2019, 55:73–81 
This proposed architecture for how physical object repre-

sentations, simulations, and action planning are inte-

grated in the parietal and premotor regions of object-

driven cortex is consistent with the similar notion of an

‘emulated action system’ that has been proposed as a

functional account of a different but overlapping network,

the dorsal frontoparietal network [11�]. The specific

models we propose, however, are intended to offer a

concrete computational framework that articulates the

functional components required for action planning and

how they might interact with each other, in the more

general context of perceiving, planning, and thinking

about the actual or possible motions of objects.

Perception and dynamic belief updates with
recognition models
A key observation [26��] is that passive viewing of objects

in motion not only activates the traditional visual and

ventral pathway regions but also strongly drives activity in

physical reasoning regions in parietal and premotor cortex

(see also Figure 1e). This finding suggests that when

presented with structured dynamic visual input, the brain

not only constructs rich 3D scenes of objects and surfaces,

but also, akin to the construction of object files (e.g. Refs.

[40,41]), automatically and in an online fashion tracks and

updates objects’ physical properties based on how they

move and interact. How can the brain so efficiently

estimate and update rich physical representations of

objects during online perception?

From a Bayesian viewpoint, physical object properties,

including 3D shape, size, mass, friction, stiffness or other

parameters required for physical reasoning, are latent

variables in a probabilistic generative model that need

to be inferred and dynamically updated given changing

sensory inputs [25,26��,42]. The most familiar mecha-

nisms for performing these Bayesian inferences in com-

plex structured generative models are approximate ones,

based on sequential, stochastic sampling methods such as

Markov Chain Monte Carlo (or MCMC). These methods

can work given enough time, but they seem implausible

as algorithmic accounts of perception in the brain: they

are inherently iterative and almost always far too slow

relative to the dynamics of perception.

Recently, researchers have begun to answer these chal-

lenges of efficient scene perception and dynamic belief

updates by building recognition models that exploit the

causal (conditional independence) structure within a

model of the generative process. These recognition mod-

els can be constructed using modern neural networks

such as convolutional neural networks (CNNs) and recur-

rent neural networks (RNNs), and are trained to directly

estimate maximum a posteriori (MAP) values for the

latent variables in generative models in a data-driven

and efficient manner. Many of these architectures focus

on perceiving the geometry of objects or scenes (e.g. Refs.
www.sciencedirect.com
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[43–47]), but some integrate 3D geometry with physical

dynamics.

In one recent example, Wu et al. [48��] built such a

system, referred to as ‘visual de-animation’, that uses a

cascade of CNNs for inverse graphics, including segment-

ing input images to individual objects from an initial

video frame (a form of attention), and mapping each

segmented object to its full set of physical object proper-

ties (Figure 2a; inverse graphics). The system uses motion

information across consecutive frames to train its CNN

based on an efficient inference procedure: given a dataset

of unlabeled videos, the system infers an initial scene

configuration, extrapolates its motion over time using a

physics engine, and renders individual predicted frames

using a graphics engine, with the goal of minimizing

reconstruction errors with respect to the input video.

Wu et al. showed that once trained, the network can be

used in prediction and reasoning tasks across both simu-

lated and real-world scenarios with a variable number of

objects, solely from visual input and in real time. The

model can support predictions such as near-future con-

figurations of billiard tables, or can be used to plan

interventions such as applying a force to stabilize an

unstable block tower.

The visual de-animation system and its predecessors (e.g.

Galileo [49��]) assume that the underlying intrinsic phys-

ical object properties (e.g. shape, mass, and friction) are

fixed, and do not address dynamic belief updating behav-

ior. To answer this challenge, Yildirim et al. [50��] built a

recurrent recognition network based on the overall con-

ditional independence structure in the underlying gener-

ative model (Figure 2a). Through a combination of super-

vised and unsupervised training, this recognition network

learns to implement approximate Bayesian estimates

about the values of key physical variables conditioned

on dynamic input stimuli (e.g. videos), by compiling

inference [51] in the generative model to a set of neu-

ron-like computations (a cascade of CNNs and RNNs).

The model dynamically updates latent physical object

properties with each incoming frame of input, and also

learns to attend to the relevant regions in the image (e.g.

collision regions when two objects are about to collide).

The model accurately captures human belief updating

patterns in a relative-mass judgment task, and corre-

sponds more closely to human judgments than an ideal

observer model, suggesting it might also capture some of

the dynamic cognitive processes underlying performance

in the task.

The inverse graphics component of these recognition

models (that is, the cascade of CNNs transforming images

to 3D scenes) implements a functionality that most

naturally maps to the ventral pathway computations

including parts of the visual cortex and ventral temporal

cortex. Abstract scene information such as identity, shape,
www.sciencedirect.com 
and position of objects becomes more explicit through

this processing hierarchy of the ventral pathway, particu-

larly in its middle and later stages [2,52,53]. But ventral

processing is only the first stage in object cognition, and in

the typical dynamics of object-driven cortex. In the

recognition models discussed here, physical properties

of objects are fed to the physics engine for integration of

information across time (e.g. updating beliefs about an

object’s mass), future prediction, and reasoning (e.g.

computing the force to apply to keep a tower stable).

In line with this computational pipeline, recent brain

imaging work suggests that abstract object information

such as shape is ‘uploaded’ from ventral pathway to

regions in the parietal cortex [4,5,6�] where it may adap-

tively support aspects of cognition and action [54]. If, in

addition to shape, visually computed representations of

objects’ dynamic physical properties such as their mass

are uploaded from ventral stream to an intuitive physics

engine in parietal and premotor cortex, then we should

expect to see representations of these properties in those

regions. Schwettmann et al. [55��] recently found exactly

that: Object mass can be decoded from the parietal and

frontal physical reasoning regions [26��] in a manner

invariant to the specifics of how objects are visually

presented. For example, an object’s mass could be

decoded from the brain’s response to viewing it splash

into a bowl of water after training on viewing that same

object falling onto a pillow, or vice versa.

Discussion
Here we have proposed a reverse-engineering account of

the functions of object-driven cortex, including its com-

ponents in the ventral pathway and parietal/pre-motor

regions, and how these components interact in dynamic

object perception and in making plans directed toward

objects (Figure 2b). At its core, our proposal is a hypoth-

esis that the targets of perception are not just object

shapes or action affordances, but physical object repre-

sentations that are the key elements of causal generative

models — models of how objects move and interact, and

how we can move and interact with them to achieve our

goals. These representations are engaged and updated

automatically, in a bottom-up fashion using recognition

networks that are driven through visual inputs. These

representations natively support thinking about rela-

tions, motions, and interactions of objects; and they

facilitate planning complex sequences of actions toward

objects and tool use. Neural data consistent with our

hypothesis include the overlap of object-driven cortex,

regions involved in thinking about the physics of objects

[26��], and regions involved in object-directed action

[3��], and the characteristics of how visual information

propagates from ventral to dorsal streams [4,54], allowing

physical variables such as mass to be decoded from

parietal and frontal regions based on activity arising from

passive viewing [55��].
Current Opinion in Neurobiology 2019, 55:73–81
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We should be clear about what we are not claiming in

advancing this hypothesis. We do not mean to suggest

that object perception, dynamic prediction, and action

planning are not distinct computations, or are not imple-

mented in distinct, potentially modular brain systems.

Much evidence suggests that they are distinct in these

ways. And yet from a functional point of view, these

different computational components must work together

to support flexible everyday engagement with objects.

They must, in some sense, also form a functionally

integrated system, likely with some shared representa-

tional substrate. Here we have tried to lay out what that

integrated system could look like architecturally, how it

could work computationally, drawing on recent advances

in AI and machine learning, and how these computations

might be implemented in a network of brain regions

which are all engaged automatically when seeing physical

objects in motion.

Having laid out this proposal, many questions arise. On

the modeling side, the most urgent questions revolve

around building neurally plausible versions of richly

structured generative models, such as physics engines,

graphics engines and body planning models. Recent

developments in machine learning and perception sug-

gest several possibilities, based on deep learning systems

trained to emulate structured generative models (e.g.

Refs. [56,57,58�,59]). These neural networks provide

partial hypotheses for how graphics and physics might

be implemented in neural circuits; they are surely incom-

plete, at best, and much more work is needed here.

Crucially, while these networks learn distributed repre-

sentations of force dynamics, they all invoke discrete,

symbolic representations of objects and their interactions

(like nodes and edges in a graph), just as in conventional

physics engines or cognitive architectures based on object

files [40,41]. Whether and how such graph-like represen-

tations are implemented in the brain are questions of

great interest.

Relating our proposal to conventional models of visual

perception is another priority. Our architecture naturally

supports a range of functions that are difficult to account

for if we treat object perception as primarily the compu-

tations of a feedforward network in the ventral stream

[60,61]; these include mental imagery, top–down context

effects, and multisensory/crossmodal perception. Mental

imagery can be implemented in a generative model that

couples a physics engine to planning algorithms that

support amodal reasoning and to a graphics engine that

produces visual imagery, as in the visual de-animation

model [48��]. In addition, aspects of multisensory percep-

tion and crossmodal transfer can be modeled by compos-

ing causal generative models for multiple sensory modal-

ities that share the same underlying latent variables —

those represented in the physics engine. Most of these

extensions of our framework have been implemented
Current Opinion in Neurobiology 2019, 55:73–81 
computationally in some form, and received some behav-

ioral support [62–64], but it is an open question whether

or how these computations might be instantiated in

object-driven cortex.

Another important goal is to explore further how the

computational architecture presented here connects to

existing theoretical accounts of the parietal–frontal

regions and their interactions [3,8–10]. At a basic level,

our framework can provide several of the building blocks

needed by these systems for their more mathematical and

computational formulations. For example, in the context

of the multiple demand network [8], it is not clear how in

functional terms subtasks could be flexibly assembled in

neural circuits. Our framework suggests a means to solve

one instance of this challenge, in the form of sequencing

subgoals for tool use and complex object manipulation.

We hope that further articulation and study of our frame-

work could simultaneously advance a mechanistic

account of the multiple demand network.

Perhaps the most important goal for future research will

be to empirically test and refine predictions of our

hypothesis. What exactly is represented in each region,

and when? Beyond representing the shape of an object [2]

and its grasp points [3��], and its mass [55��], does object-

driven cortex represent other dynamically relevant phys-

ical properties, such as friction, rigidity or elasticity? How

are forces that one object exerts on another, or stable

relations such as support and containment, represented in

neural circuits? Which aspects of physical representations

are computed rapidly and automatically, suggesting feed-

forward mechanisms, and which require more conscious,

controlled processing? Are causal generative representa-

tions constructed automatically, or only when relevant to

the task at hand? What exactly is the division of compu-

tational labor (if any) across the regions comprising object

cortex, and can this division of labor be understood within

the framework proposed here? Although some of these

questions can be addressed using fMRI and EEG/MEG

in humans, future experimental work using electrophysi-

ological recordings, informed by some of the more

neurally grounded models discussed above, can target

neural populations in object-driven cortex in greater

detail to elucidate neural circuits of object cognition at

more fine-grained functional and anatomical resolutions.

These can include an understanding of functions and

circuits of how object files are created and updated in

neural populations, how a body model is implemented

and simulated, and how these two systems interact with

each other.

Finally, if object-driven cortex indeed constitutes a com-

putationally integrated network, then we would expect

structural connections between the cortical regions com-

prising this network. While we do not know of a detailed

analysis of the long-range structural connections between
www.sciencedirect.com
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these specific object-preferring regions, prior evidence

suggests the existence of connections between object-

processing regions of the ventral temporal and parietal

lobes [65], and extensive structural connections are

known to connect parietal and frontal regions in primates

(e.g. Ref. [66]).
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