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SUMMARY
Prior work has identified cortical regions selectively responsive to specific categories of visual stimuli. How-
ever, this hypothesis-driven work cannot reveal how prominent these category selectivities are in the overall
functional organization of the visual cortex, or what others might exist that scientists have not thought to look
for. Furthermore, standard voxel-wise tests cannot detect distinct neural selectivities that coexist within vox-
els. To overcome these limitations, we used data-driven voxel decomposition methods to identify the main
components underlying fMRI responses to thousands of complex photographic images. Our hypothesis-
neutral analysis rediscovered components selective for faces, places, bodies, and words, validating our
method and showing that these selectivities are dominant features of the ventral visual pathway. The analysis
also revealed an unexpected component with a distinct anatomical distribution that responded highly selec-
tively to images of food. Alternative accounts based on low- tomid-level visual features, such as color, shape,
or texture, failed to account for the food selectivity of this component. High-throughput testing and control
experiments with matched stimuli on a highly accurate computational model of this component confirm its
selectivity for food. We registered our methods and hypotheses before replicating them on held-out partic-
ipants and in a novel dataset. These findings demonstrate the power of data-driven methods and show that
the dominant neural responses of the ventral visual pathway include not only selectivities for faces, scenes,
bodies, and words but also the visually heterogeneous category of food, thus constraining accounts of when
and why functional specialization arises in the cortex.
INTRODUCTION

The last few decades of research in human cognitive neurosci-

ence have revealed the functional organization of the cortex in

rich detail. This organization features a set of regions that are

selectively engaged in single mental processes, from perceiving

faces or scenes or music, to understanding the meaning of a

sentence, to inferring the content of another person’s thoughts.

Why do our brains have these particular specializations and

apparently not others? To answer this question, we need a

more complete inventory of human cortical specializations, one

that reflects not just the idiosyncratic hypotheses scientists

have already thought to test but also the actual functional orga-

nization of the cortex itself. Here, we tackle this question for the

ventral visual pathway by searching in a hypothesis-neutral

fashion for the dominant neural response profiles in this region

in a large, recently released public dataset of fMRI responses

to thousands of natural images in each of 8 participants.1

Extensive evidence2–7 from neurological patients, fMRI, and

intracranial recording and stimulation has demonstrated that

the ventral visual pathway contains distinct regions causally

engaged in the perception of faces, scenes, bodies, and words.

But are these categories themain ones, or might others exist that
have not yet been found? The current evidence does not answer

this question for several reasons. First, prior research on the

ventral pathway has tested a relatively small number of stimulus

categories, which may not have subtended the relevant part of

stimulus space preferred by some neural populations. Second,

this work has proceeded in a largely hypothesis-driven fashion

and thus may have missed neural populations with response

profiles scientists have not thought to test. Third, prior research

based on voxel-wise contrasts is not well suited to discovering

neural populations whose high selectivity is masked because

the fMRI signal averages their responses with the responses of

other neural populations cohabiting the same voxels.8

Here, we overcome these three limitations by analyzing fMRI

responses to the very broad and large set of natural stimuli in

the Natural Scenes Dataset (NSD1) with a data-driven analysis

method that can de-mix the underlying responses from neural

populations that are spatially intermingled within individual

fMRI voxels. Specifically, we factorized the matrix of response

magnitudes of each voxel to each stimulus into a set of compo-

nents, which we hypothesize correspond to distinct neural pop-

ulations. Each component is described by a response profile

across stimuli and a weight matrix indicating how strongly that

component contributes to each voxel’s response (Figure 1).
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Figure 1. Outline of the data-driven component modeling approach

(A) The large swath of ventral visual cortex included in our analyses for one example subject.

(B) Illustration of the data-driven voxel decomposition approach. Bayesian non-negative matrix factorization was used to decompose the observed ventral visual

stream data matrix of each participant as a product of two lower-dimensional matrices: (1) a response profile matrix that characterizes the response of each

component to all 5,445–10,000 stimuli viewed by each participant and (2) a component by voxel weight matrix that expresses the contribution of each component

to each of the �6,500–9,600 voxels per participant.

(C andD) (C) The Bayesian information criterion (BIC) aswe vary the number of components in one participant. The optimal number of components was chosen as

the minimum BIC. Other subjects had a similar trend. Components present in all subjects were isolated by measuring pairwise inter-subject correlations of

component response profiles, as illustrated in (D) for phase I participants (right). Gray-shaded region shows the proportion of stimuli viewed by all 4 participants in

each phase (515 images in phase 1 and 1,000 in phase 2). The top 5 components based on this metric all had mean and median pairwise inter-subject con-

sistency > 0.5 (D, right).
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This analysis method enables us to discover the main

components that explain neural responses in the ventral visual

pathway, potentially including new selectivities not described

previously.

RESULTS

We applied hypothesis-neutral Bayesian non-negative matrix

factorization (NMF)9 methods to the NSD1 to identify the domi-

nant neural populations in the human ventral visual pathway.

Importantly, the algorithm does not have any information about

the images or the spatial location of voxels. Instead, it infers

the response profiles and anatomical distribution of distinctive

neural populations solely from the unlabeled voxel responsema-

trix. This method is thus a powerful way to both validate known

selectivities and discover new ones. Our approach is similar to

that of Norman-Haignere et al.,8 except that we use NMF instead

of independent components analysis (see STAR Methods for

rationale). In phase I of this project, we analyzed data for four

of the eight available NSD participants and presented this work

at the Vision Sciences Society meeting.10 We then pre-regis-

tered our analyses on the Open Science Framework (https://

osf.io/n47qf) and confirmed our hypotheses on the four held-

out NSD participants (phase 2). We report results for both groups
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analyzed separately as well as for each individual participant in

supplemental information.

Our general procedure is illustrated in Figure 1. We first

applied the NMF algorithm on each subject’s data separately

(Figures 1A and 1B) to identify subject-specific components

(phase 1 subjects viewed 10,000 images, phase 2 subjects

viewed 5,445 images). Bayesian information criterion (BIC)

applied to Bayesian NMF yielded �20 components in each sub-

ject (Figure 1C). Next, we used overlapping images viewed by all

subjects (in phase 1 and 2 separately) to identify and rank the

consistent components across subjects using a pairwise inter-

subject consistency metric. This method identified 5 consistent

components across subjects with median pairwise consis-

tency > 0.5. The 5 components derived from phase 1 partici-

pants collectively accounted for �50% of the replicable

variance in the reliable voxels in phase 2 subjects (reliability

threshold > 0.3, 46% ventral stream voxels) and were highly

correlated with the top five components identified independently

in phase 2 subjects (Figure S1), confirming reproducibility of this

5-component structure.

Characterizing the function of the top components
We first qualitatively examined the response profiles of the top 5

components. For each component, we sorted stimuli by their

https://osf.io/n47qf
https://osf.io/n47qf


Figure 2. Response profile and preferred stimuli for the top five components

(A) Response profile for each of the top 5 components (with highest inter-subject consistency) across the 515 images seen by all participants. These components

were derived separately within each of the 8 participants individually (see Figure S2 for corresponding data from each participant) but are shown here averaged

across all 8 participants. Each bar is an image, and the colors indicate the behavioral salience rating for the preferred category (e.g., the salience of faces for

Component 2).

(B) Top 4 images producing the strongest response in each component in each phase 1 (left) and phase 2 (right) participant.

See Video S1 for the top 25 images for each component in each subject.
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responsemagnitude in this component and inspected the top 25

images of each component for each participant. These images

(top 4 shown in Figure 2 and all the top 25 shown for each partic-

ipant in Video S1) revealed a distinctive and familiar selectivity

pattern for four of the top five components (Figure 2). The images

that produced the highest responses in components 1, 2, 4, and

5 were, respectively, scenes, faces, text (including words and

symbol strings), and bodies (either full bodies or body parts).

To validate this apparent preferred category of each component,

we collected ratings for each of these preferred categories in a

behavioral experiment where participants were asked to rate

the salience of each of these categories in each of the images

viewed by all NSD participants (STARMethods). Salience ratings

for the scenes, faces, text, and bodies were strongly correlated
with the response of components 1, 2, 4, and 5 (respectively)

across images. These findings are consistent with a large prior

literature on selectivities for these categories in the ventral visual

pathway11 (and their anatomical location, discussed below), so

we considered these results as positive controls on our method

and did not interrogate these response profiles further.

A novel component selectively responsive to food
Component 3, however, was unexpected. This component, the

third-most-consistent component across participants in the

separate analyses of both phase 1 and phase 2 participants, ap-

peared to respond in a highly selective fashion to images of food.

This food selectivity is evident both in the correlation of the com-

ponent’s response profile with rated salience of food (Figure 2A)
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Figure 3. Alternate accounts do not explain the food selectivity of Component 3

(A) Left: the correlation across stimuli between the magnitude of the Component 3 response averaged across the 8 participants and various image-computable

feature dimensions and rated food salience (STARMethods). Right: same but nowwith food salience partialled out for the image-computablemeasures, andwith

all other measures partialled out for the food salience measure.

(B) The correlation between themagnitude of the Component 3 response and valence and arousal ratings across the subset of 100 stimuli for which these ratings

were available in the original NSD study, called ‘‘nsdmeadows’’ stimuli.1

(C) Responses of Component 3 in each participant to food and non-food stimuli selected in pairs of images (one food and one non-food) that produce similar

activations in the last convolutional layer (‘‘conv5’’) of an AlexNet architecture pre-trained on ImageNet. See also Video S3.

(D) Response of Component 3 in each participant to sets of stimuli chosen such that the food images were very low, and the non-food images were very high on

the object-color probability measure.12

See also Figures S3 and S6.
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and in the images that produced the highest response in individ-

ual subjects (Figure 2B). Althoughmost of the top-ranked images

are of prepared food (e.g., a slice of pizza), unprepared food

(e.g., a broccoli, carrot, banana, etc.) also produced strong re-

sponses in this component (Video S1). But inspection of those

top images also suggests several potential alternative accounts

for this component’s responses. For example, the top images for

this component also seem to share certain low-level and mid-

level visual features, including warmer and more saturated

colors, higher curvature, and a complex spatial structure with

rich texture. To address these potential alternative accounts of

food selectivity, we first estimated several image-computable

metrics of color, curvature, and texture (STAR Methods). The
4 Current Biology 32, 1–13, October 10, 2022
component response was more strongly correlated to the

behavioral salience ratings for food than any of these other visual

feature metrics (Figure 3A). However, some of the visual proper-

ties were also significantly correlated with the component

response, particularly the object-color probability metric12 (the

probability of a hue being a natural object, which reflects the

warm-cool color continuum).

But how much unique variance do each of these variables

explain of the component’s responses? Figure 3A (right) demon-

strates that the rated salience of food remains highly correlated

with the response profile of Component 3 (R = 0.58, p = 6e–47),

even after partialling out all the visual features that appear to be

most confounded with food. Some of these visual properties on



Figure 4. A CNN-based encoding model of Component 3 response enables tests on images beyond those in the NSD

(A) We used a ResNet50-CLIP encoder to predict the Component 3 response. The x axis shows the predicted component response (based on the model trained

on phase 2 subjects), and the y axis shows the observed Component 3 response (from phase 1 subjects). Each dot is an image (total n = 515 shared images

across all 8 subjects) that the model did not encounter in the model fitting procedure (cross-validated on both images and subjects).

(B) Top 50 stimuli predicted by the encoding model to have the highest response across all 1.2 M colored (top) and grayscale (bottom) images from the ImageNet

dataset. All images are of food. See also Video S4.

(C)Model prediction on colored (top) and grayscale (bottom) versions of the Downing pairs and ourMatched pairs of food and non-food images. The bars indicate

the mean response, and each connected line indicates a particular matched food-non-food pair.
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their own account for a significant, though much smaller, part

(e.g., for object-color probability, R = 0.16, p = 8e–6) of the com-

ponent’s response once food salience is partialled out, although

the unique variance explained by food salience ratings is

significantly greater than the variance explained by any of these

visual properties with the effect of food salience removed (all

p < 0.00001; Figure S3). Figure 3B further shows that the

response of Component 3 was not significantly correlated with

behavioral ratings of either valence or arousal provided for a sub-

set of the stimuli in the original NSD study. Further, the food

selectivity of this component persists strikingly across the large

set of 5,445–10,000 images viewed by each participant (data not

shown).

These results indicate that the visual features most obviously

related to Component 3 cannot alone explain the response of

Component 3. However, it remains possible that this component

selectively responds to a conjunction of multiple lower-level fea-

tures (like reddish, round objects). We therefore performed three

further analyses. First, we identified pairs of images (one food

and one non-food) from the 5,445–10,000 image sets viewed

by each participant that produce similar activations in the last

convolutional layer (‘‘conv5’’) of a pre-trained AlexNet (STAR

Methods). These food and non-food pairs are visually very

similar, with matching features in similar spatial locations (Fig-

ure 3C). Yet food images still produced a significantly higher

response than their matched non-food images in each partici-

pant (paired t tests, all p < 0.01). Second, we identified food im-

ages that ranked low on an object-color probability measure

(Rosenthal et al.,12 i.e., ‘‘cool’’ colored food) and non-food

images that ranked high on the same scale (i.e., ‘‘warm’’ non-

food images). The component response remained significantly
higher to the food images than the non-food images in every sub-

ject (all p < 0.001; Figure 3D), suggesting that the component’s

food selectivity overrides any sensitivity to object-color probabil-

ity (see also Figure S3). Third, we selected subsets of food and

non-food stimuli that maximally span the embedding space of

different layers of an ImageNet-trained AlexNet model,13 such

that the sampled imageswithin each set are substantially dissim-

ilar among themselves, and the selected subsets are diverse on

perceptually relevant image properties (Video S3; described

further in the STAR Methods). As a result, a linear classifier

trained to discriminate between these food and non-food images

using the features of the corresponding layer performs at chance

(never exceeding 53%). And yet the food images still produce a

significantly higher response than the non-food images in

Component 3, even across these highly heterogeneous food

and non-food subsets (Video S3), showing that the food prefer-

ence holds broadly and is not limited to specific kinds of food

images.

Our analyses thus far focused only on the stimuli included in

the NSD. Although the NSD includes a large number of images

(n = 56,720 across 8 subjects with full repetitions each), they

span a small subset of the space of all possible images. To

address this limitation, we built a deep convolutional neural

network (CNN)-based encoding model to predict the response

of Component 3 (see Ratan Murty et al.14). Our CLIP-

ResNet5015-based encoding model was highly accurate at pre-

dicting the response to images not encountered in the model

training procedure (correlation between the cross-validated pre-

dicted and observed responses = 0.83, p < 0.00001; Figure 4A).

The success of this computational model in mimicking compo-

nent responses and its image-computable nature thus allow us
Current Biology 32, 1–13, October 10, 2022 5
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to use the model-predicted responses as substitutes for their

actual measured neural counterparts on much larger stimulus

sets, well beyond NSD. Would the food selectivity of the compo-

nent hold even when tested on a much larger battery of stimuli?

To find out, we obtained predictions for the Component 3

response to all 1.2 million stimuli from the ImageNet dataset

(P. Downing andN. Kanwisher, 1999, Cogn. Neurosci. Soc., pos-

ter).16 All the top 1,000 stimuli predicted to activate this compo-

nent (from�1.2million possible images) contained food (see Fig-

ure 4B, top, for the top 50 images and Video S4 for the top 200

images), while none of the bottom 1,000 stimuli were found to

contain food. This high-throughput screening procedure on

CNNs validates the observed food selectivity of Component 3.

These analyses, however, are subject to a few caveats. Models

can only substitute for neural data insofar as the model is accu-

rate, and because not all variance in component responses is ac-

counted for by the model, conclusions based on model predic-

tions are not error-free and will ultimately need to be validated

with actual neural data. Further, even when the computational

model can capture all meaningful variance in neural responses,

it does not necessarily follow that the model uses the same

mechanisms as the brain to arrive at the predicted response.

In this context, however, where the goal is to use models as vir-

tual stand-ins for experimental data, the mechanistic similarity is

secondary to prediction performance as an index of the utility of

the model.

Downing and Kanwisher (P. Downing and N. Kanwisher, 1999,

Cogn. Neurosci. Soc., poster) had previously tested and rejected

the food selectivity hypothesis when they failed to find higher re-

sponses to food textures compared with visually similar non-

food textures. When these stimuli were tested on the CNN-

based model of the Component 3, it predicted a significantly

higher response to food than the non-food matched textures

(Figure 4C, top left; paired t test, t(14) = 5.21, p = 1.53 3 10�5).

Next, we handpicked a new set of food and non-food images

that look very similar (examples shown in Figure 4C, right).

Here, too, our computational model predicted a significantly

higher response to food than matching non-food images (Fig-

ure 4C, top right; paired t test, t(11) = 3.34, p = 0.003). Would

food selectivity hold even when tested on grayscale images?

We tested this in 3 different ways. First, we again obtained pre-

dictions for the entire 1.2 million ImageNet stimuli, but this time

on grayscale versions of the same images. The correlation be-

tween the predicted response to the color versus the grayscale

version of each image was very high (n = 1,281,167 images,

Pearson’s R = 0.98, p < 0.00001). Critically, the top 1,000 images

predicted to have the highest response, even from the grayscale

set, were all of food (see Figure 4B, bottom, for the top

50 images). Second, our computational model predicted a signif-

icantly higher response to food than the non-food matched tex-

tures from the black and white versions of the Downing image

pairs (Figure 4C, bottom left; paired t test, t(14) = 2.93, p =

0.007). Third, our computational model also predicted a signifi-

cantly higher response to black-and-white food than non-food

in our handpicked matched images (Figure 4C, bottom right;

paired t test, t(11) = 2.44, p = 0.023). Together, these computa-

tional modeling results complement our previous analyses by

confirming the observed food selectivity of Component 3 across

a larger number of images, for stringent control images, and by
6 Current Biology 32, 1–13, October 10, 2022
showing that the selectivity of this component for food over

non-food persists even for grayscale images.

The observed components are not artifacts of the

stimulus set composition

Might the observed components reflect the composition of the

stimulus set rather than a property of the brain itself? Of course,

experimental approaches, whether hypothesis-neutral or hy-

pothesis-driven, cannot reveal selectivities for stimulus classes

that are not included in the stimulus set, and there is likely to

be some effect of the relative proportion of different stimulus

types in the set. However, it seems unlikely that the category se-

lectivities found (for faces, scenes, bodies, text, and food) reflect

an over-representation of these categories in the stimulus set

compared with human experience, given that most humans

spend at least an hour per day engaged in activities where these

visual stimuli feature prominently.17 In addition, several further

analyses show that the food selectivity of Component 3 is not

an artifact of the composition of the stimuli. First, the food-selec-

tive component emerges separately in each of the eight partici-

pants, despite the fact that they sawmostly different stimuli, and

it can also be identified in the completely separate BOLD5000

dataset18,19 (Figure 5). And, conversely, no food-selective

component is found when the same analyses are applied to re-

sponses to the same images in retinotopic cortex, dorsal, and

lateral visual streams or in early layers of a CNN. Thus, the use

of the NSD stimulus set on its own is neither necessary nor suf-

ficient to find food selectivity.

Finally, to test whether any stimulus category that represents a

sizable proportion of the stimuli will result in a component selec-

tively responsive to that category, we performed one further

analysis (Figures 5D and 5E). First, we selected a subset of the

stimuli that contained equal numbers of exemplars in each of 9

categories, including faces (as a positive control), food, and 7

other perceptually homogeneous categories (airplanes, clocks,

horses, elephants, giraffes, trucks, motorcycles). Repeating the

NMF analysis on these data revealed one component selectively

responsive to faces and another to food, and no components as

highly selectively responsive to any of the other categories, even

though the food images were drawn to be one of the least homo-

geneous in this set. Thus, ample representation of a category,

even a perceptually homogeneous category such as airplanes

or clocks, in the stimulus set is not sufficient for a component se-

lective to that category to emerge and cannot account for the

food selectivity of Component 3.

Demixing reveals stronger selectivity for components

than voxels

Why was food selectivity not observed before, particularly in

previous hypothesis-driven investigations (P. Downing and

N. Kanwisher, 1999, Cogn. Neurosci. Soc., poster)?20 We spec-

ulated that the spatial overlap of food-selective neural popula-

tions with other selectivities dilutes food selectivity in individual

voxels, which our demixing procedure is able to uncover. We

tested this idea by measuring the selectivity of the demixed

Component 3 and of the average response across the top 1%

of voxels, with the highest weight on Component 3. Food selec-

tivity was significantly higher for the demixed Component 3

(mean R across subjects = 0.53, p < 0.00001) than in the top vox-

els (mean R = 0.41, p < 0.00001) in each participant (t(8) = 10.7,

p < 0.0001; Figure 6). For comparison, face selectivity of



Figure 5. Observed food component is not an artifact of the NSD stimulus composition

We first tested the dependence of stimulus composition, if any, on the completely independent BOLD5000.v2 fMRI dataset.

(A) Response profile for the food component identified in the BOLD5000 data (from images shared with NSD) on images unique to BOLD5000.v2. The x axis

shows the stimuli, and the y axis shows the inferred response magnitude for the Component 3 for images unique to BOLD5000. The bars in red are images

that were labeled as food, and the bars in gray are images labeled non-food in the (imperfect) annotations provided with MS-COCO.

(B) Top 10 images for each of the four subjects in the BOLD5000v2 dataset.

(C) Boxplots showing the food selectivity distribution across BOLD5000 subjects (y axis) for the components inferred from different cortical regions (x axis). Food

selectivity was observed only in ventral visual cortex, not in other regions.

(D) Next, we performed the NMF decomposition on a curated subset of the NSD with 9 stimulus categories, each with an equal number of images within each

subject (top) with high within-category visual similarity for the non-food categories (bottom).

(E) NMF decomposition on this curated stimulus set revealed components with strong selectivity only for faces (positive control) and food, not for any other

category. The y axis shows the highest selectivity obtained for each of the 9 categories (among all components) based on category labels from MS-COCO using

two different metrics (left, correlation with a binary category label vector indicating whether the category was present/absent in the image; and right, t value

comparing the mean response to stimuli from that category versus all other stimuli).

See STAR Methods for details.
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Component 2 was as strong in the top voxels as within the in-

ferred component response (t(8) = 0.85, p = 0.42; Figure 6).

These results indicate that the neural populations selective for

food are likely more mixed with other neural populations within

voxels than the face-selective neural populations, explaining

why strong food selectivity has not been found previously with

standard analysis methods.

Anatomical distribution of components

We next characterized the anatomical distribution of each

component by projecting its voxel weights back into anatomical

coordinates within each participant individually. For known se-

lectivities, the component anatomies exhibited clear agreement

with the corresponding regions identified with an independent

functional localizer: the face-selective component produced

the highest voxel weights in the fusiform face area (FFA) and

other known face-selective sites such as aTL faces (anterior tem-

poral lobe faces) and mTL faces (mid temporal lobe faces), the

text-selective component was concentrated within the visual

word form area (VWFA), the scene-selective component in the

parahippocampal place area (PPA), and the body-selective
component in parts of the fusiform body area (FBA) and the ex-

trastriate body area (EBA), as shown qualitatively in Figure 7 and

Video S2. Quantitatively, the voxel weight maps demonstrated

high correlations with the t statistics pertaining to the relevant

domain from the functional localizer experiment (Figure S4).

The weight maps for the novel food-selective component ap-

peared patchy across the cortex, with considerable variability

across participants. To get an impression of the component

anatomy, we first registered each participant’s voxel weight

map to a common MNI space. The subject-averaged voxel

weight map for Component 3 (Figure 7C) shows its distinct anat-

omy, which is largely concentrated in two clusters, one medial

and one lateral to the FFA. We also emulated a contrast-based

experiment wherein we selected a subset of food and non-

food images from the shared set of 515 NSD images viewed

by all participants (STAR Methods). We computed the food

contrast for each participant individually, using the conventional

t statistic comparing responses of all stimulus-driven voxels

to food versus non-food stimuli. The subject-averaged maps

from this contrast-based experiment highlight that significant
Current Biology 32, 1–13, October 10, 2022 7



Figure 6. Stronger selectivity for compo-

nents than average response across voxels

Left: average response profile of the top 1%

voxels with the highest weights on Component 3

(top) and the response profile of Component 3

(bottom) for one subject. Food selectivity of the

respective response profiles is reported at the

top of each subplot. Right: face selectivity of the

mean responses across top 1% voxels with

highest weights on Component 2 (the face-se-

lective component) and the corresponding

selectivity of Component 2. Rightmost plot

shows the food selectivity of the mean response

across top 1% voxels with highest weights on

Component 3 (the food-selective component)

and the corresponding selectivity of Component

3. Each dot in the swarm plot is an individual subject. Here, selectivity is computed as the correlation between responses and the salience ratings for the

preferred category over the 515 stimuli shared across all 8 participants.
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differences are largely restricted to small clusters in the ventral

visual stream (Figure 7D) in roughly similar anatomical locations

as that of Component 3.

To quantify the inter-subject variability in the anatomy of

Component 3 and compare it with other components (Figure S5),

we furthermeasured the correlation of theMNI-registeredweight

map for each participant with the average weight map across the

7 other participants (averaged across 8 folds). This analysis

showed the highest inter-subject correlation of the weight

maps for Component 1 (scenes), followed by Components 2

and 4 (faces and text, respectively), and then Components 3

(food) and 5 (bodies). We next quantified the spatial distribution

of the voxel weights for each component using a sparseness

measure based on the relationship between L1 and L2 norms.21

Component 3 was less sparse than the others, except for

Component 5. Kurtosis and skewness of the voxel weight distri-

butions of each component show that all components have voxel

weights that are positively skewed and kurtotic, relative to a

Gaussian, indicating a peakier, heavy-tailed distribution skewed

toward higher values. A measure of lateralization of the weight

maps showed that the face component was right lateralized

and the text component left lateralized, (as expected). The

food component trended toward left lateralization, although the

lateralization effect was found to be non-significant (one-sample

one-tailed t test, t(8) = 1.76, p = 0.06). Taken together, these an-

alyses indicate that the inter-subject variability, the sparseness,

and degree of the lateralization of the food component is within

the range of the other components but at the lower end of that

range.

Given the small but significant correlation across stimuli of the

Component 3 response with various measures of color informa-

tion, even after food salience was factored out, we next asked

how similar the anatomical distribution of this component was

to the distribution of color responsiveness across the cortex.22,23

Specifically, wemeasured the correlation between the saturation

of non-food stimuli with voxel responses in the VVC to those

stimuli and then compared the resulting correlation map with

the voxel weights for Component 3, separately within each

participant. We find (Figure S6) that the saturation-responsive-

ness map is indeed correlated with the Component 3 weight

map in every subject (mean� 0.4) andmore so than for any other

component (p < 0.01 for all 4 comparisons using a paired t test).
8 Current Biology 32, 1–13, October 10, 2022
Thus, the anatomical distribution of Component 3 and color re-

sponses are correlated with each other across the cortex.

DISCUSSION

We applied data-driven analyses to a very large dataset of fMRI

responses to thousands of natural images and found that the

dominant neural response profiles in the ventral visual pathway

include selective responses to faces, scenes, bodies, text, and

food. Although the first four of these selective responses have

been reported in many previous studies, what is novel in the cur-

rent study is their emergence, unbidden, from a hypothesis-

neutral analysis of a dataset that was not designed to test for

or to reveal them. The fact that these four previously reported

selectivities emerged separately within each of the 8 individual

participants in this study (each of whom saw mostly non-over-

lapping images) shows that they reflect not just the idiosyncratic

whims of the scientists who chose to test these hypotheses in

the past but the actual dominant features of the neural response

in the ventral visual pathway. But our most novel result is the dis-

covery of a new neural response that has not been reported pre-

viously for the ventral visual pathway and that is highly selective

to images of food. Taken together, these results give a more

comprehensive and data-driven characterization of the domi-

nant neural response profiles of the ventral visual pathway,

describe a new neural selectivity for visual food images, and pro-

vide new clues into why we have the neural selectivities we do.

Because our finding of neural selectivity for food was unex-

pected, we embarked on an extensive series of control experi-

ments to test alternatives to this hypothesis. We found that

although the magnitude of response of Component 3 was corre-

lated with the presence of visual features such as color satura-

tion, warm colors, curved shapes, and texture properties, the

only factor that remained highly correlated with the food compo-

nent response when other factors were partialled out was the

salience of food in the image (Figure 3A). Second, when we

pitted the presence of warm colors against food salience as ac-

counts of the response of this component, we found that food

trumped color: cool-colored food produced a higher response

in this component than warm-colored non-food. Third, the

food selectivity of this component persisted even for computa-

tionally matched stimulus pairs (one food, one non-food) that



Figure 7. Anatomical locations of the highest weights for each component

(A) Top 5% voxels with the highest weights on each component are visualized on cortical flatmaps for one subject. Established regions of interest, defined from

the functional localizer scans by computing the contrast of preferred versus all other stimuli, are shown in outlines (t value > 2.5).

(B) Voxel weight maps of face, food, and text-selective components are visualized together on the RGB colormap to show component overlap for the same

subject. Similar maps for the remaining subjects are shown in Video S2.

(C) Component 3 voxel weights for each subject are registered to the MNI space and then averaged across subjects to obtain a subject-averaged voxel weight

map.

(D) T-statistics from the food versus non-food contrast experiment on a subset of NSD stimuli (mapped ontoMNI space, followed by cross-subject averaging) are

shown for comparison with (C).

See also Figures S4 and S5.
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elicit similar activation patterns in deep layers of a pre-trained

CNN. Fourth, we built a CNN-based model for Component 3,14

which accurately predicted responses of this component to

held-out stimuli, and we used this model to turbocharge our

search for counterevidence of the food selectivity of this compo-

nent. We ran all 1.2 million images from ImageNet through this

model and looked at the top 1,000 predicted to produce the

highest response. They were all food. Fifth, we constructed pairs

of visually similar food and non-food images by hand (e.g., a

yellow crescent moon and a banana), and ran these images

through our predictive model of Component 3. Again, predicted

responses were higher to the food images than to their paired

visually similar non-food images. Sixth, an analysis of responses

to a subset of nine stimulus categories, including an equal
number of stimuli in each category and, importantly, only

including food images that are maximally distinct from each

other, revealed components selectively responsive to faces

and food, but no components responsive to the other 7 cate-

gories, showing that the observed selectivity for food is not an

artifact of its over-representation in the stimulus set or of the ho-

mogeneity of specific kinds of food in the dataset. Taken

together, these analyses argue that Component 3 is selectively

responsive not to any particular visual features but to food per

se. We have therefore labeled this inferred neural population

the ‘‘ventral food component.’’ Confirming this finding, two pre-

prints based on the same NSD fMRI data, finding voxel-wise

selectivity for food and their overlap with color-biased regions,

appeared recently.24,25 Our study using hypothesis-neutral
Current Biology 32, 1–13, October 10, 2022 9
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methods further shows that food selectivity is a dominant feature

of the ventral visual cortex, that food selectivity is strong when

revealed by demixing methods, and that food selectivity over-

rides low- and mid-level features, including color. One potential

caveat of this study is its reliance on complex, naturalistic scenes

obtained from crowdsourced data (MS-common objects in

context [COCO]).26 Uncontrolled naturalistic scenes can

obscure the relevant image structure that plays a causal role in

eliciting neural responses. Follow-up investigations of this

component with carefully controlled synthetic stimuli can further

clarify the featural drivers of this food selectivity.

While a distinctive response to visual images of food has been

described in taste-sensitive regions of the insular cortex,27 a

robust and highly food-selective response in the visual cortex

has not been reported before. Why has the food-selective

component not been found previously, despite past efforts to

look for it?20,28,29 The likely account is that prior studies primarily

analyzed raw voxel responses, which do not reveal strong selec-

tivity for food because the food component is spatially inter-

mingled with other neural populations within voxels. In contrast,

our voxel decomposition method demixes these neural re-

sponses, revealing the strong selectivity of the food component

alone. Indeed, when we obtained the visually matched pairs of

food and non-food textures that had produced similar responses

in Downing and Kanwisher’s study (P. Downing and N. Kanw-

isher, 1999, Cogn. Neurosci. Soc., poster), leading them to argue

against food selectivity, we found that our predictive model for

Component 3 produced a higher response to food than non-

food. A similar pattern was observed previously with our voxel

decomposition analysis of responses in auditory cortex,8 where

we found only weak selectivity for music in raw voxels but strong

selectivity for music in the inferred music component, which was

later validated by clear music selectivity in the responses of indi-

vidual intracranial electrodes.30 Indeed, the precise neural basis

of this food-selective population remains a critical open ques-

tion. The spatially clustered nature of the voxel weights observed

for the food component suggests that this inferred food-selec-

tive neural population is concentrated in these cortical regions.

Finer granularity of neural response measurements, particularly

neural recordings of higher spatiotemporal precision that can

be achieved with either intracranial measurements in humans

or single neuron recordings in macaques (if they have a homolo-

gous organization), can further clarify the precise neural basis of

this component and shed light on whether each neuron (or elec-

trode site) shows a similar food selectivity or whether amore het-

erogeneous selectivity is found for different kinds or aspects of

food.

A notable property of Component 3 is that even though its

selectivity for food cannot be explained by responsiveness to co-

lor properties alone, the two are clearly linked. The response pro-

file of Component 3 has a much smaller but still significant cor-

relation with color metrics even after food selectivity has been

partialled out, and its anatomical distribution across the cortex

is correlated with the anatomical distribution of responsiveness

to color information (Figure S6). Why might the apparently

same neural population be responsive to both food and color in-

formation, even when each is unconfounded from the other?

Many have noted the importance of color for the detection, eval-

uation, and choice of food.31,32 Neuropsychological studies of
10 Current Biology 32, 1–13, October 10, 2022
patients with cortical color blindness (achromatopsia) have

noted particular difficulties in discriminating food. Pallis33 quotes

an achromatopsic patient saying, ‘‘I have difficulty in recognizing

certain kinds of food on my plate. I can tell peas and bananas by

their size and shape. An omelette [sic], however, looks like a

piece of meat.’’ Further, behavioral studies have shown that

adults, preschool children,34 and monkeys35 use color more

than shape when generalizing across food categories, but the

opposite when generalizing across non-food categories. Indeed,

Santos et al.35 argued that the use of color over shape only in

food learning suggests the existence of a domain-specificmech-

anism for visual food choice. Studies in typical adults also rein-

force the deep link between color and food perception, finding,

for example, that images of food (but not non-food) are rated

as having higher arousal if they contain red and lower arousal if

they contain green.31 The authors of that study speculate that

red color was indicative of the caloric and nutritional value of

food for our evolutionary ancestors but is much less so today

(in prepared foods and where food dyes are used) and hence re-

veals the evolutionary basis of the connection between color in

general, and red in particular, in food preference. Of course,

food preferences are famously culture-specific and learned,36

and an infant’s food choice is primarily learned from other peo-

ple. But color may still play a role in domain-specific learning

about food and in bootstrapping the development of a cortical

circuit for visual food discrimination. One hypothesis is that the

color bias in food choice may arise relatively early in develop-

ment (though not apparently in infancy34), with the cortical locus

of the ventral food component accordingly arising in regions

already biased for warm colors,12 but that the particular visual

food stimuli that activate this system are most likely learned

through individual experience (like orthographies in the VWFA).

What does food selectivity tell us about which categories get

their own specialized neural machinery in the brain? Because

food has been of fundamental importance to humans both

throughout their evolution, and in modern daily life,36 and

because food choice often starts with vision, a specialization for

food in the visual cortex is consistent with both evolutionary

and experiential origins of cortical specializations. On the other

hand, food seems more visually heterogeneous than other cate-

gorieswith selective responses in the ventral pathway, an impres-

sion confirmed by visual similarity measures based on feature

responses in pre-trained AlexNet (Figure S6). Nonetheless, food

is linked to some visual features, notably color, and indeed we

find that Component 3 does show a small but significant color

preference, even after food salience is partialled out. This finding

is reminiscent of other feature biases in category-selective cortex

(e.g., curvature biases in face-selective cortex37), and invites the

same chicken-and-egg question: do category selectivities colo-

nize cortical regions with pre-existing relevant feature biases,37

or are these visual feature preferences simply by-products of

category selectivity? Finally, the finding of food selectivity

resolves a previous conflict with the hypothesis that category

selectivity in visual cortex is determined by the computational re-

quirements of the task.38 We had proposed this hypothesis in a

recent study,38 based on our finding that convolutional neural

networks trained on both face discrimination and object classifi-

cation spontaneously segregated themselves into separate sys-

tems for face and object recognition. But that study also found
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spontaneous segregation for food in a network trained on both

food and object classification, a finding that seemed then not

to fit the brain but that now does. Thus, the novel selectivity

for food reinforces the computational hypothesis that task con-

straints play a role in determiningwhich categories are processed

with their own specialized neural machinery.

What computational advantagesmight a selective response to

food confer? Any form of selectivity in a neural population inher-

ently implies a sparse code, as it suggests that the neural popu-

lation responds strongly to only a specific subset of all possible

stimuli. Such sparse neural codes have long been argued to

make information explicit and easier to read out39–41 and to sup-

port faster learning.42–44 Reducing metabolic costs would also

favor sparse codes for stimuli that are most frequently encoun-

tered in our environment. Of course, we cannot have specialized

neural codes for all possible classes of stimuli, so it would be

sensible to allocate such specialized systems to a relatively small

number of the most important object classes—such as food.

A final note is that our analysis did not find evidence for selec-

tive neural responses to several visual features and categories for

which ventral visual pathway specializations have been proposed

in the past, including animals45 (which are well represented in the

stimulus set) and stubby-shaped and spikey-shaped objects.46

We also did not see evidence for previously proposed selectivities

for small inanimate objects45,47 or tools,48,49 although these se-

lectivities may be located more on the lateral than ventral surface

of the brain, outside the search window used here. Of course,

there are many reasons why selectivities that exist in the brain

might not be detected using fMRI, but the failure of previous

findings from fMRI to emerge from the current analysis raises

questions about whether those selectivities might be better ac-

counted for by the components found here.50

In sum, our hypothesis-neutral investigation on the ventral vi-

sual pathway reveals neural populations selective for faces,

scenes, bodies, text, and food. The fact that these selectivities

emerge from a hypothesis-neutral analysis, across multiple

largely non-overlapping sets of images, indicates that they

reflect not just the capricious interests of researchers in the

past but rather constitute dominant features of the functional or-

ganization of the ventral visual pathway. Further, the novel selec-

tivity for food reported here raises fascinating questions about its

developmental origins, connectivity, and behavioral conse-

quences. Another important open question is whether this neural

population represents the mere presence of food, or its familiar-

ity, appeal, or caloric or nutritive content. This new finding further

shows that selective neural responses in the ventral visual

pathway arise not only for perceptually homogeneous categories

that may reflect confluences of overlapping visual feature

maps51 but also categories that are visually quite heteroge-

neous, especially if exemplars of that category require special-

ized computations for their discrimination38 and engage our

frequent and abiding interest.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

fMRI dataset of responses in 8 subjects to

9,000-10,000 stimuli, Allen et al.1
Natural Scenes Dataset1 http://naturalscenesdataset.org/

fMRI dataset of responses in 4 subjects to

�5,000 stimuli

BOLD5000 v218,19 https://bold5000-dataset.github.io/

website/download.html

ImageNet dataset ImageNet: A large-scale

hierarchical image database16
https://www.image-net.org/challenges/LSVRC/

MSRA Image Set: Dataset used for extracting

color statistics (object color probability)

Microsoft Research Asia, MSRA12 https://neicommons.nei.nih.gov/#/

objectcolorstatistics

Software and algorithms

Pre-trained AlexNet AlexNet Model13 https://pytorch.org/hub/pytorch_vision_alexnet/

OpenAI Clip Model OpenAI Github release15 https://github.com/openai/CLIP

NIMFA package Python library https://github.com/mims-harvard/nimfa

Pycortex Jack Gallant lab at UC Berkeley https://github.com/gallantlab/pycortex;

https://doi.org/10.3389/fninf.2015.00023

Other

Downing Stimuli Paul Downing, Kanwisher lab

(P. Downing and N. Kanwisher, 1999,

Cogn. Neurosci. Soc., poster)

N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for code and resources should be directed to and will be fulfilled by the lead contact, Meenakshi

Khosla (mkhosla@mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The paper analyzed existing, publicly available data. The original dataset on which the component decomposition was per-

formed is listed in the key resources table and is available as of the data of publication at: http://naturalscenesdataset.org/.

d All original code has been deposited at this github repository: https://github.com/mk2299/ComponentModeling.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Natural scenes dataset
A detailed description of the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org) is provided in the original study that

collected the dataset (Allen et al.1). Briefly, the NSD contains measurements of fMRI responses from 8 participants (S1-8), who

each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 trials) over the course of 30–40 scan sessions. Subject de-

mographics are as follows: S1:male, age 30; S2: female, age 28; S3: female, age 29; S4: female, age 27; S5: female, age 32; S6:male,

age 23; S7: female, age 24; S8: female, age 19. Scanning was conducted at 7T using whole-brain gradient-echo EPI at 1.8-mm res-

olution and 1.6-s repetition time. Images were taken from the Microsoft Common Objects in Context (COCO) database,26 square

cropped, and presented at a size of 8.4� x 8.4�. A special set of 1,000 images were shared across half the subjects with full repetitions

(participant NSD IDs: 1,2,5,7) and a subset of these (515 images) were shared across all 8 participants. The remaining images were

mutually exclusive across subjects. Images were presented for 3 s with 1-s gaps in between images. Subjects fixated centrally and

performed a long-term continuous recognition task on the images. The fMRI data were pre-processed by performing one temporal
e1 Current Biology 32, 1–13.e1–e9, October 10, 2022
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interpolation (to correct for slice time differences) and one spatial interpolation (to correct for head motion). A general linear model

was then used to estimate single-trial beta weights. Cortical surface reconstructions were generated using FreeSurfer, and both vol-

ume- and surface-based versions of the beta weights were created.

BOLD5000
We also analyzed another publicly available large-scale dataset, namely, the BOLD5000 dataset.18,19 This dataset comprises BOLD

responses from four participants (CSI1-4), while they each viewed nearly 5,000 natural images, though most images had only

single repetitions. Subject demographics are as follows: CSI1: male, age 27; CSI2: female, age 26; CSI3: female, age 24; CSI4:

female, age 25.

METHOD DETAILS

Data selection criterion and preprocessing
Natural scenes dataset

In this paper, we used the 1.8-mm volume ‘nativesurface’ preparation of the NSD data and version 3 of the NSD single-trial betas

(betas_fithrf_GLMdenoise_RR). We analyzed responses only to images that were seen three times in the participant in question.

This leads to 10,000 images and corresponding brain measurements in Phase I subjects (NSD IDs: 1, 2, 5 and 7) and 5,445 images

and corresponding brain data in Phase II subjects (NSD IDs: 3, 4, 6, 8).

We averaged single-trial betas across the 3 repetitions after z-scoring every voxel separately within each scan session to create our

voxel responses. This within-scan normalization was performed to account for differences in mean percent signal change (PSC)

across scan sessions, which may arise due to incidental variability in global BOLD signals.

We extracted ventral visual stream voxels by using the streams atlas provided in the native space of each subject with NSD. Briefly,

this ROI collection reflects large-scale divisions of the visual cortex into primary visual cortex and intermediate and high-level ventral,

lateral and dorsal visual areas. These were manually drawn for each subject by NSD curators and were based on the voxel-level reli-

abilitymetrics. For this study, we extracted the ROImask corresponding to the ‘higher-level ventral stream’ label. This ROIwas drawn

to follow the anterior lingual sulcus (ALS), including the anterior lingual gyrus (ALG) on its inferior border and to follow the inferior lip of

the inferior temporal sulcus (ITS) on its superior border. The anterior border was drawn based on the midpoint of the occipital tem-

poral sulcus (OTS). As shown in Figure 1A, it is very broad (�7,000-9,000 voxels per subject).

To make the data matrix suitable for NMF so that it contains all positive entries, we perform a baseline shift of voxel responses by

subtracting the minimum z-scored response of each voxel (across all stimuli) from its responses to all stimuli.

BOLD5000

In this study, we analyzed the release 2.0 of the BOLD5000 data that integrates custom hemodynamic response function estimation

andGLMdenoising (data version descriptor: TYPED-FITHRF-GLMDENOISE-RR). Here, we restrict our focus to responses for stimuli

that had food/no-food annotations in the BOLD5000 dataset, namely, the MS-COCO images. This includes BOLD activations for the

shared set of 1,000 images viewed by all NSD participants and a novel set of 412 images that were unique to BOLD5000 and were

viewed at least once by each of the BOLD5000 participants.

Independent replication with held-out subjects data
The hypothesis that the ventral visual pathway contains a neural population that responds selectively to food was formulated based

on analyses of the data from four participants in Phase 1 (NSD participants 1,2,5,7), before hypotheses and analysis methods were

registered on OSF, and then tested on the held-out data in Phase 2 (NSD participants 3,4,6,8).

Only the top few images for the 5 most inter-subject consistent components were visually inspected to ascribe semantic cate-

gories to components. The same top 5 components (with top images respectively selective for faces, scenes, food, text, and bodies)

were obtained in the Phase 2, confirming reproducibility of our findings and allowing us to combine responses across the different

phases. This apparent category selectivity of each of the top 5 components was subsequently rigorously assessed using quantitative

measures based on salience ratings, as described below.

Online behavioral experiment
In an online experiment, we collected subjective salience ratings fromAmazonMechanical Turk for the 1,000 images viewed by all the

Phase I participants. Among these images, 515 images were also viewed by all Phase II participants with three repetitions. In this

experiment, participants were asked to rate the salience of each of the 5 categories that seemed to be intuitively represented in

the top images for each component, namely, scenes, faces, bodies, text, and food. Specifically, participants were given the following

task: ‘Rate how prominent [category] is within each image’ and were instructed to provide a rating on a scale of 0 to 9. Each partic-

ipant completed salience ratings for one category over a series of 220 images and we obtained 5 ratings per category (from 5 par-

ticipants) and averaged the ratings across participants to get an overall measure of the salience of each category for each image.

Salience ratings for scenes were odd, presumably because most natural images have some kind of scene context, and participants

were unsure what we meant. Therefore, for the scene category only, we instead asked two experts in scene-selective cortex who

were uninvolved in the study to rate their prediction for how strongly the image would drive the scene-selective cortex.
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Affective ratings from NSD-meadows behavioral dataset
Valence and arousal ratings were obtained from the NSDMeadows behavioral dataset which was released along with the NSD data-

set (Further details provided in Allen et al.1). These ratingswere released for a total of 100 images from the shared image set viewed by

all NSD participants.

Sampling matched food and non-food stimuli
We identified pairs of images (one food and one nonfood) from the 5,445-10,000 image set viewed by each participant that produce

similar activations in the last convolutional layer (‘conv5’) of an AlexNet13 pre-trained on ImageNet16 categorization. This matching

analysis was performed on the entire image set of each participant at the subject-level (not just shared images), since having a larger

stimulus set increases the chance of finding a stronger control pair. This computational matching procedure yielded 20-40 image

pairs per participant. Mean food-non food similarity score, computed as the correlation between the features in the conv5 layer

for the food image and the corresponding non-food image, across all pairs was thus very high (mean = 0.55, s.d. = 0.09); importantly,

all pairs had a similarity score > 0.33. This was further substantially greater than the pairwise similarity among all the food images

(mean = 0.16, s.d. = 0.17) and non-food images separately (mean = 0.11, s.d. = 0.18). Visual inspection further confirmed that these

matched food and non-food images contain similar visual features like similar colors and textures (example pairs shown in Figure 3C).

Sampling diverse subsets of food and non-food stimuli
We selected diverse subsets of food and non-food stimuli that maximally span the representational space of different layers of a pre-

trained CNN, such that the images within each subset are substantially more dissimilar (in terms of the average pairwise distance

computed in the representational space of the corresponding layer) than what would be expected if the images were drawn at

random from the respective set. The images were selected greedily to maximize the distance of each image with its closest neighbor.

The procedure is outlined as follows: for each layer l,

(i) we first randomly sample a food image,

(ii) we then select the next image from the set of all food images viewed by each participant (n=10,000 in Phase 1 and 5,445 in

Phase 2) as the image which has the largest correlation distance (1-r) to its closest neighbor among the already selected food

images, where the distance is computed between the image features extracted at layer l and

(iii) we repeat (ii) until we get the desired number of images (n=50).

The same procedure is repeated for the set of non-food images aswell to get n=50 non-food images. These selected images are so

diverse that a linear classifier trained to discriminate between these food and nonfood images using the features of the corresponding

layer l performs at chance (never exceeding 53% across all layers), presumably because there is no remaining simpler visual char-

acteristic shared by stimuli within the two subsets that a classifier can latch onto.

Curated subset of Natural Scenes Dataset with balanced categories
To test whether a high proportion of exemplars of any category in the dataset might be sufficient for a component to emerge that

responds selectively to that category, we sampled a subset of images with a fixed number of examples from each of 9 categories.

These categories were selected because there were enough images in each subject belonging to those categories and include the

following: face, food, clock, airplane, elephant, giraffe, horse, truck, motorcycle. Importantly, we chose an equal number of stimuli for

each of these categories within each subject in this subset (although this number varied slightly across subjects because each sub-

ject saw different images, n=197, 207, 182, 191 per category for Phase 1 participants 1, 2, 5 and 7, respectively). The food images in

this subset were drawn so that they are maximally heterogenous (dissimilar amongst themselves) following the procedure for sam-

pling diverse subsets described above.

Sampling food and non-food stimuli for the food contrast experiment
We selected a subset of food and non-food images from the shared set of 515 images viewed by all 8 NSD participants. We selected

all images that had a food salience rating > 4 for the ‘food’ category and sampled an equal number of non-food images (food salience

rating = 0), yielding 49 food and non-food images. These images and their corresponding brain responses were used to emulate a

food contrast experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Component modeling
A Bayesian Matrix Factorization approach for the analysis of large-scale fMRI recordings

We model the data matrix (voxels x images) as the product of two lower rank matrices. The first matrix (called the response profile

matrix henceforth) encodes the response profiles of each component (‘neural populations’) to all images and the second matrix

(called the component by voxel weight matrix) specifies the relative contribution of all voxels to each component. We chose NMF

for our matrix factorization algorithm for several reasons. First, PCA/ICA based approaches do not yield ‘‘signed’’ components,

i.e., negative and positive weights are treated equivalently. Initial pilot analyses of our data using the PCA/ICA approach of
e3 Current Biology 32, 1–13.e1–e9, October 10, 2022



ll

Please cite this article in press as: Khosla et al., A highly selective response to food in human visual cortex revealed by hypothesis-free voxel decom-
position, Current Biology (2022), https://doi.org/10.1016/j.cub.2022.08.009

Article
Norman-Haignere et al.8 revealed single components with both positive and negative responses and voxel weights which couldn’t be

oriented (or flipped) such that the response and voxel weights predominantly have the same sign. Negative responsemagnitudes are

generally not consistent with neural responses in the ventral visual pathway, which usually increase after stimulus presentation, and

negative voxel weights violate our modeling assumptions about the voxel weight matrix representing the relative anatomical propor-

tions of each component in every voxel. Further, ICA requires the statistical independence of unmixed components and can fail in

practice when no linear demixing matrix is found, as can happen when there is significant spatial overlap between distinct neural

populations and independence is not achievable. NMF is better equipped to handle spatially overlapping signals in such cases,

and has beenmore effective in other neuroscience domains that rely on demixing of spatially overlapping components.52 Importantly,

NMF makes only minimal and biologically meaningful assumptions about the components by enforcing the basis functions to be

nonnegative. These considerations led us to favor an NMF-based approach over other decomposition techniques. Since choosing

the number of components is an important problem in NMF, we adopted a Bayesian NMF approach9 since it affords a principled way

of selecting the number of components based on likelihood (e.g., Bayesian Information criterion). For a comparison of the food selec-

tivity of the NMF-derived food component with the most food-selective PCA component and cluster (given by k-means clustering),

see Figure S7.

Mathematically, the Bayesian NMF algorithm models the data matrix D as,

D = RV + E;

where D is the images x voxels data matrix for every participant, R is the image x components (N x C) response profile matrix, V is

the components x voxels (C x V) voxel weight matrix and E is an images x voxels (N x V) residual matrix. In the Bayesian approach to

NMF, all parameters for (R, V, E) are stated in terms of their prior densities. For efficient inference, following Schmidt et al.,9 we choose

a zero mean normal residual matrix E with variance s2, and a normal data likelihood,

pðR;V ;EÞ � Pn = 1;::;N;v = 1;::;V N
�
Dn;v; ðRVÞn;v;s2

�
:

Further we assume that R and V are independently exponentially distributed with scales rn;c and gc;v,

pðRÞ � Pn = 1;::;N;c = 1;::;C rn;cexp ð � rn;cRn;cÞ ]ðRn;c > 0Þ
and pðVÞ � Pc = 1;::;C;v = 1;::;V gc;vexp
�� gc;vVc;v

�
]ðVc;v > 0Þ

The conditional probabilities of R and V thus have a rectified Gaussian distribution. Following Schmidt et al.,9 the prior for the

variance in E is assumed to have an inverse gamma distribution, resulting in an inverse-gamma conditional probability. Parameters

for (R, V, E) are optimized by sequentially drawing samples from these conditional densities using the Bayesian Markov Chain Monte

Carlo (MCMC) sampling method derived in Schmidt et al.9

Extracting robust components in individual subjects with a consensus approach

Like standard NMF, Bayesian NMF is also a stochastic algorithm sensitive to initialization and accurate initialization of the estimates is

critical. To get robust components, we run this algorithmN= 50 times on the datamatrix for each subject to get C=20 components per

run. We then perform a consensus NMF procedure inspired by Kotliar et al.53 to aggregate results from different runs of the NMF

algorithm into a single stable matrix factorization result. In this procedure, the estimated response profile matrices from each run

are concatenated across the component dimension to create an (images x NC) matrix where each column is a component from a

single run of the algorithm.We follow the same procedure as described in Kotliar et al.53 to get the consensus response profile matrix

(images x C) from this aggregated datamatrix. This consensus algorithm first isolates and removes unreliable components by running

an outlier detection procedure, enabling us to filter out components that are not replicable across runs. Next, the remaining compo-

nents over all runs combined are clustered (with C clusters) and the medians of these clusters are returned as the consensus (stable)

response profiles of the C components.

The final voxel weight matrix for each subject is then obtained by finding component indices in individual NMF runs that have the

highest correlation with each of the C consensus NMF component response profiles. The respective voxel weights for each index are

normalized (to sum up to 1) and then averaged across runs. This gives us the consensus voxel weights for each component.

Extracting components with high inter-subject consistency

The previous analysis yielded 20 components in each individual subject. Since we are interested in discovering the functional

organization structure shared across individuals, we next analyzed the one-to-one correspondence between these compo-

nents across subjects. To determine which of the resulting components for each participant are shared across participants,

we use the 1,000 images (or 515 images in the case of Phase II participants) that were viewed by all participants. Specifically,

we rank-ordered components based on the highest average inter-subject correlation in their response to the shared images.

Since there are 4 subjects in each phase of our analysis, we get 6 unique pairwise correlation values for every possible com-

bination of ordered component indices across the 4 subjects (20 x 20 x 20 x 20). The inter-subject correlation measure, called

‘inter-subject consistency’, is computed as the average of these 6 values. We first pick the component indices (i, j, k, l) that

yield the highest inter-subject consistency. We then repeat the same procedure on the (19 x 19 x 19 x 19) matrix after removing

the indices (i, j, k, l) and repeat this procedure until the inter-subject correlation drops significantly. As shown in Figure 1, this
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value drops sharply after a handful of components, and we restrict our analysis to the top 5 components which all demonstrate

an average inter-subject correlation value of 0.5 or greater. See also Figure S1.

Component selectivity analysis
Weperformed a correlation analysis (Pearson’s r) to quantify the extent of agreement between the responses of each component and

the salience ratings of their preferred category (as visualized in the top images) over all 515 images that were viewed by all partici-

pants. Component responses were first averaged across all 8 subjects before correlation computation (Figure 2). We further also

computed these correlations at the single-subject level using all stimuli for which the salience ratings were available (1,000 for Phase

I participants and 515 for Phase II participants), as shown in Figure S2.

Control analysis on the novel component
Response correlations with lower-level image-level properties

We computed the following image-level properties to assess their respective impact on driving Component 3’s responses (our alter-

native accounts for food selectivity). These properties include:

Color metrics:

(a) Saturation: Mean saturation of every image is computed after transforming the image from RGB to HSV space

(b) Brightness: Brightness is computed as the mean value across the ‘V’ channel after transforming the image from RGB to HSV

color space.

(c) Colorfulness: This metric is included to capture the perception of colorfulness. We compute the colorfulness metric for every

image based on the opponent color space representation discussed in Hasler and Suesstrunk.54

(d) Hues (Redness): The histogram of the hue channel is computed after binning the hue values across all spatial locations in

the image into 8 equally spaced radial bins. The top hue (among the 8 bins) that had the highest correlations with the

food-selective component’s response roughly corresponded to red hues. We thus included the hue values in this bin

in the subsequent partial correlation analysis while assessing the unique contribution of each metric in explaining this

component’s response.

(e) A color representational axis defined in Rosenthal et al.,12 called ‘Object-color probability’ is computed as the probability of a

given hue being a natural object in an image. Using the natural image database of over 20,000 images annotated with object

segmentation masks (data curated by Microsoft and further annotated and analyzed in Rosenthal et al.12), we computed the

object probability for each color using the procedure described in Rosenthal et al.12 as follows: (i) Each image is first encoded

in the cylindrical representation of the Lu’v’ chromaticity space, namely the Hue-Chroma-Luminance color space (ii) Number

of natural object and background pixels that fall within each color bin (from 240 colors bins at 24 equally spaced hue and 10

equally space chromas values) are then computed separately using the segmentation masks of natural objects. (ii) The object

probability of each color is then derived as the number of pixels having that color in natural objects divided by the number of

pixels having the same color in either natural objects or background. Once the probabilities are estimated, we compute the

mean object color probability for each NSD image as the average of the probability over all color bins weighted by the number

of pixels in the image that fall within each color bin.

Texture:

Weuse entropy as a loose local statistical measure for texture. Entropy (E) is computed as the Shannon’s entropy of the grayscaled

version of every image.

E = �
X

pk log pk

where pk is the probability of pixels to have a grayscale intensity value of k.

Curvature index:

Weused an image-computable curvature index to estimate the average curvature of contours in every image (as implemented by Li

and Bonner55). This model convolves the grayscale version of each stimulus with a curvature filter bank with 176 different filters

(16 orientations and 11 levels). Each filter in this bank functions as a curved contour detector with a specific orientation and curvature

level. The grayscale image is also fed to an edge detection algorithm to find the edge pixels in each image. The overall curvature index

is finally estimated by taking the average curvature over all the edge pixels in the image.

To quantify the relationship between these image-computable properties and Component 3 responses, we performed two

analyses:

Correlation analysis. Wemeasured the relationship between each of the above variables and the responses of Component 3 to the

shared image set using Pearson’s correlation coefficient.

Partial correlation analysis. We also performed a partial correlation analysis to assess the unique variance explained by

each of the above image-level metrics in the responses of Component 3. We computed the correlation of the residuals resulting

from a linear regression of all the above variables individually and food-salience ratings on the responses of Component 3

(the food-selective component). For food, we partialled out the effect of all the above confounders while computing the partial

correlation.
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Analysis on computationally matched food and non-food pairs

We identified pairs of images (one food and one nonfood) from the 5,445-10,000 image set viewed by each participant that produce

similar activations in the last convolutional layer (‘conv5’) of an AlexNet13 pre-trained on ImageNet16 categorization, as described

above. We performed a paired t test to compare the responses of Component 3 to these food-nonfood pairs, separately for each

participant. Mean responses of Component 3 to these matched stimuli (averaged across the food and non-food categories per sub-

ject) are further shown in Figure 3C.

Analysis on warm-colored non-food and cool-colored food stimuli

Since the partial correlation analysis revealed a low, yet significant correlation of Component 3 responses with the object color prob-

ability measure (which reflects the warm-cool color continuum), we performed a subsequent analysis by directly pitting food prefer-

ence against warm-color preferences. We sampled 50 food images from the lowest end of the object-color probability distribution

over all 5,445-10,000 images (bottom 15 percentile) per participant and sampled non-food stimuli from the highest end of this dis-

tribution (top 15 percentile). This resulted in cool-colored food stimuli and warm-colored non-food stimuli. We then compared the

responses of Component 3 to these two sampled subsets using an unpaired t test separately for each participant. Example food

and non-food stimuli from this selectively sampled distribution for one subject are shown in Figure 3D along with the distribution

of the selection measure (object-color probability) for food and non-food stimuli.

While the food images from this analysis visually appeared to be cool-colored, this sampling procedure, however, could result in

images where the ‘food’ itself is warm-colored since we are computing themean object-color probability across the entire image.We

thus conducted a subsequent analysis where we sampled 50 food stimuli such that the mean object-color probability over just the

food pixels (as defined using the food segmentation masks obtained from MS-COCO annotations26) was at the lower end of this se-

lection measure. This yielded images where the food itself was cool-colored. We repeated the statistical analysis by comparing the

responses of Component 3 to these two sampled subsets and again found that the Component 3 responds much more strongly to

food than non-food stimuli (Figure S3B). This strongly suggests that the food-selectivity of Component 3 overrides any selectivity for

warmer colors.

Analysis on diverse subsets of food and non-food stimuli

We selected diverse subsets of food and non-food stimuli that maximally span the representational space of different layers of

a pre-trained DNN, as described above. We then compared the responses of Component 3 to these two stimulus subsets

using an unpaired t test, separately for each layer and each participant. This helps us address whether food selectivity is driven

by only certain kinds of food images, which would indicate that it is not ‘food’ selectivity per se but rather a more restricted

notion that applies to only specific instances of food; or whether the selectivity even persists under conditions of wide visual

variability within food and within non-food images, which would in turn indicate that it is indeed ‘food’ selectivity construed

more broadly.

Measuring the relationship between affective features and responses of Component 3

On the subset of 100 images for which valence and arousal ratings were available (from the ‘nsdmeadows’ dataset), we computed

the correlation between the responses of Component 3 (averaged across subjects) and subject-averaged valence and subject-

averaged arousal ratings separately. For fair comparison, we also report the correlation between food salience ratings and Compo-

nent 3 responses on this small subset. The statistical significance of these correlations is assessed by computing the p value of the

obtained sample correlation coefficient for the null hypothesis of uncorrelation under the assumptions of a bivariate normal

distribution.

Analysis on curated Natural Scenes Dataset
To test whether a high proportion of exemplars of any category in the dataset might be sufficient for a component to emerge

that responds selectively to that category, we sampled a subset of images with a fixed number of examples from each of 9

categories, as described above. The question was whether we’d get equally selective components for other categories that

are in the same proportion as faces and food, which might suggest that the food-selective component could arise as an artifact

of the data bias in NSD. These categories are also more visually homogeneous than food (e.g. airplane). We quantified the

within-category visual similarity of images by computing mean pairwise correlations between the corresponding image features

in the last convolutional layer of a pre-trained CNN (layer conv5 of AlexNet trained on image categorization using ImageNet).

Distances computed in the feature space of trained CNNs (versus image space) are known to correspond well to perceptual

image similarity measures, and are widely used as ‘‘perceptual distance’’ metrics56,57; this metric is further also well-suited

to capture similarities in mid-level visual features like texture; thus, the average pairwise image distance metric computed in

this deep visual representational space for each category is likely to capture the perceptual homogeneity of that category (at

least, as represented in the NSD).

We repeated the Bayesian NMF analysis on this curated dataset. On this subset, the BIC criterion suggested 7 instead of 20 com-

ponents in each participant. We computed the selectivity of resulting components for each of the 9 categories using two indices: (i)

Correlation (Pearson’s R), where we computed the correlation of component responses to the curated stimuli with a binary vector

indicating whether the category was present/absent in the image over all stimuli and (ii) t-statistic, comparing the mean responses

of the component to the category in question, versus all other stimuli. For each category, we then computed the maximum selectivity

value based on either of the above indices over all 7 components, as reported in Figure 5.
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The top 2 components (based on their highest correlation with any of these category labels) in each participant were still faces and

food respectively. And the highest correlation of each remaining category with all the components was substantially lower than the

selectivity of the top 2 components for faces and food, respectively. This control analysis indicated that data bias (either a large

number of food images in NSD or some form of visual homogeneity among the food images within NSD) cannot explain the existence

of the food-selective component.

Analysis on the independent BOLD5000 dataset
We assessed whether food-selective responses can also be identified in other independent datasets beyond NSD. To test this, we

analyzed data from all 4 subjects in the BOLD5000 dataset. Importantly, the shared set of 1,000 images viewed by all Phase I NSD

participants were also viewed by all BOLD5000 subjects, with the exception of subject CSI4 who only viewed 594 shared images. We

used these overlapping images to localize the food component in the ventral visual stream of subjects CSI1-4. This localization pro-

cedure relies on inferring the voxel weights corresponding to Component 3 (the food-selective component) in new participants using

the response profile of Component 3 derived from NSD over the overlapping image set. In the non-negative matrix factorization

parlance, this amounts to inferring only one weight matrix (the components by voxel weight matrix), when the other matrix

(the response profile matrix) is known, subject to non-negativity constraints. Here, the latter is fixed to the Component 3 responses

averaged across NSD subjects for the overlapping image set (n=1,000 for CSI1-3 and n=594 for CSI4). Mathematically, given compo-

nent responses to N overlapping images derived from NSD asR (Nx1), and the data matrixD (N x V) containing the responses of all V

voxels to these N stimuli in a BOLD5000 subject, the non-negative voxel weights W (Vx1) for the component can be estimated by

minimizing the expression,

kR�DWyk22 subject to wi > 0 for all i = 1; :::;V

This optimization problem is convex and the optimal voxel weights Ŵ can be derived following the standard routine for solving the

non-negative least squares problem based on the active set algorithm.58 With these inferred voxel weights, we can then estimate the

component responses to novel stimuli unique to the BOLD5000 dataset (DU) as follows,

RU = DU
cWy

We restrict our focus to stimuli that had food/no-food annotations in the BOLD5000 dataset, namely, the MS-COCO images. We

excluded all MS-COCO images that were viewed by any of the NSD participants from this analysis. We then computed the

food-selectivity of estimated component responses to these stimuli as the correlation (Pearson’s R) between component

responses and a binary vector indicating whether the image contained food or not. These images were further rank-ordered by their

response magnitude and colored by food labels for ease of response visualization. We further performed a control analysis by

running the component localizer in other areas of the visual cortex, including early visual areas as all intermediate and high-level

lateral and parietal areas, and computing the food-selectivity of the estimated component in each case. These ROIs, including

the ventral visual streamROI as used above, were defined by co-registering the streams atlas fromNSD to the BOLD5000 anatomical

space.

Quantification and statistical analysis on all component voxel weights
Agreement with functional localizer statistics

Once the voxel weights are projected back into anatomical coordinates (in the native space of each NSD participant), we can also

compute the quantitative agreement between these voxel weights and the voxel-level selectivity for different categories as estimated

with the independent functional localizer runs in NSD (fLOC). We computed the correlation between the voxel weights of each

component against the voxel-wise t-statistic of the component’s preferred category as obtained with the fLOC experiments by con-

trasting responses to each category against all other stimuli. For e.g. the face component voxel weights were correlated against the

t-value contrasts for responses to the domain of faces over responses to all other stimuli. Note that food was not defined as a domain

in the NSD fLOC experiment, since a selectivity for food in the visual cortex had never been described before; thus, we cannot

perform a similar analysis for Component 3.

Anatomical similarity between saturation-responsive visual cortex and Component 3

The anatomical distribution of Component 3 appeared to overlap with previously studied color-biased regions.59 To quantify the

similarity between the anatomy of saturation-responsive regions and Component 3, we conducted a subsequent analysis. We first

extracted non-food images (food salience rating of zero) from the shared set of 515 images viewed by all participants. We next

computed the correlation between the saturation of all non-food stimuli (n=356) and the responses of all VVC voxels to the corre-

sponding stimuli in order to construct a saturation-responsive voxel weight map per participant. Relationship between food selec-

tivity and saturation-responsiveness in the ventral visual pathway is finally assessed by correlating this saturation-responsive weight

map with the voxel weight map for each of the 5 components. These correlations were transformed to z-scores using Fisher’s

z-transformation for statistical comparisons.

Quantifying the spread of voxel weights per component

We further characterized the distribution of voxel weights for each component using quantitative measures of sparseness and sta-

tistical measures of skewness and kurtosis.
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(a) Skewness of the voxel weight distribution wc for each component c is computed using the Fisher-Pearson coefficient of

skewness, calculated as:

Skewness (wc) = m3

m
3=2

2

, wherem2 andm3 are respectively the second and third sample central moments of the voxel weightswc for

each component c. The rth sample moment mr are computed using the standard formula as,

mr =
1

N

XN

i = 1
ðwc;i � wcÞr ;

where wc;i is the voxel weight for component c in voxel i and wc is the mean component weight across all N voxels. This measure is

computed separately for the voxel weights per component and per participant where different participants have differing numbers of

voxels (N�6,500-9,000).

For a gaussian distribution (perfect symmetry), the skewness is zero; positive values indicate a rightward skew with more voxels

that have higher weights on the component whereas negative values point towards a leftward skew.

(b) Sparseness in the voxel weights of each component, wc with N voxels is computed using the definition of Hoyer21 as,
Sparseness ðwcÞ =

ffiffiffiffi
N

p �
PN

i = 1
jwc;ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i = 1
w2
c;i

q
ffiffiffiffi
N

p � 1
;

Sparseness is 1 when only a single voxel has a non-zero weight on the component and is zero when all voxel weights are equal

(non-sparse distribution). Values between 0 and 1 indicate intermediate levels of sparsity, interpolating smoothly between the two

extremes.

(c) (Excess) Kurtosis of the voxel weight distribution for each component c is computed following Fisher’s definition, as the ratio of

the fourth sample central moment of the voxel weights wc and their second central moment squared,
Kurtosis ðwcÞ =
m4

m2
2

� 3;

Here, 3 is subtracted to provide a simple comparison to the Gaussian distribution which yields a kurtosis of zero under the above

definition. Higher values (above 0) indicate a super-gaussian or heavy-tailed distribution indicative of sparsity.

Quantifying the inter-subject heterogeneity of voxel weights per component

We transformed the voxel weight maps from the native space of each participant to a common anatomical space (MNI 1mm) in order

to measure inter-subject alignment in the anatomy of each component. For each component, this alignment was measured using

correlation (Pearson’s R) between the co-registered weight map of each participant and the average voxel weight map for that

component across the other 7 participants (averaged across all 8 folds).

Food contrast experiment
Weselected subsets of 49 ‘food’ and 49 ‘non-food’ images from the shared set of 515 images, as described above.We computed the

food contrast on each participant individually using the conventional t-statistic comparing responses to food v/s non-food stimuli in

this stimulus set, yielding values that quantify how significantly higher the response is to food stimuli compared to non-food stimuli.

We did not restrict this contrast analysis to the ventral visual stream and performed this comparison on all voxels responsive to the

NSD experiment (using the ’nsdgeneral’ atlas released with the NSD). We then registered the contrast of each subject to the MNI

space (1mm) and computed the average contrast map across all 8 NSD participants (shown in Figure 7D) for comparison with the

Component 3 voxel weight map.

Encoding model of the inferred components
We used a CLIP-ResNet5015 convolutional neural network (CNN) model to predict the response of the inferred components from the

NMF analysis. The encoding model was designed to map the features from a given layer of the CNNmodel to the inferred responses

from the component analyses (see Ratan Murty et al.14 for more details). Importantly, we fixed all the hyper-parameters of the model

based on the data from Phase 1 subjects. Specifically, we fixed themodel layer (block4-1-conv2). Themodel features corresponding

to the images used in the experiment were extracted for this layer. Next, wemapped the extracted features to the inferred component

responses of Phase 2 subjects via a ten-fold regularized ridge-regression (the ridge parameter fixed at 0.01). Even though the model

was trained on data from Phase 2 subjects, it was evaluated on data from Phase 1 subjects (thus cross-validating on both subjects

and images). Themodel prediction accuracy was calculated as the Pearson correlation between the predicted response of themodel

(over folds) and the observed response. Our CLIP-ResNet50 encoding model is image-computable and can be used to predict the
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observed responses for images not included in the NSD. We obtained predictions for: 1) The large publicly available ImageNet data-

set which has diverse stimuli from 1000 stimulus categories (N = 1,281,167 images). 2) Black and white versions of the same 1.2M

images as in 1, 3) color and grayscale versions of the texture-matched Downing pairs. These images were previously used to test and

reject the food selectivity hypothesis in the brain (P. Downing and N. Kanwisher, 1999, Cogn. Neurosci. Soc., poster). Predictions

were obtained for both color and grayscale versions of these images. (Figure 4). 4) Handpicked images that were matched across

a number of stimulus features. See Figure 4 for examples. Predictions were obtained for both color and grayscale versions of these

images (Figure 4).
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