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How are objects represented in the brain? Two facets of this

question are currently under investigation. First, are objects

represented by activity in a relatively small number of neurons

that are each selective for the shape or identity of a specific

object (a ‘sparse code’), or are they represented by a pattern

of activity across a large number of less selective neurons

(a ‘population code’)? Second, how are the neurons that code

for an object distributed across the cortex: are they clustered

together in patches, or are they scattered widely across the

cortex? The results from neurophysiology and functional

magnetic resonance imaging studies are beginning to

provide preliminary answers to both questions.
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Introduction
When a familiar object appears in our field of view, we

identify it within a couple hundred milliseconds. Exten-

sive evidence indicates that in primates this feat is

accomplished in the ventral visual pathway, which runs

along the ventral surface of the brain from the occipital

lobe anteriorly into the temporal lobe. What is the nature

of the neural representation of object identity in this

pathway? Here, we address two aspects of this question.

First, how selective are the neurons and regions along this

pathway for specific object classes, and hence how many

neurons participate in the representation of each object

(that is, how sparse is the code)? Second, what is the

spatial arrangement of the neurons the activity of which

represents a given object?

Note that distinctions between sparse and population

codes (see glossary), and between clustered and dis-

tributed neural representations are matters of degree.

Furthermore, both the sparseness of a neural code and
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the clustering of the neurons involved in that code are

defined with respect to what is being represented. For

example, a face-selective neuron could in principle par-

ticipate in a sparse code for the presence of a face, but if

the same neuron responds to a wide variety of faces, it

might participate in a population code for face identity.

Finally, although the concepts of sparsity and clustering

are not independent at the extremes (a representation

carried by a single neuron is necessarily spatially

restricted, and a representation that involves all neurons

is necessarily spatially distributed), sparseness need not

imply clustering. The human hippocampus contains

some of the sparsest codes ever reported [1,2��], yet there

is no evidence that neurons with similar selectivities are

located near each other in the hippocampus.

Sparse codes versus population codes
for objects
In a sparse and explicit coding strategy, a small number of

neurons could play a decisive role in the representation of

each object [3] (Figure 1). In the limit, an individual

neuron could signal a particular complex and meaningful

stimulus (e.g., one’s grandmother), and be activated every

time one saw this stimulus. This extreme version of the

sparse coding scheme was originally proposed by

Konorksi, who called such neurons ‘gnostic neurons’

[4]. An example of sparse coding is found in the songbird

forebrain nucleus HVC (hyperstriatum ventrale pars cau-

dale), where individual neurons selectively code for a

temporally precise sequence of specific notes [5]. Another

example of such sparseness is observed in the insect

olfactory system, where individual odors activate only a

small number of neurons that typically respond with only

two action potentials [6]. For the representation of a

continuous variable (e.g. orientation), a sparse code would

mean that each neuron is sharply tuned for a particular

value of that variable. Advantages of sparse representa-

tions are metabolic efficiency and ease of readout by other

areas [7,8].

At the other end of the spectrum are coding strategies in

which the relevant information is distributed across a

large population of neurons, the concerted activity of

which represents the stimulus [9,10] (Figure 1). Evidence

for such a population-coding scheme comes from motor

cortex, where individual neurons have broad and over-

lapping tuning curves in three-dimensional space, making

it impossible to accurately predict the direction of an arm

movement from the activity of any one neuron. However,

by combining information across a population of neurons,

movement directions can be specified precisely. Other

population codes with broad tuning curves have also been
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2 Sensory systems

Glossary

Nonpreferred response: A response in a given neuron that is less

than the maximal response.

Nonpreferred stimulus: A stimulus that produces less than the

maximal response in a given neuron.

Population codes: A scheme in which a large number of broadly

tuned neurons encode each stimulus. (See Figure 1 for an illustration

of these ideas.)

Preferred stimulus: A stimulus that elicits the maximal (i.e. strongest

observed) response from a given neuron.

Sparse codes: A coding scheme in which a small number of highly

selective neurons are activated in response to one stimulus.
proposed in sensory systems for encoding continuous

stimulus variables such as orientation [11,12]. Population

codes are robust to sources of biological noise such as cell

death or inherent variability in neuronal responses [11].

However, because the relevant information is distributed

across neurons, these codes are more sensitive to the

binding problem — the ambiguity arising when more

than one stimulus must be encoded simultaneously [13]

— because each neuron would be activated by multiple

stimuli and, therefore, would not be able to unambigu-

ously report the presence of any one of them.

How sparse then are representations of objects in the

ventral visual pathway? Since the initial discovery by

Gross and co-workers [14,15] of a small group of cells
Figure 1

A schematic representation of (a) clustered versus distributed representatio

Current Opinion in Neurobiology 2006, 16:1–7
in inferotemporal cortex (IT) that responded with great

specificity to images of hands or faces, several groups have

reported further evidence for sparse coding for visual

information in both monkeys and humans. Cells in ante-

rior IT and prefrontal cortex in monkeys respond selec-

tively to complex, arbitrary visual stimuli, such as 3-D

wire-frame objects or computer generated images of cats

and dogs [16–20], and cells in the banks of the superior

temporal sulcus respond with great specificity to human

and monkey faces [21�]. In the human hippocampus, cells

have been observed to have sparse and explicit responses

to various categories of images [1], in addition to very

specific responses to particular individuals, objects or

landmarks [2��]. There is now also good evidence that

such sparse coding neurons in the human medial temporal

lobe can maintain these highly selective responses across

markedly different views of the preferred stimulus (see

glossary) [2��,22]. Although the specificity of a given

neuron or cortical region for a particular stimulus can

never be definitively proven (because it is always possible

that some untested stimulus would drive that neuron or

region more strongly), this problem can be minimized by

sampling a very large number of stimuli. For example, by

testing each cell on more than 1000 natural images,

Foldiak et al. [21�] provided some of the strongest evi-

dence to date that (some) face cells are truly selective for

faces [23].
ns and (b) sparse versus population codes (see glossary).
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However, in some cases precise information about the

stimulus is only obtained by pooling the output of a large

population of neurons. For instance, shape information in

visual areas V4 and posterior IT is encoded by an ensem-

ble of neurons that each carry information about simpler

features of the shape [24,25]. In anterior IT, population

codes can distinguish among the shapes of objects [26],

and provide accurate information over short timescales

about the category and identity of more complex objects

[27�]. Indeed, the number of objects that can be discri-

minated at a fixed accuracy has been found in anterior IT

to increase almost exponentially with the number of

neurons [27�], a relationship that is indicative of a popula-

tion based code [28]. (By contrast, decoding accuracy for

sparse codes is a linear function of the number of neurons,

although possibly with a shallow slope [29].) As noted

previously, a given set of neurons can participate in both

sparse and population codes for different information.

For example, although face-selective cells can be said to

form a sparse code for the presence of a face, some such

cells have been found to be broadly tuned to various

facial dimensions, and hence to participate in a popula-

tion code for face shape [30]. Conversely, simple object

features could be represented sparsely, whereas at the

level of entire objects representations might be coded

by populations of sparse neurons [31]. In such a popula-

tion-coding scheme, the representation of an entire

object could arise from spike correlations among indivi-

dual neurons, each coding for different parts of the object

[32].

Thus, the ventral visual pathway contains representations

varying in their degree of sparsity, with some neurons

coding shape features that will be found in many objects,

and others responding only to specific object categories or

even only to specific people or places.

Clustered versus distributed representations
of objects
How are neural representations of objects arranged spa-

tially in the cortex? Are the neurons that are active in

response to a given object clustered together, or are they

spread across centimeters of the ventral visual pathway

(Figure 1)? Clustering of functional properties in the

cortex has been described on many scales, from columns

to ‘patches’ to topographic maps and cortical areas. It has

been argued that such functional clustering arises because

wiring (i.e., axons and dendrites) costs can be minimized

by placing functionally related neurons near each other

in the cortex [33�]. Thus to the extent that functional

clustering is found within the ventral visual pathway this

may indicate an important role for local computations in

these regions. One such possibility is that clustering

enables sharpening of within-class selectivities through

lateral cortical connections [34,35]; an hypothesis that

would imply a causal link between sparsity and clustering.

Another speculative possibility is that clustering
www.sciencedirect.com
minimizes the risk that the responses of different neural

populations contributing to the representation of a given

object will be temporally out-of-phase with each other

because of conduction delays along the ventral visual

pathway. However, it should be noted that just because

clustering of selectivities is a prominent feature of the

cortex need not imply that such clustering has any

important functional significance. Indeed, it has recently

been argued that even the very well established and much

studied ocular dominance columns do not serve any

purpose [36].

In the case of object representation, physiological inves-

tigations in monkeys have found quasi-columnar cluster-

ing of object selectivity on the scale of 400 to 800 microns

[18,37] as measured by spiking activity, and on a sub-

stantially larger scale (5 mm) as measured by local field

potentials (LFPs) and optical imaging studies [38].

Furthermore, results from functional magnetic resonance

imaging (fMRI) studies showing selective responses to

specific object classes also imply some clustering, at least

within the span of a single voxel (1–3 mm); without such

clustering, selectivity would be invisible in the pooled

response of the hundreds of thousands of neurons in each

voxel. FMRI studies in humans have shown localized

regions of cortex that respond selectively to specific

image categories: faces produce selective activations in

the fusiform face area (FFA) [39–43], places and scenes in

the parahippocampal place area (PPA) [44,45], bodies in

the extrastriate body area (EBA) [46] and fusiform body

area [47,48], and letter strings and words in a region of the

left fusiform gyrus [49,50]. These highly specific regions,

each of which can be identified in approximately the same

location in any normal subject, are defined by fairly sharp

peaks in spatial activation profiles [51]. Face- and body-

selective regions have also been found in macaques using

fMRI [52,53], and face-selective regions have been iden-

tified at single-cell resolution in marmosets using

immediate-early gene expression [54��]. However, cate-

gory-selective regions might, in general, be rare in the

ventral pathway; for the most part, clusters of category

selectivity for other stimulus classes in humans have not

been observed reliably, at least at the standard resolutions

used in fMRI studies [47].

These considerations suggest that at least for some cate-

gories, object representations are localized to focal regions

of cortex. In an important challenge to this idea, Haxby

and co-workers [55,56] argued that weak or ‘non-selec-

tive’ responses to objects across the ventral visual path-

way could carry information about object category.

According to this view, each object category would be

represented not merely by a strong response in a small

region of cortex but by the entire distributed, graded and

overlapping pattern of activation across the ventral visual

pathway [55,56]. Indeed, mathematical analyses indicate

that optimal estimations can be attained not by focusing
Current Opinion in Neurobiology 2006, 16:1–7
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exclusively on the most informative signals but instead by

summing evidence from multiple sources, each weighted

by its reliability [57]. Evidence that information is in fact

contained within ‘non-selective’ responses comes from

demonstrations that activation patterns for many object

classes are different enough from each other to enable

discrimination of object categories based only on regions

with relatively low responses to the objects in question

[55,56,58–60]. However, not all regions in the ventral

temporal cortex appear to be equally involved in repre-

senting diverse object categories. In particular, clusters

such as the FFA and PPA, which can easily discriminate

between preferred and nonpreferred image categories,

perform significantly worse at classifying nonpreferred

objects, suggesting that at least some regions are primarily

involved in the processing of a single stimulus class

[58,61�].

FMRI, of course, has limited spatial resolution, with each

voxel comprising millions of neurons at standard resolu-

tion, and tens or hundreds of thousands of neurons at

‘high resolution’. Both the selectivity and the clustering

in any region of cortex will look quite different at higher

resolution. Recent studies that are pushing the resolution

of fMRI are finding increased patchiness [62] and func-

tional heterogeneity [63] in face-selective regions. At the

same time, increased spatial resolution can reveal new

and sharper selectivities that were not apparent at lower

resolution [48,64].

Despite the recent improvements in the resolution of

fMRI, any fMRI evidence that discriminative informa-

tion is not contained in the profile of nonpreferred

responses (see glossary) will be weak, because such

results can always be trumped by higher resolution meth-

ods that reveal that such information is present after

all. Thus, ultimately the question of whether neural

responses can distinguish between nonpreferred stimuli

(see glossary) can only be resolved by the gold standard in

neuroscience of single-unit recording. Two recent studies

provide crucial new insights on just this question. Using

fMRI in macaques to locate face-selective patches, Tsao

et al. [65��] then directed electrodes into a patch to record

from the neurons that comprise it. A staggering 97% of the

neurons in this region responded selectively to faces, and

indeed nearly exclusively so. This study provides the

strongest evidence to date for both selectivity and clus-

tering of visual object representations in the ventral visual

pathway. And the nearly exclusive response of this region

to faces leaves little room for this patch of cortex to play an

important role in the representation of nonface stimuli.

Furthermore, Afraz et al. have recently demonstrated that

microstimulation of a cortical region with a high concen-

tration of face-selective cells increased the monkey’s bias

to report that a stimulus was a face, thus demonstrating

the causal role in face perception of this region of IT

[66��].
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Nonetheless, even if face-selective patches are exclu-

sively involved in representing faces, it is still possible

that the rest of the ventral pathway might also participate

in the representation of faces. However, evidence that

such broader regions are not sufficient for face perception

comes from a case of selective loss of face recognition

(prosopagnosia) resulting from a very small lesion in just

this region [67], and from electrical microstimulation

studies that target small regions of cortex and produce

selective disruptions of face perception [68,69]. Similarly,

recognition of body parts was selectively disrupted by

transcranial magnetic stimulation (TMS) to the EBA

[70�], indicating that this region is necessary for normal

recognition of body parts. Finally, a new study shows that

surgical removal of a very small region of cortex just

posterior to (and hence presumably deafferenting) the

letter-string selective region in the left fusiform gyrus

leads to a selective deficit in visual word recognition [71�].
Thus even if discriminative information about a given

category exists outside the cortical regions that respond

maximally to that category, that information is not suffi-

cient for normal perceptual performance, at least for

object classes such as faces, bodies and words. These

findings are thus consistent with our conjecture that

representations of some visual categories (including faces,

bodies, and words) are largely concentrated within focal

regions of cortex that respond very selectively to that

category.

Concluding remarks
We have argued that visual objects are often represented

in the ventral visual pathway by groups of very selective

neurons (thus comprising relatively sparse representa-

tions), and that these neurons are often clustered near

each other in the cortex. Note, however, that the sparse

and clustered representations for faces and some other

categories described here may be atypical; for most other

object categories (aside from bodies, letter strings, and

places) such sparse and clustered representations have

not yet been reported [47].

What then are the crucial factors that determine when

sparse and clustered codes are used in the nervous sys-

tem? One possibility is that familiarity with the objects

being represented might influence their representations.

FMRI studies have shown that both specificity and

clustering can increase with stimulus familiarity [72],

for example in the case of the letter-string-selective

region in the left fusiform gyrus [50,73]. At the neuronal

level, training enhances selectivity [74,75,76�], thus

resulting in sparser representations. Training also appears

to make neighboring neurons more likely to respond to

similar features, making representations more clustered

[77]. Thus, increased familiarity with a stimulus class

might make the corresponding representations first, more

sparse, and therefore less susceptible to the binding

problem and less reliant on attention [13], and second,
www.sciencedirect.com
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more clustered, and therefore better suited for rapid local

computation and efficient readout.
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