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Hsieh PJ, Colas JT, Kanwisher N. Spatial pattern of BOLD fMRI
activation reveals cross-modal information in auditory cortex. J Neu-
rophysiol 107: 3428–3432, 2012. First published April 18, 2012;
doi:10.1152/jn.01094.2010.—Recent findings suggest that neural rep-
resentations in early auditory cortex reflect not only the physical
properties of a stimulus, but also high-level, top-down, and even
cross-modal information. However, the nature of cross-modal infor-
mation in auditory cortex remains poorly understood. Here, we used
pattern analyses of fMRI data to ask whether early auditory cortex
contains information about the visual environment. Our data show that
1) early auditory cortex contained information about a visual stimulus
when there was no bottom-up auditory signal, and that 2) no influence
of visual stimulation was observed in auditory cortex when visual
stimuli did not provide a context relevant to audition. Our findings
attest to the capacity of auditory cortex to reflect high-level, top-down,
and cross-modal information and indicate that the spatial patterns of
activation in auditory cortex reflect contextual/implied auditory infor-
mation but not visual information per se.

hierarchical inference; feedback; top-down modulation

RECENT EVIDENCE HAS SHOWN that early sensory cortex encodes
not only low-level sensory properties of a stimulus, but also
mid- to high-level perceptual information. For example, early
visual cortex has been implicated in figure-ground discrimina-
tion (Heinen et al. 2005; Huang and Paradiso 2008; Hupé et al.
1998), shape and size perception (Fang et al. 2008; Murray et
al. 2002, 2006), lightness constancy (Boyaci et al. 2007),
attentional modulation (Datta and DeYoe 2009; Fischer and
Whitney 2009; Ress et al. 2000), tracking stimulus reward
history (Serences 2008), conscious perception (Hsieh et al.
2006; Hsieh and Tse 2009, 2010a,b), and even identification of
a stimulus (Hsieh et al. 2010). Similarly, responses in early
auditory cortex are modulated by attention (Alho et al. 1999;
Grady et al. 1997; Hillyard et al. 1973; Jäncke et al. 1999;
Lipschutz et al. 2002; Näätänen 1990; O’Leary et al. 1997;
Tzourio et al. 1997; Woldorff et al. 1993; Woldorff and
Hillyard 1991; Woodruff et al. 1996) and reflect cross-modal
processing (Calvert et al. 1997; Calvert and Campbell 2003;
Foxe and Schroeder 2005; Ghazanfar and Schroeder 2006;
Meyer et al. 2010; Schroeder and Foxe 2005). For instance,
responses in auditory cortex can be affected by visual or
somatosensory stimuli that accompany auditory stimulation in
both humans (Bernstein et al. 2004; Besle et al. 2004, 2008;
Calvert et al. 1997; Giard and Peronnet 1999; Foxe et al. 2000,
2002; Gobbelé et al. 2003; Lehmann et al. 2006; Lütkenhöner
et al. 2002; Martuzzi et al. 2007; Molholm et al. 2002; Murray

et al. 2005; Pekkola et al. 2005; van Atteveldt et al. 2004; van
Wassenhove et al. 2005) and monkeys (Brosch et al. 2005; Fu
et al. 2003; Ghazanfar et al. 2005; Kayser et al. 2007, 2008,
2009, 2010; Lakatos et al. 2007; Schroeder et al. 2001; Schr-
oeder and Foxe 2002; Schwartz et al. 2004).

Despite this ample evidence for cross-modal influences on
responses in auditory cortex, the sources of these influences
remain poorly understood. Here, we investigated the nature of
one such case of cross-modal modulation. A recent study by
Meyer et al. (2010) presented visual stimuli silently and
showed that activity in auditory cortex differentiated among
various sound-implying animals, musical instruments, and ob-
jects. However, this study was limited by its inability to
determine whether the pattern information in auditory cortex
actually reflects implied sound information or merely visual
information. Here, we tested whether the representation of a
stimulus in auditory cortex reflects contextual/implied auditory
information or visual information per se.

Our experiment was conducted with functional MRI (fMRI)
and included three conditions: silence, action control, and
sound. In the silence condition, we presented different visual
stimuli that implied similar knocking sounds. Our prediction
was that the spatial pattern of blood oxygen level-dependent
(BOLD) activation in auditory cortex would represent these
visual stimuli differently. To distinguish further whether this
pattern information reflects contextual/implied auditory infor-
mation or visual information per se, we presented actions that
do not imply sounds in the action control condition. If the
pattern information observed in the silence condition reflects
implied auditory information, we should expect the pattern
information to be absent for the action control condition.
However, if the pattern information observed in the silence
condition reflects purely visual information, the pattern analy-
sis should reveal information for the action control condition as
well. Moreover, to determine whether this top-down signal is
robust enough to persist with the addition of a salient bot-
tom-up signal, we paired the visual stimuli from the silence
condition with identical sounds in the sound condition.

METHODS

Participants. Ten volunteers between 18 and 30 yr old participated
in the study. All of them were healthy and right-handed and had
normal or corrected-to-normal visual and auditory acuity. All subjects
gave informed written consent within a protocol passed by the
Duke-NUS Graduate Medical School or the Massachusetts Institute of
Technology Committee on the Use of Humans as Experimental
Subjects and were compensated with 60 dollars for their participation.

Experimental procedures. Scanning was performed at the Mc-
Govern Institute at the Massachusetts Institute of Technology in
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Cambridge, MA, with the Athinoula A. Martinos Imaging Center 3T
Siemens Trio scanner. fMRI runs were acquired using a gradient-
echo, echo-planar sequence [repetition time (TR) � 3 s, echo time
(TE) � 30 ms, 2 � 2 � 2 mm � 20% spacing]. Forty-six slices were
collected with a 32-channel head coil. Slices were oriented roughly
perpendicular to the calcarine sulcus and covered the whole brain.

Subjects viewed blocks of six 2-s color videos that corresponded
to the three experimental conditions with two sequences of visual
stimuli each (Fig. 1 and supplementary material available online at the
Journal of Neurophysiology web site). The agent in the video, which
was either a woodpecker or a human hand, distinguished the visual
stimuli. Videos from the first condition (sound) visually depicted a
sequence of three knocking actions that were accompanied by a
sequence of generic knocking sounds in lieu of the original audio
tracks, such that auditory stimulation was identical across visual
stimuli. The intensity of the sound was subjectively selected by each
subject at the beginning of the experiment to be as loud as possible
without causing discomfort. Videos from the second condition (si-
lence) included the visual stimuli from the sound condition without
any auditory stimulation. Videos from the third condition (action
control) depicted the same two agents in motion without performing
any knocking actions and also without any auditory stimulation.

Appearing at the beginning of a 3-s TR, the 2-s videos had a
resolution of 960 � 540 pixels and subtended 12.25 � 6.75° of visual
angle against a black background. A white fixation cross was always
present in the center of the display and subtended 0.75 � 0.75°. Seven
repetitions of a given condition-stimulus pair occurred within each of
the 12 21-s blocks that were interleaved among 15-s fixation periods
within each run (Fig. 2). Six seconds of fixation at the beginning and
end of a run were added to yield a total duration of 429 s for each run.
For each video presentation, the overall luminance of the video was
randomly selected to be 25% greater or lesser than its original value.
Subjects were required to press 1 of 2 buttons on a response box
(2-alternative forced choice) to indicate whether each individual 2-s
video appeared atypically bright or dim, and every subject’s perfor-
mance was near ceiling. The presentation order of the 6 condition-
stimulus pairs was randomized within each run. While being scanned,
all subjects completed between 9 and 11 runs.

ROI identification. Functional localization of the region of interest
(ROI) was based on three runs of a separate auditory localizer. It
consisted of 30-s blocks in which repeated 100-ms pure tones were

presented with an interstimulus interval of 400 ms while subjects
fixated. Conditions were defined by the three frequency ranges of the
blocks, namely low (340–870 Hz), middle (880–2,170 Hz), and high
(2,370–5,900 Hz). The frequencies of tones within each block in-
creased linearly with modulo 5.2 s, corresponding to slopes of 102,
248, and 679 Hz/s, respectively. For example, the first tone in a
low-frequency block was always 340 Hz, and the frequency increased
by 51 Hz for the next tone 500 ms later. If, at the end of a 5.2-s loop,
the frequency exceeded 870 Hz by x, it would be reset to 340 � x Hz
and looped again throughout a 30-s block. Since we did not find a
significant difference between the BOLD responses to any of the three
conditions, auditory cortex was defined bilaterally as the contiguous
regions in the vicinity of the superior and transverse (Heschl’s)
temporal gyri that responded significantly more robustly to auditory
stimulation, combined across the three conditions, than to background
noise alone (e.g., from the scanner; P � 10�12). ROI sizes ranged
from 177 to 432 voxels with a mean of 331.4 voxels and a standard
deviation of 70.7.

Data analysis. Data analysis was conducted using the fMRI software
package FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and MATLAB
(The MathWorks). The preprocessing steps for both the localizer and
experimental runs included motion correction and intensity normal-
ization. Preprocessing for the localizer runs also included spatial
smoothing using a Gaussian kernel with a full-width at half-maximum
of 6 mm. A gamma function with � � 2.25, � � 1.25, and � � 2 was
used to estimate the hemodynamic response for each condition in both
the experiment and the localizer.

Fig. 1. Stimuli. Subjects viewed blocks of 6 2-s color videos that corresponded to the 3 experimental conditions with 2 sequences of visual stimuli each
(woodpecker agent and hand agent). Videos from the 1st condition (“sound”) visually depicted a sequence of 3 knocking actions that were accompanied by a
sequence of generic knocking sounds in lieu of the original audio tracks, such that auditory stimulation was identical across visual stimuli. Videos from the 2nd
condition (“silence”) included identical visual stimuli without any auditory stimulation. Videos from the 3rd condition (“action control”) depicted the same 2
agents in motion without performing any knocking actions and also without any auditory stimulation.

Fig. 2. Experimental design. Appearing at the beginning of a 3-s scanning
repetition (TR), the 2-s videos were presented in front of a black background
and behind a centered white fixation cross that was always present. Seven
repetitions of a given condition-stimulus pair occurred within 21-s blocks that
were interleaved among 15-s fixation periods within each run. The presentation
order of the 6 condition-stimulus pairs was randomized within each run.
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In addition to a standard univariate analysis of the mean BOLD
response to each condition, a correlational analysis was performed on
the �-weights between visual stimuli for each condition in each voxel
with a standard multivariate pattern analysis method (Haxby et al.
2001). Data were split into odd and even runs, and spatial patterns of
response were extracted from each subset of data for the six condition-
stimulus pairs. The patterns were first normalized, such that the mean
response in each voxel across the visual stimuli to be compared was
subtracted from the response to each stimulus for each half of the data
before the correlation values were calculated. Within each ROI, we
then computed the split-half correlations as Pearson correlation coef-
ficients between the normalized activity patterns in response to the
two sequences of visual stimuli for each of the three experimental
conditions, that is, sound, silence, and action control. These correla-
tions were computed for each subject and then averaged across
subjects by condition.

RESULTS

The results of the univariate analysis (Fig. 3) revealed
increased mean BOLD activation in auditory cortex for the
sound condition relative to baseline (P � 10�4) and to the
silence and action control conditions (P � 10�3). However, no
differential mean activation was observed between the silence
and action control conditions (P � 0.05).

The results of the multivariate pattern analysis (Fig. 4)
indicated that the spatial patterns of BOLD activation in audi-
tory cortex contained information that distinguished between
the visual stimuli (hand and woodpecker) for the silence
condition (P � 0.015). However, this was not the case for the
sound (P � 0.05) and action control conditions (P � 0.05).
Moreover, decoding accuracy for which visual stimulus was
presented in the silence condition was significantly greater than
decoding for the sound condition (P � 0.005) and the action
control condition (P � 0.039). These findings demonstrated
that 1) top-down information may dominate processing in
auditory cortex only when bottom-up auditory input is absent,
and that 2) there may be no such top-down information in
auditory cortex when the visual stimuli do not imply sound. As
such, these findings suggest that spatial patterns of BOLD
activation in auditory cortex do not reflect purely visual infor-
mation per se, but rather visually induced top-down infor-
mation.

DISCUSSION

Our results show that the spatial patterns of BOLD activa-
tion in auditory cortex reflected a cross-modal influence of
visual information when bottom-up auditory input was absent.
In contrast, no top-down information was found in auditory
cortex when the visual stimuli did not imply sound (i.e., in the
action control condition). These findings suggest that 1) the
activity being captured in the pattern of responses across
auditory cortex reflects high-level, top-down, and cross-modal
information, and that 2) stimuli from one modality (e.g.,
vision) that do not provide a context relevant to another
modality (e.g., audition) will not exert a cross-modal top-down
influence. Note, however, that we cannot completely rule out
the possibility of such top-down effects in the action control
condition insofar as top-down activity might simply be weaker,
less spatially consistent (i.e., requiring greater spatial resolu-
tion), or otherwise structured in a way that cannot be detected
with fMRI and multivariate pattern analysis.

Our data did not reveal any visually induced pattern infor-
mation for the sound condition when the bottom-up auditory
signal, which was identical across visual stimuli, was present.
One possible explanation is that modulatory top-down infor-
mation is overshadowed by the more robust bottom-up audi-
tory information. An alternative account is that top-down
modulatory signals might be assigned less weight or even
disappear altogether when bottom-up signals are strong and
unambiguous. Increased mean BOLD activation was observed
for the sound condition, however, indicating that the informa-
tion captured with multivariate analysis, which is encoded in
the spatial pattern of activation, is distinct from that captured
with univariate analysis, which is encoded in the overall
activation across voxels.

The difference in spatial patterns observed in auditory cortex
between visual stimuli in the silence condition is likely due to
some combination of contextual information and implicit au-
ditory imagery. For example, previous findings have shown
that auditory imagery activates secondary auditory cortex
(Bunzeck et al. 2005; Halpern et al. 2004; Yoo et al. 2001;
Zatorre and Halpern 2005) and that sound-implying visual

Fig. 3. Results of univariate analysis. Mean blood oxygen level-dependent
(BOLD) activation in auditory cortex was significantly greater for the sound
condition relative to baseline (P � 10�4) and to the silence and action control
conditions (P � 10�3). However, no differential mean activation was observed
between the silence and action control conditions (P � 0.05). Error bars
indicate standard errors of the means across subjects, and asterisks indicate
significance (P � 0.05).

Fig. 4. Results of multivariate pattern analysis. The spatial patterns of BOLD
activation in auditory cortex contained information that distinguished between
the visual stimuli for the silence condition (P � 0.015). However, this was not
the case for the sound and action control conditions (P � 0.05). Moreover,
decoding accuracy for which visual stimulus was presented in the silence
condition was significantly greater than decoding for the sound condition (P �
0.005) and the action control condition (P � 0.039). Error bars indicate
standard errors of the means across subjects, and asterisks indicate significance
(P � 0.05).
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stimuli can be decoded on the basis of activity in auditory
cortex (Meyer et al. 2010). However, it is worth noting that our
ROIs were mainly within Heschl’s gyrus and primary auditory
cortex. This possible discrepancy with work identifying the
neural correlates of auditory imagery in secondary auditory
cortex is likely due to some combination of the following.
First, primary auditory cortex may actually be involved in
imagery, but the information contained within this region could
only be detectable with pattern analysis. Second, the patterns of
responses to the silence condition may not be driven by
imagery at all, but rather by visually induced (audition-rele-
vant) contextual information. Little activity in secondary audi-
tory cortex is to be expected in either case, so determining the
validity of these possibilities and dissociating their contribu-
tions to our main results will require further research.

To conclude, our data show that 1) auditory cortex contained
information about visual stimuli when bottom-up auditory
input was absent, and that 2) no contextual top-down informa-
tion was observed in auditory cortex when the visual stimuli
did not provide a context relevant to audition. Our findings
attest to the capacity of early auditory cortex to be affected by
high-level, top-down, and cross-modal information and indi-
cate that the spatial patterns of activity in auditory cortex
reflect contextual/implied auditory information but not visual
information per se.
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