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ABSTRACT: The standard model for diffuse charge phenomena in colloid science, electrokinetics,
and biology is the Poisson−Boltzmann mean-field theory, which breaks down for multivalent ions
and large surface charge densities because of electrostatic correlations. In this paper, we formulate a
predictive continuum theory of correlated electrolytes based on two extensions of the Bazant−
Storey−Kornyshev (BSK) framework: (i) a physical boundary condition enforcing continuity of
the Maxwell stress at a charged interface, which upholds the contact theorem for dilute primitive-
model electrolytes, and (ii) scaling relationships for the correlation length, for a one-component
plasma at a charged plane and around a cylinder, as well as a dilute z:1 electrolyte screening a
planar surface. In these cases, the theory accurately reproduces Monte Carlo simulation results
from weak to strong coupling, and extensions are possible for more complex models of electrolytes
and ionic liquids.

■ INTRODUCTION

Electrostatic correlations can significantly affect the structure
and thermodynamic properties of the electrical double layer,1,2

resulting in qualitative differences from mean-field Poisson−
Boltzmann (PB) theory, such as like-charge attraction3,4 or
over-screening of surface charge. Critical applications in
biology, colloids, separations, or electrochemistry rely on or
operate in the regime where correlation effects are critical.
Numerous models have been proposed to capture electro-

static correlations, typically with a complicated mathematical
structure. Outhwaite derived a modified PB models to account
for the fluctuation potential of a single ion interacting with a
charged wall.5 The hypernetted chain approximation and mean
spherical approximation closure to the Ornstein−Zernike
equation involve solving integral equations involving the direct
correlation functions of bulk charged spheres6−9 for the
equilibrium structure. Further work based on classical density
functional theory determines equilibrium properties based on
the minimization of an integrodifferential free-energy func-
tional. Kierlik and Rosinberg implemented a model (termed
the bulk fluid model10) which captures correlations based on a
perturbative expansion of density with direct correlation
functions as an input from the mean spherical approximation.11

Voukadinova et al. analyzed the accuracy of two other related
density functional theories (reference fluid density,12 function-
alized mean spherical approximation,13 and bulk fluid11,14) in
comparison to Monte Carlo (MC) simulations, finding the
reference fluid density approach to be most accurate.10 These
theories implement the accurate fundamental measure theory
functional developed by Rosenfeld to describe excluded
volume effects.15,16 The additional electrostatic interactions
beyond mean field are included in the excess free energy

separately, without any modification to the mean-field
electrostatic part of the free energy.
While these approaches often produce accurate density

profiles, they can be involved to implement to a broad range of
applications, for different geometries or dynamic problems,
especially compared to the classical PB theory. To our
knowledge, they also have not yet been shown to recover
the correlated behavior of the counterion-only limit for
counterions of infinitesimal size. A simpler mathematical
structure could help with the application and interpretation of
electrostatic correlations to a wider class of problems in
physics, including electrokinetics, colloidal interactions, and
electrochemical transport/reactions.
Bazant, Storey, and Kornyshev (BSK) proposed a con-

tinuum framework to account for the nonlocal dielectric
permittivity of ionic liquids resulting from ion−ion correla-
tions17 with a simple mathematical structure, building on
intermediate coupling approximations of Santangelo18 and
Hatlo and Lue19 for the one-component plasma. The model
captures correlations based on expansions in terms of electric
field, rather than ion density, in the free-energy functional
which leads to a higher-order Poisson equation. In so doing,
the electrostatic correlations are included self-consistently in
the definition of the electrostatic potential whose gradient
determines the electrostatic force on an ion in the diffuse layer.
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The BSK theory provides a simple framework to predict charge
density oscillations and over-screening phenomena in a variety
of electrokinetic, electrochemical, biophysical, and colloidal
phenomena in electrolytes and ionic liquids. The equations
require a similar level of complexity to solve compared to the
PB theory, which allows them to be applied to a broad group
of applications. The theory was used to describe electro-
smotic20 and electrophoretic mobility21 reversals in multivalent
and concentrated electrolytes, as well as electroconvective
instabilities in ionic liquids.22 It was also applied to the
dynamics23−27 and electrosorption28−31 at electrochemical
interfaces for ionic liquids and concentrated solvent-in-salt
electrolytes, including storage32 and transport33 in nanoporous
media. Electrostatic correlations have a profound effect on
colloidal interactions,4,34,35 where they can induce like-charge
attraction in multivalent electrolytes, also predicted by the BSK
theory. The activity and solvation energy of electrolytes at high
concentration was also studied including the electrostatic
correlation effect36−40 as well as the extent of ion pairing in
confinement.41 Finally, the electrostatic correlations given by
the BSK theory were important in describing the conduction
through biological ion channels.42−46 Despite the numerous
applications, fundamental questions remain about the proper
boundary conditions and correlation length required to
complete the BSK theory.
Here, we show that the appropriate boundary constraint for

the higher-order Poisson equation is based on an interfacial
stress balance. With corrected boundary conditions, the BSK
theory becomes exact in the strong and weak coupling limits
for the one-component plasma, and agrees with MC
simulations in intermediate coupling. We also suggest scaling
relationships for the correlation length without steric
constraints in one-component plasma and in multivalent
electrolytes, for all the scenarios in Figure 1. We show how

the correlation length can have a simple physical interpretation
based on the correlation hole size of counterions at a charged
surface. Although generalizations are possible, we restrict the
analysis to a restricted primitive electrolyte with hard, spherical
ions of equal size in a constant permittivity, ε and medium and
smeared out surface charge density, qs, and neglect all
concentrated-solution effects, so as to isolate electrostatic
correlations.

■ THEORY
The BSK free energy functional is given by
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Here, g = (H − TS)/V is the enthalpy and entropy density, ρ is
the charge density, and ϕ is the electrostatic potential. For
simplicity, the free energy is truncated after the first correlation
contribution, although higher order terms can be considered.19

While the original authors performed a gradient expansion to
arrive at eq 1,17,20 the mathematical procedure is equivalent to
modifying the interaction potential between ions from
U r z z r( ) B

1= | |α βαβ
− to U r z z r( ) (1 e )r

B
1 / c= | | −α βαβ

− −| | .18,25

The modified interaction potential is solved in the mean-
field limit. Thus, the BSK theory is a phenomenological
correction to PB within the mean-field approximation, by
subtracting out interactions with smeared out charges within a
correlation length c, which should scale as the size of the
correlation hole. The modified Poisson equation results by
finding the extremal of the functional (δG/δϕ = 0)

( 1)c
2 2 2ε ϕ ρ∇ − ∇ = (2)

Equation 2 is a statement of Maxwell’s equation, ∇·D = ρ
where the displacement field is D = εÊ with a nonlocal
permittivity operator ( 1)c

2 2ε ε̂ = ∇ − applied on the electric
field, E = −∇ϕ, in a medium of constant permittivity, ε. PB
theory is recovered when 0c = . Note that the definition of
electrostatic potential itself has changed by adding the higher
order correlation terms, without violating Maxwell’s equation.
In other words, the potential that determines the energy of an
ion in the double layer must satisfy ∇·(εÊ) = ρ rather than ∇·
(εE) = ρ. In this way, the electrostatic correlation contribution
to the electrostatic energy for an ion is included self
consistently within the electrostatic framework, rather than
being added as additional corrections in the excess chemical
potential. An advantage of this approach is that the
electrostatic force per unit charge of an ion is captured directly
with E, meaning that the diffuse potential ϕ here could be
measured experimentally at an electrode (if also accounting for
the potential drop in the Stern layer).
The charge density at equilibrium, ρ = ∑izieci, will be

determined by the constraint that the electrochemical potential
for each ion is a constant at equilibrium. The electrochemical
potential can be defined as the variation of the Gibbs free
energy with respect to concentration,47 μi = δG/δci, or

kT c z eln( )i i i i i
exμ μ ϕ μ= + + +θ

(3)

where the first term is a reference value, the second term is the
ideal entropy contribution, the third term is the electrostatic
potential contribution, and the fourth term is the excess
electrochemical potential.
The first open question in applying BSK theory is that of

additional boundary conditions, beyond Maxwell’s equation n̂·
D = qs. Presumably, the boundary condition must take care of
the unaccounted short-range part of Uαβ. In the original BSK
formulation and all subsequent works, the boundary condition
of n̂·∇3ϕ = 0 was applied, with the justification that the
correlation term should disappear at the interface at the
distance of closest approach of the ions.20,21,24−29,33,34,41,42,48,49

The theory provided reasonable agreement to simulation and
experimental results for ionic liquids and multivalent electro-

Figure 1. Scenarios considered in the application of the BSK theory.
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lytes. However, the boundary conditions have not yet been
proved or validated systematically.
The second open question is the choice of correlation

length, which has been arbitrarily set to the Bjerrum length for
electrolytes,17,21 and the ion diameter for ionic liquids.17 The
theory is ultimately very sensitive to the choice of boundary
conditions and correlation length. Here, we analyze the
boundary condition in terms of a stress balance at the interface
and then validate c by comparison to MC simulations.
Interfacial Balance. Applying the Gibbs−Duhem equation

at constant temperature to the electrolyte and screened surface
charges, following ref 50, and neglecting the external
electrostatic work done on the system, gives dP = ∑ici dμi.
Taking the gradient in three-dimensional space and applying
the definition of the electrochemical potential

P kT c cf
i

i
i

i i
ex∑ ∑ μ− = ∇ = ∇ + ρ∇ϕ + ∇

(4)

where f is the total thermodynamic force. The first and third
terms on the RHS of eq 4 correspond to the gradient of
osmotic pressure, ∇Π. For an ideal solution, μi

ex = 0. The
gradient of the defined thermodynamic pressure is equivalent
to the divergence of the total stress tensor of the electrolyte
system, f = ∇·τ. The total stress tensor is composed of an
osmotic pressure component, Π and a Maxwell stress tensor,
τe, such that τ = −ΠI + τe. The component of interest in this
analysis, τe, can be defined by

E E E( )eτ ρ ε∇· = = ∇· ̂ (5)

in a constant ε medium. Plugging in for the charge density
using the BSK eq 2 and performing integration by parts, one
arrives at an expression for the Maxwell stress tensor for a fluid
with a nonlocal permittivity
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( ) ( )

( )
1
2

( )

e
2

c
2 2 2

2 2
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ÅÅÅÅÅÅÅÅ É

Ö
ÑÑÑÑÑÑÑÑ (6)

as derived in the Supporting Information. Although the above
equation was derived for constant ε and c, the expression is
identical if these parameters vary. For varying ε or c, the
Korteweg−Helmholtz force density must be included in the
electrostatic stress51

E E E
1
2

1
2

( ) ( )e
2 2

c
2τ ρ ε∇· = − ∇ε + ∇· ∇

(7)

Within the distance of closest approach of the ions to the
surface, correlations cannot affect the value of the Maxwell
stress at the surface, τe,surf, generated by the surface charge
density. The mechanical equilibrium problem therefore
requires continuity in the electrostatic stress tensor evaluated
in the solution and at the surface

0e e,surfτ τ− = (8)

At a uniformly charged, flat surface without a dielectric
jump, the Maxwell stress tensor is simply τe,surf = qs

2/(2ε)n̂n̂,
while the Maxwell stress tensor in the electrolyte is given by eq
6. Equating these two expressions, and substituting in n̂·D = qs,
we arrive at a final boundary for a potential varying in one
coordinate direction

n Sc
3 2ϕ ϕ·̂ ∇ = ∇ | (9)

applied at the distance of closest approach of the ion with the
wall.
The method amounts to applying the contact theorem to the

correlated electrolyte in the absence of correlations, shown
below for μi

ex = 0 at a flat electrode with constant charge
density without a dielectric jump52,53

P
q

kT c n n kT c
2 i

i

S i
i

S

s
2

e∑ ∑
ε

τ= − + = − ·̂ · ̂ +
(10)

The contact theorem is a statement of mechanical
equilibrium, where the repulsive osmotic pressure contribution
is balanced by the electrostatic attraction from the Maxwell
stress. Without the constraint from eq 8, the BSK theory does
not obey this simple relationship which should be valid even
for dilute electrolytes in the primitive model.54−56 The
procedure of ensuring continuity in the Maxwell stress can
be repeated for any higher order ε ̂ by equating the τe at
successive orders of derivatives. The condition in eq 8 is also
applicable to any extended electrolyte mean-field theory with
arbitrary models of concentrated solution activity and solvent
polarizability, including interactions with a soft wall. The
approach may even be extended to media with nonlocal
dielectric constant ε ̂ driven by solvent polarization.57,58

Correlation Length Scaling. At highly charged surfaces,
the charge−charge correlations are dominated by the mutual
repulsion of counterions at the interface, as demonstrated in
the schematic in Figure 1a. The size of a correlation hole of
counterions forming a Wigner crystal is characterized by a
length scale Rhole

R
ze
q

1
6hole

1/4

s

1/2

= i
k
jjj

y
{
zzz

i

k
jjjjjj

y

{
zzzzzz (11)

where z is the ion valency and e is an elementary charge. For
this work, we assume that the correlation length scales as the
size of a correlation hole, determined by the surface charge
density

Rc holeα= (12)

with one parameter α, which is considered to be a constant.
We will demonstrate that the fitted scaling with α = 0.50 works
well from the limit of zero reservoir concentration (one-
component plasma) to more concentrated electrolytes. At high
concentration or at low surface charge densities, this scaling
argument breaks down, and the other length scales might
dominate in the correlation length. For example, if the surface
charge tends to zero, then the charge−charge correlations will
be dominated by the Bjerrum length and characteristic mean
spacing between ions given by the bulk concentration. At very
large charge densities and for large ion sizes, where Rhole
becomes comparable to a, the ion diameter, the ion size can
dominate in determining the charge−charge correlations due
to over-crowding effects. Also, if other length scales are
introduced, such as surface curvature, the correlation length
between ions can also be affected, as demonstrated with the
one-component plasma around a thin charged cylinder.
In the Supporting Information, the nonarbitrary scaling of

the correlation length is investigated by comparison to grand
canonical MC (GCMC) simulations from ref 59 for a z:1
electrolyte. Using the Buckingham-Π theorem, we know that
the correlation length is related to functions of dimensionless
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ratios of other length scales of the problem. At small or large
values of these dimensionless ratios, the functional dependence
becomes a power law relationship by expanding the individual
functions, which we assume in this work. Here, we choose four
length scales from which we can construct three dimensionless
groups from: the correlation length, c, the Gouy−Chapman

length, GC, the Bjerrum length, z2
B, and the Debye length λD,

such that the power law relationship can be expressed as

z z
c

c

D
2

2
B

GC

2
B

D

3 4

δ
λ

α
λ

= =
α αi

k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz (13)

where δc is the correlation length c divided by the Debye
length. The definitions and meanings of the different length
scales will be included in the Results and Discussion section as
they appear in the mathematical framework.
The correlation length scaling that arises from the fitting

procedure to the MC data is given by

q e C( / )c B
1/4

s
1/8

ref
1/6∼ − −

(14)

with a fitted scale of

z z
0.35c

2
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1/8 2
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δ
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i
k
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y
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zzzzz (15)

Note that the fitted exponents are expressed in terms of
fractions to emphasize their relationship to the intrinsic length
scales in the system.
A detailed investigation of how correlations are affected as a

function of surface charge density, ion valency, concentration,
ion size, and surface curvature could motivate a more nuanced
scaling of the correlation length, based on direct analysis of the
charge−charge correlation function, including variations in the
correlation length as a function of the distance from a charged
surface. For example, the fitted correlation length relationship
in eq 15 does not return the correlation length for the
counterion only system in the limit of zero ion concentration.
In this work, we isolate the electrostatic correlation effects for a
dilute electrolyte at highly charged surfaces. For the purposes
of the analysis in the main text, we will assume the correlation
length to be R0.50c hole= for all of the scenarios investigated
in Figure 1. For the results with the fitted correlation length
scaling in 15, one can refer to the Supporting Information.

■ RESULTS AND DISCUSSION
One-Component Plasma. Considering a system of point-

like counterions neutralizing a uniformly charged surface, the
importance of correlations is governed by a coupling constant

z q e2 /3
B

2
sπΞ = (16)

which is a measure of the correlation hole size, Rhole, compared
to the characteristic ion distance from the surface, the Gouy−
Chapman length

e z q(2 )GC B s
1π= −

(17)

such that R /hole
2

GC
2Ξ ∼ . Note that the Bjerrum length, B is

defined as the distance at which two unit charges experience an
electrostatic energy equal to the thermal energy

e
k T4B

2

B
=

πε (18)

In the weak coupling limit (Ξ ≪ 1), PB theory is valid. In
the strong coupling limit (Ξ ≫ 1), counterions interact with
the electric potential created by the surface because ion−
surface interactions dominate.2,54,55,60,61

Now we consider applying the mechanical constraint,
starting with the one-component plasma of infinitesimally
small size with μex = 0. The one-component plasma consists of
a single mobile ionic species which neutralizes the charge of a
smeared out surface charge density. We can nondimensionalize
lengths with the Gouy−Chapman length, the potential by the
thermal voltage for the counterion, ϕ0 = kT/ze, and the charge
density by q e20 B s

2 1ρ π= − . Here, we assume that the
correlation length scales with the size of a correlation hole at
the surface, /c c GC 0δ α= = Ξ Using ∼ to denote non-
dimensionalized variables

e2 20
2 4 2

α ϕ ϕ ρΞ∇∼ ∼ − ∇∼ ∼ = ∼ = ϕ−∼
(19)

with boundary conditions of

n

n

( ) 20
2 3

0
3 2

α ϕ ϕ

α ϕ ϕ

·̂ Ξ∇∼ ∼ − ∇∼∼ = −

·̂ Ξ ∇∼ ∼ = ∇∼ ∼
(20)

at x̃ = 0, where α0 = 1.36α is an order one constant
proportional to α. Therefore, the importance of the higher
order derivative is governed by the coupling parameter, Ξ.
The solution to these equations is compared to the results of

MC simulations in Figure 2 for a one-component plasma

Figure 2. Isolated charged plate. BSK theory for one-component
plasma compared to MC simulations from ref 54 with α = 0.50 for
counterions screening a charged isolated surface. The solid lines are
the predictions of the BSK theory with the boundary condition of
n Sc

3 2ϕ ϕ·̂ ∇ = ∇ | , the dashed-dotted lines are the predictions of the

BSK theory with the boundary condition of n 0c
3ϕ·̂ ∇ = , and the

markers are from the MC simulations. Strong coupling limits are
plotted as black dashed lines. (a) Charge density is plotted as a
function of distance from an isolated surface. (b) Charge density
difference relative to the solution to the PB theory as a function of
distance from an isolated surface.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c01261
J. Phys. Chem. C XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c01261/suppl_file/jp0c01261_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01261?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01261?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01261?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01261?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c01261?ref=pdf


screening a plane of charge. The BSK theory reproduces the
behavior of the one-component plasma from weak coupling, in
intermediate coupling, and matches the strong coupling limit
with α = 0.50. Furthermore, the BSK theory with the boundary
condition of n̂·∇3ϕ = 0, represented by the dashed-dotted lines
in Figure 2a, does not accurately represent the data at
intermediate or strong coupling.
We can also consider the one-component plasma between

two charged surfaces of equal charge density with the same
sign, confining the counterions in a gap of dimensionless
distance d̃, as shown in Figure 3a. In Figure 3b, the pressure is

plotted as a function of separation distances between two
charged surfaces with different coupling parameters, using eq 8
and using the same value for α. The BSK theory again provides
good agreement with the results of the MC simulations at all
the coupling parameters.
Another critical question is the validity of eq 8 at a curved

interface. The simplest model system to test the hypothesis is
the one-component plasma surrounding a charged cylinder of
radius R /cyl GCξ = at infinite dilution, corresponding to a
cylindrical cell with outer radius Rout →∞. As shown in Figure
4 and Supporting Information Figure S1, the BSK equation
reproduces the results of the weak and strong coupling limits
correctly, by applying the boundary condition in eq 20 at r ̃ = ξ.
However, similar to the strong coupling expansion of ref 63,
the theory does not correctly describe the renormalization of
charge arising from Manning condensation in the needle limit,
where a fraction f = 1 − 1/ξ of the charge is “condensed” onto
cylinder.64 The charge density must be multiplied by this

fraction, f, in order to match the strong coupling expansion
taking into account the charge renormalization in the needle
limit.62,65 The smaller the radius of curvature, the more likely
that the configuration of correlated ions is influenced by
curvature. In the “needle limit,” where / 1ξΞ ≫ , ions are
distributed in a nearly linear fashion along the cylindrical
backbone with spacing scaling as a ̃ ∼ Ξ/ξ, which may also be
the relevant scaling for the correlation length in this regime
rather than Ξ . Supporting Information Figures S1 and S2
show the results choosing δc = Ξ/ξ, but the counterion
condensation transition is still not captured.

Electrolytes. A more useful and relevant application of the
BSK theory is to describe the distribution of charges in
electrolytes and ionic liquids, as was originally proposed. Here,
we focus on the dilute electrolyte limit, to isolate electrostatic
correlations directly, without complications from overcrowd-
ing.
If the BSK equation for a z:1 electrolyte with salt

concentration Cref is nondimensionalized with the thermal
voltage ϕ̃ = (eϕ)/(kT) and the Debye length

kT
z z e C( )D 2 2

ref
λ ε=

+ (21)

∇̃ = λD∇ and /c c Dδ λ= the BSK equation becomes

ze ze
z z

z

c
2 4 2

2δ ϕ ϕ ρ∇∼ ∼ − ∇∼ ∼ = ∼ = −
+

ϕ ϕ− ∼ ∼

(22)

The boundary conditions are similarly modified to

n q

n

( )c
2 3

s

c
3 2

δ ϕ ϕ

δ ϕ ϕ

·̂ ∇∼ ∼ − ∇∼∼ = ̃

·̂ ∇∼ ∼ = ∇∼ ∼
(23)

The agreement of the predicted charge density profiles from
eq 22 with the GCMC data is very good, as exhibited in Figure
5 for a 0.1 M 2:1 electrolyte. In the Supporting Information,
the results are expanded to a more complete set of
comparisons with simulations. It is seen with R0.50c hole=
or with c determined by eq 15 that the BSK theory can correct
the PB charge density profiles, including an overscreening
transition. Larger errors from the BSK theory are incurred at
large concentration, where the current assumption of μi

ex = 0
breaks down.

Figure 3. Confined geometry. BSK theory for one-component plasma
compared to MC simulations of counterions between two like
charged surfaces from ref 54 with α = 0.50. The solid lines are the
predictions of the BSK theory, and the markers are from the MC
simulations. Strong coupling limits are plotted as dashed lines. (a)
Charge density is plotted between two surfaces with separation d̃ = 2.
(b) Pressure is calculated as a function of separation distance between
the two plates. As the coupling increases, the pressures between the
like-charged surfaces become attractive (negative) rather than
repu l s i ve (pos i t ive) . The d imens ion les s pres sure i s
P Pe q/(2 )2

B s
2π̃ = .

Figure 4. Cylindrical geometry. BSK theory for one-component
plasma compared to MC simulations from ref 62 using α = 0.50 for
the counterion density around a charged cylinder for ξ = 4. The solid
lines are the results of applying eq 19 and the markers are the MC
simulation results from ref 62. The weak coupling, strong coupling,
and renormalized strong coupling needle limits are plotted.62
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One implication of the boundary condition is that the
differential capacitance for 0c = is equivalent to the case of

0c ≠ if μi
ex = 0. Therefore, the differential capacitance for the

correlated, dilute electrolyte is given by the traditional Gouy−
Chapman equation

C cosh
2D

D

Dε
λ

ϕ
=

∼i

k

jjjjjjj
y

{

zzzzzzz (24)

in stark contrast to the original work in the limit of μi
ex = 0.17,20

It would be interesting to explore the implications of the
boundary condition on electrokinetic reversals, electrochemical
interfaces, biological channels, or colloidal phenom-
ena.20,21,24−29,33,34,41,42,48 For example, the DLVO theory of
colloidal interactions can be modified to include attractive
correlation effects.4

Further Extensions of the Theory. Charged Dielectric
Interfaces. Note that the Maxwell stress condition (eq 6) has
only been stated without a dielectric jump. The stress
condition may need further validation at a dielectric interface.
A more general statement of matching the Maxwell stress with
and without correlations might be given by a jump condition
between the two media

n ne,1 e,2 e,1 e,2 0c
τ τ τ τ·̂[ − ] = ·̂[ − ] = (25)

For a uniformly charged, flat interface without a dielectric
jump, τe,2 = 0, so the RHS of the above equation reduces to

n n
q

e,1 e,2 0 2c

s
2

1
τ τ·̂[ − ] = ̂ε= .

Concentrated Electrolytes and Ionic Liquids. The present
analysis attempts to isolate the effect of ion correlations in a
dilute electrolyte. Ion size effects, particularly for a/λD > 1 will
require further validation to properly account for correlations
guided by ion size combined with electrostatics. A nonlocal
free-energy functional might be necessary to capture the size
correlations in concentrated solutions,16,66 in conjunction with
electrostatic correlations. Short-range bulk correlations67 are
not captured in this theory. Furthermore, if surface charges are
discrete rather than smeared out, the contact condition may
change,68 although the boundary condition derived here could
be applied to such charge density distributions. For an arbitrary
mixture of ions with different valency, the effective correlation
length will depend upon correlations between each pair of
species, although the correlations at high surface charge density
will still be dominated by the most highly charged counterion.

■ CONCLUSIONS
The phenomenological BSK theory describes nonlocal,
discrete correlation effects with a higher-order, local,
continuum description of the free energy quite well. The
remarkable agreement of the theory with the one-component
plasma and primitive model electrolyte suggest that higher-
order, continuum equations can properly account for
correlation effects, as long as the appropriate constraints are
imposed at boundaries. The formalism used here could be
extended to the ionic liquid limit, although ion pairing, short-
range nonelectrostatic correlations, and “spin glass” ordering69

might preclude a simple continuum description. Further
modifications are needed to capture the long-range screening
exhibited in ionic liquids and concentrated electrolytes,70 as
well as density oscillations expected in overcrowded systems.16

Even so, the BSK theory captures important features of
electrostatic correlations, including like-charge attraction and
overscreening, driven by electrostatic interactions of spatially
correlated counterions. Furthermore, unlike many previous
approaches, all of the electrostatic forces are contained self-
consistently within the electrostatic potential, ϕ. Detailed
analysis of experimental data is needed to determine the
competing effects of surface adsorption reactions modifying
fixed surface charge71 or the overscreening/like-charge
attraction effects modeled by the BSK theory.4
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