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The behavior of a conductive membrane in a static �dc� electric field is investigated theoretically. An
effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric po-
tential at the membrane, originally developed for electrochemical systems. Within such a framework, correc-
tions to the elastic moduli of the membrane are obtained, which arise from charge accumulation in the Debye
layers due to capacitive effects and electric currents through the membrane and can lead to an undulation
instability of the membrane. The fluid flow surrounding the membrane is also calculated, which clarifies issues
regarding these flows sharing many similarities with flows produced by induced charge electro-osmosis
�ICEO�. Nonequilibrium steady states of the membrane and of the fluid can be effectively described by this
method. It is both simpler, due to the zero thickness approximation which is widely used in the literature on
fluid membranes, and more general than previous approaches. The predictions of this model are compared to
recent experiments on supported membranes in an electric field.
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I. INTRODUCTION

Bilayer membranes formed from phospholipid molecules
are an essential component of the membranes of cells. The
mechanical properties of equilibrium membranes are charac-
terized by two elastic moduli, the surface tension and the
curvature modulus �1�, which typically depend on the elec-
trostatic properties of the membranes �2�. Understanding
how these properties are modified when the membrane is
driven out of equilibrium is a problem of considerable im-
portance to the physics of living cells. A membrane can be
driven out of equilibrium in many ways, for instance by ion
concentration gradients or electric fields, either applied ex-
ternally or generated internally.

The external application of electric fields on lipid films is
used to produce artificial vesicles �by electroformation�, as
well as to create holes in the membrane �by electroporation�
�3�. Both processes are important for biotechnological appli-
cations, they are widely used experimentally although they
are still rather poorly understood. The generation of ion con-
centration gradients by internal means is controlled in bio-
logical cells by membrane-bound ion pumps and channels,
which play key roles in many areas of biology �4�.

The nonequilibrium fluctuations of membranes including
ion channels and pumps were first analyzed in Refs. �5,6� by
means of an hydrodynamic theory. Artificially made active
membranes inspired by these ideas were then studied experi-
mentally �7–9�. Several theoretical studies followed, mainly
motivated by the question of how to model nonequilibrium
effects produced by protein conformation changes �10–13�.
One limitation of existing active membrane models is that
they do not describe electrostatic effects associated with ion
transport in details. In previous papers by our group �14,15�,
we have addressed this limitation by studying a theoretical
model for a membrane with a finite conductivity transverse
to the membrane plane �due for instance to ion channels or
pumps� using electrokinetic equations �16–18�. Our work

complements Ref. �19�, where the correction to the elastic
moduli of a membrane in a dc electric field were calculated
using an approach purely based on electrostatics �no cur-
rents�. It is also inspired by Refs. �20,21�. where similar
problems were considered using electrokinetic equations. In
contrast to these studies, our approach focuses on the non-
equilibrium case, where electrokinetic corrections to the elas-
tic moduli arise due to currents through the membrane.

In particular, a negative correction to the surface tension
arises due to capacitive effects, also called Lippman tension
�22�. This negative tension leads to instabilities as can be
understood from the high-salt limit �23�. A first experimental
proof of the destabilizing effect of the electric field on a
stack of lipid membranes was brought by x-ray scattering
studies �24�. Recently, the lowering of the tension due to
electrostatic or electrokinetic effects has been observed ex-
perimentally with supported membranes subjected to an ac
electric field �25� and in active membranes �9�.

The resulting flow fields around the undulating membrane
are interpreted within the framework of “induced charge
electro-osmosis” �ICEO� �18,26,27�. Similar flow patterns
within vesicles subject to ac electric fields have been ob-
served experimentally and analyzed theoretically in Ref.
�28�. The deformation of lipid vesicles in alternating fields in
various medium conditions has been modeled theoretically in
Refs. �29,30�. All these studies show that lipid membranes in
electric fields present a rich panel of possible behaviors
�31,28�.

This paper extends previous work �14,15�, by providing
an effective zero-thickness membrane model that contains
both capacitive effects and ionic currents. In a first attempt
�14�, a zero-thickness membrane model has been proposed
with the boundary condition �BC� of zero electric field at the
membrane. Although the shape of the potential was accept-
able, the charge distribution had the wrong sign and the elas-
tic moduli were orders of magnitude too small. A model with
finite membrane thickness and dielectric constant has thus
been considered in Ref. �15�, leading to correct signs of the
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charge distribution and correct orders of magnitude of the
elastic moduli. However, this model needed approximations
and finally numerical evaluations. In view of this, we present
here an improved zero-thickness model, by using the more
realistic BC of a dielectric interface sustaining Faradaic cur-
rents �32�. Although this Robin-type BC has been introduced
in Ref. �15�, its consequences were not developed. In particu-
lar this model leads to simple analytical expressions for the
corrections to the elastic constants of the membrane. The
model clearly captures both nonequilibrium effects due to
ion currents and equilibrium effects, of capacitive nature. We
also calculate the flow field around the membrane, which has
in fact the opposite sign as compared to the one of Ref. �15�
for the zero-thickness case, and is thus similar to standard
ICEO flow fields. The presented effective zero-thickness
model for a dc-field driven conductive membrane is simple
enough to be the starting point of more refined further stud-
ies.

The work is organized as follows: in Sec. II we describe
the equations for the charges in the electrolyte. A special
emphasis is put on the boundary conditions which is the
crucial point here. Then the base state solution corresponding
to a flat membrane is calculated in Sec. III. In Sec. IV we
calculate the leading order contributions to the electric and
ion density fields for a spatially modulated membrane height
and analyze the corresponding hydrodynamic flows around
the membrane. Using the boundary conditions for the stress
tensor at the membrane �which includes Maxwell and hydro-
dynamic stresses�, we calculate in Sec. V the growth rate of
membrane fluctuations. In Sec. VI, our results are discussed
and compared to previous calculations and to related experi-
ments.

II. MODEL EQUATIONS

We consider a steady �dc� current driven by a voltage V
between two electrodes at a fixed distance L, applied to an
initially flat membrane located initially at z=0. The mem-
brane is embedded in an electrolyte of monovalent ions with
densities n+ and n−. The membrane has channels for both ion
species but is itself neutral �no fixed charges at the mem-
brane�. The channels/pumps are assumed to be homoge-
neously distributed in the membrane and enter only in the
effective conductance G, as introduced below. For the effect
of nonuniform distributions of channels/pumps in mem-
branes we refer to Refs. �11,33�. A point in the membrane is
characterized by its Monge representation �valid in the limit
of small undulations� by introducing a height function h�r��,
where r� is a two-dimensional in-plane vector.

In the electrolyte, the governing equation for the electric
potential � is Poisson’s equation

�2� = −
1

�
�en+ − en−� . �1�

Here e is the elementary charge and � is the dielectric con-
stant of the electrolyte. For the sake of simplicity, we assume
a symmetric 1:1 electrolyte, so that far away from the mem-
brane n+=n−=n�. We also assume that the total system is
electrically neutral.

The densities of the ion species are assumed to obey the
Poisson-Nernst-Planck equations for a dilute solution

�tn
� + � · j� = 0, �2�

with ionic current densities

j� = D�− �n� � n� e

kBT
� �� , �3�

where kBT is the thermal energy. We have assumed that both
ion types have the same diffusion coefficient D, and ne-
glected various corrections for concentrated solutions �34�.
We consider a steady-state situation and use the Debye-
Hückel approximation by linearizing the concentrations n�

=n�+�n�, leading to

�2� = −
e

�
��n+ − �n−� , �4�

� · �− ��n� �
en�

kBT
� �� = 0. �5�

For symmetric binary electrolytes, it is useful to introduce
half of the charge density �32,35�,

� = e
�n+ − �n−

2
. �6�

The sum of the two ionic concentrations, �n++�n−, turns out
not to be a relevant variable since it is decoupled from the
field at small applied voltages �35�. Moreover, since we have
considered a steady state and a symmetric situation, there is
no net particle current. We also define

j� =
j+ − j−

2
= − D � �� +

e2n�

kBT
�� , �7�

which represents half of the electric current density, and we
obtain the equations

�2� = −
2

�
� , �8�

�2� +
e2n�

kBT
�2� = 0. �9�

Combining Eqs. �8� and �9� leads to ��2−�2��=0, where

�2 =
2e2n�

�kBT
�10�

and �−1=	D is the Debye length that defines the characteris-
tic length scale for charge relaxation in the electrolyte.

Boundary conditions

At the electrodes located at z= �
L
2 , we externally impose

the voltage leading to

��z = �
L

2
� = �

V

2
. �11�

This BC is oversimplified for real electrodes, since it ne-
glects interfacial polarization across the double layers pass-
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ing Faradaic currents �32,36�, which makes the voltage im-
posed across the electrolyte, outside the double layers,
different from the applied voltage. Since we focus on the
membrane dynamics, however, electrode polarization is in-
consequential, and the voltage V in the model simply serves
as a means to apply a steady dc current, which could be
directly measured or imposed in experiments testing our
theory. We assume in the following that the distance between
the electrodes is much larger then the Debye length, L
	D
=�−1. In that case, the bulk electrolyte is quasineutral, n+

=n−=n�, with negligible charge density �compared to the to-
tal salt concentration�,

��z = �
L

2
� = 0. �12�

Since the conductivity of a quasineutral electrolyte is con-
stant, the applied uniform current is equivalent to an applied
electric field far from the membrane.

As we will see, the BC at the membrane is crucial to
recover the correct physical behavior. Let n be the vector
normal to the membrane. In the simple zero-thickness model
proposed in Ref. �14� the Neumann BC,

�n · ����z=h = 0, �13�

was used for the potential, corresponding to a vanishing nor-
mal component of the electric field at the membrane. Thus,
the dielectric mismatch between the electrolyte and the
membrane was accounted for only approximatively. When
compared to the full finite thickness calculation, the agree-
ment was poor. To address this issue, a more general Robin-
type BC was introduced �15�

	m�n · ����z=h+ = 	m�n · ����z=h− = ��h+� − ��h−� , �14�

where

	m =
�

�m
d �15�

is a length scale that contains the membrane thickness d and
the ratio of the dielectric constant of the electrolyte, �, and of
the membrane, �m. This BC �with one side held at constant
potential� was originally developed for electrodes sustaining
Faradaic current �32,36–38� or charging capacitively �18,35�.
In that context the analog of our membrane is a Stern mono-
layer of solvent molecules or a thin dielectric coating, such
as a native oxide, on a metallic surface, and 	m is denoted 	S.
Note that this BC has also been used in Ref. �21�.

The modified boundary condition �14� introduces a new
dimensionless parameter �32�,

�m = �	m =
	m

	D
=

��

�m/d
=

CD

Cm
. �16�

For a blocking or “ideally polarizable” surface, which does
not pass normal current and only allows capacitive charging
of the double layer, this parameter controls the relative im-
portance of the capacitance of the surface �here, the mem-
brane� Cm=�m /d compared to that of the diffuse part of the
double layer, CD=��. The BC �Eq. �14�� then implies that
these capacitances are effectively coupled in series in an

equivalent-circuit representation of the double layer
+membrane surface �35�. For a surface sustaining normal
current, either by electron-transfer reactions at an electrode
or by ionic flux through a membrane, the situation is more
complicated. It can be shown that the same electrostatic BC
�Eq. �14�� remains valid for a thin dielectric layer, as long as
it has zero total free charge �34�, which is typical for mem-
branes containing a high density of fixed counter charge.
However, the same parameter �m no longer plays the role of
a capacitance ratio. Instead, it controls the effect of diffuse
charge on the normal current, the so-called “Frumkin correc-
tion” to reaction kinetics in electrochemistry, reviewed in
Ref. �36�. Two distinct regimes were first identified in Ref.
�32� in the context of electrolytic cells and recently extended
to galvanic cells �36�: �i� the “Helmholtz limit” �m
1,
where most of the double layer voltage is dropped across the
surface or membrane and the diffuse-layer has no effect on
the current, and �ii� the “Gouy-Chapman limit” �m�1 where
the diffuse layer carries all of the voltage and thus deter-
mines the current. In the Helmholtz limit, the Robin BC �Eq.
�14�� reduces to the Neumann BC �Eq. �13�� used in Ref.
�15�, so that paper analyzed the limit where the diffuse
charge is small and has little effect on the current. In this
paper we consider the general case of finite �m.

III. BASE STATE

The base state of the problem is a flat membrane. The
electric field, assumed to be perfectly aligned in z direction,
is then perpendicular to the membrane. In the bulk fluid, the
system is completely characterized by the electrostatic poten-
tial �0�z� �or by the field E0�z�=E0

z�z�=−�z�0�, by the
steady-state ion distribution �0�z�, as well as by the pressure
P0�z�. Inside the membrane, an internal electrostatic potential
�0

m�z� �and field E0
m� is present.

Equations �8� and �9� are readily solved leading to the
charge distribution

�0�z� = � �me−�z; z � 0

− �me�z; z 
 0
	 , �17�

and to the potential

�0�z� = 

2

��2� jm

D
�z −

L

2
� − �me−�z� +

V

2
; z � 0

2

��2� jm

D
�z +

L

2
� + �me�z� −

V

2
; z 
 0
 .

�18�

Here jm=−j� is the electric current density and

�m =
��z = 0+� − ��z = 0−�

2
¬

1

2
��0�z=0 �19�

represents the jump in the charge density across the mem-
brane. We have introduced the notation

�f�z=a = f�z = a+� − f�z = a−� , �20�

by which we denote the jump of the field f at position z=a.
Note that the jump in the charge density �m at the membrane
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can be interpreted in terms of a surface dipole localized on
the membrane. The existence of this surface dipole is the
physical reason for the discontinuity of the potential at the
membrane.

At the membrane, the Robin-type BC reads

	m�z��z=0+ = 	m�z��z=0− = ���z=0. �21�

Although the membrane has a zero thickness in this model,
one can still define an internal field E0

m and an internal po-
tential �0

m�z�. This is done by keeping a finite thickness d at
first, and then take the limit d→0, see Ref. �15� for details.
Continuity of the potential at the membrane boundaries then
implies a constant internal field E0

m=−��0�z=0 /d and the in-
ternal potential �0

m�z�= ��0�z=0z /d. Using Eq. �18�, we obtain

E0
m = −

1

d
� 2

��2�−
jmL

D
− 2�m� + V� . �22�

Now one has to determine �m and jm. Using Eq. �21�, one
obtains the jump in the charge density

�m =

��2

2
V −

jm

D
�L + 	m�

2 + �	m
. �23�

Two remarks on this derivation are in order: first, Eq. �23�
illustrates that the asymmetry of the charge distribution re-
sults either from the accumulation of charges due to the ap-
plied voltage �a capacitive effect proportional to V, present
also for nonconductive membranes� or due to ionic currents
across the membrane �a nonequilibrium effect proportional
to jm present only for conductive membranes�. Second, the
expressions for ��z�, ��z�, �m derived above are independent
of the response of the ion channels and thus remain un-
changed if a nonlinear ion channel response is used. Only the
expression for the current jm, that enters as a parameter, will
be affected by such a nonlinearity. For precisely that reason,
the general form of the base state does not depend on the
mechanism that has created the asymmetry of charge distri-
bution or the ionic currents �external due to an applied field
or internal due to pumps�.

To determine the current density jm at the membrane po-
sition, we use a linear response approach �for nonlinear ionic
response, see for instance Refs. �4,21,39��

j�z=0
� = −

G

e
����z=0, �24�

where �� is the chemical potential per particle and G is the
membrane conductance per unit surface �across the mem-
brane, not in plane�. We assumed equal G for both ion spe-
cies. In the bulk one has j�=− eDn�

kBT �z�
�, which leads to the

usual expression for the �electro-�chemical potential, ��

=kBT �

en� +e�. By equating

− jm = j�z=0
� = −

G

e
� kBT

en�
��0�z=0 + e��0�z=0� , �25�

we finally arrive at the simple expression

jm = − j� =
GV

1 +
2

��2D
GL

. �26�

This relation is consistent with the usual electric circuit
representation of ion channels in a membrane that is sur-
rounded by an electrolyte �4,14�. As far as the sign conven-
tion of the currents is concerned, the cathode �toward where
the cations drift� is located at z=−L /2 and the anode at z
=L /2. Thus jm is positive, in accordance with the usual con-
vention for transport of positive charges from the anode to
the cathode. Insertion of jm into �m yields

�m =
��2

2
V

1 −
2

��2D
G	m

�1 +
2

��2D
GL��2 + �	m�

. �27�

Note that this derivation is general and holds for any value of
�m=�	m. The jump in the charge distribution at the mem-
brane is positive �equivalent to a surface dipole oriented in
the +z direction�, �m�0, for poorly conductive membranes
when 	m
��2D / �2G�. This corresponds well to the case of
biological membranes �see Sec. VI�, which are typically
much less conductive than the surrounding electrolyte. In
this case, positive charges pile up at the side of the positive
electrode �and due to symmetry, negative charges will do the
same on the other side�, leading to �m�0. For highly con-
ductive membranes, this piling up effect does not arise any-
more, because positive charges are able to cross the mem-
brane easily. This results in a negative jump of the charge
distribution at the membrane �equivalent to a surface dipole
oriented in the −z direction� when 	m���2D / �2G�. The
threshold on membrane conductance �per unit area� is given
by the conductance of a layer of electrolyte of thickness
equal to the membrane thickness times the ratio of dielectric
constants, i.e., Gc=�me2n�D /�kBTd. This threshold Gc is
much too high to be accessible with biological membranes
�even in the best conditions of low salt�. However, with ar-
tificial membranes of very high conductivity, this effect may
be observable. We now understand why the zero thickness
model with the simple BC, Eq. �13�, is not realistic for bio-
logical membranes. Indeed, it corresponds to 	m=�, imply-
ing �m
0. We note that by performing the limit 	m→� in
Eq. �27�, one regains the results for the zero-thickness model
of Ref. �15� with BC Eq. �13�.

To complete the description of the base state, we have to
consider the total stress tensor

�ij = − P�ij + ���iv j + � jvi� + ��EiEj −
1

2
�ijE

2� �28�

at the membrane. It contains the pressure, the viscous
stresses in the fluid and the Maxwell stress due to the elec-
trostatic field. We denote by � the viscosity of the electrolyte
and by v its velocity field. The electric field is given by E
=−��.
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In the base state, where the membrane is flat and the
electric field is oriented in z direction, from � ·�=0 we get
�zP0= �

2�z���z�0�2�=−2�0�z�0. By using Eqs. �17� and �18�
and imposing P�z→��=0, this is readily solved leading to

P0�z � 0� =
4

��3��mjm

D
e−�z +

��m
2

2
e−2�z� , �29�

and similarly with z→−z for z
0. For the stress we thus get

�zz,0�z � 0� = �zz,0�z 
 0� =
2

��4D2 jm
2 . �30�

Note that the stress is constant and is due to the current
density jm, with no contributions from the induced charges
�m. At the membrane, the stress is balanced. In addition to
the part of the stress tensor due to the electric field in the
electrolyte, there also is the part due to the electric field
inside the membrane, already mentioned above. For the force
balance in the base state however, this contribution vanishes
is thus not important.

IV. LEADING ORDER CONTRIBUTION OF MEMBRANE
FLUCTUATIONS

In the following, we derive the corrections to the base
state to first order in the membrane height h�r��. From such
a calculation, we obtain the growth rate of membrane fluc-
tuations by imposing the BC for the normal stress at the
membrane. From this growth rate, we then can identify elec-
trostatic and electrokinetic corrections to the elastic moduli
of the membrane.

A. Electrostatic problem

We use here the quasistatic approach �15,19� by assuming
that membrane fluctuations are much slower than the char-
acteristic diffusion time �D= 1

D�2 of the ions to diffuse on a
Debye length. With the definition of the Fourier transform
f�k� ,z�=�dr�e−ik�·r�f�r� ,z�, we expand the electric field
and the charge density as

��k�,z� = �0�z� + �1�k�,z� , �31�

��k�,z� = �0�z� + �1�k�,z� , �32�

where k� lies in the plane defined by the membrane and
�0�z�, �0�z� are the base state solutions given by Eqs. �17�
and �18�.

Let us introduce l, the inverse characteristic length scale
of the electrostatic potential near the slightly undulated
membrane, defined by

l2 = k�
2 + �2. �33�

As shown in Appendix A, first-order corrections to the po-
tential and charge density read

�1�k�,z� = −
2

�
�m

h�k��
l

e−lz,

�1�k�,z� = �2�m
h�k��

l
e−lz, �34�

for z�0 and a symmetric expression �i.e., with elz� for z

0.

B. Linear hydrodynamic flow

When the membrane starts to undulate with small ampli-
tude h�r��, a flow is induced in the surrounding electrolyte.
Using again the quasistatic assumption and low Reynolds
number, this flow is governed by incompressibility and the
Stokes equation,

� · v = 0,

− �p + ��2v + f = 0, �35�

where f is a body force density due to the electric field.

Introducing the triad �1,40� of unit vectors �k̂� , n̂ , t̂� with

k̂�=k� /k�, n̂= ẑ and t̂= k̂�� n̂, we get

�zvz + ik� · v� = 0, �36�

− ik�p + ���z
2 − k�

2 �v� + f� = 0, �37�

− �zp + ���z
2 − k�

2 �vz + fz = 0, �38�

���z
2 − k�

2 �vt + f t = 0. �39�

Two forces drive the flow: one is given by the coupling to
the membrane, enters via the BC, and is discussed below.
The second one is the bulk force due to the electric field
acting on the charge distribution and reads f=QE=−2���.
Note that one has to use the total charge density, Q=2�. To
leading order in the membrane height, this driving force is
f=−2�0��1−2�1��0+O�h2� with components

f� = − 2�0�z�ik��1�k�,z� ,

fz = − 2�0�z��z�1�k�,z� − 2�1�k�,z��z�0�z� , �40�

and f t=0. Because of the latter, Eq. �39� is decoupled and
trivial.

To solve for vz, v�, and p we proceed as follows: using
incompressibility for the perpendicular fluid velocity, one
solves for the pressure. Insertion into Eq. �38� then yields a
single equation for vz, for z�0

��z
2 − k�

2 �2vz =
2

�
k�

2 �1�z��0 +
�

2
�2�0� . �41�

As the driving term on the r.h.s. is a constant times e−lz �due
to �1�, by imposing vz�z→ ���=0 the solution is of the
form

vz = �B + Cz�e−k�z + Fe−lz. �42�

The coefficient F is determined by the driving force f, but
two more BCs are needed. At the membrane, continuity of
the normal velocity imposes vz�0+�=vz�0−�=�th�r��
=sh�k�� where we have introduced the growth rate for mem-
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brane fluctuations, s, from the temporal Fourier representa-
tion h�t��est. Note that s is also a function of k�. The con-
tinuity of the tangential velocity, v��0+�=v��0−�=0, together
with the incompressibility implies a second BC for vz,
namely �zvz�0+ =�zvz�0− =0. With the notation

� =
4�mjm

�D��4 , �43�

which quantifies the amplitude of the ICEO flow, see below,
the velocity and pressure fields in the domain z�0 read

vz�z � 0� = h�k���s�1 + k�z�e−k�z − �k��k�z −
k�

l

−
k�

2 z

l
�e−k�z − �

k�
2

l
e−lz� , �44�

v��z � 0� = h�k��ik��− sze−k�z − ��1 − k�z +
k�

2 z

l
�e−k�z

+ �e−lz� , �45�

p�z � 0� = h�k����2k��s − ��k� −
k�

2

l
��e−k�z + �e−lz

+
4�m

2

��l
e−�l+��z	 . �46�

The solutions for z
0 can be obtained by symmetry opera-
tions: vz�z
0� is obtained by performing the mirror opera-
tion with respect to the plane defined by the membrane, z
→−z, in the formula for vz�z�0�. Similarly −v��z
0� and
−p�z
0� are obtained by doing this operation on v��z�0�
and p�z�0�, respectively.

In the absence of electric effects, �m=0= jm, one gets the
typical flow induced by a membrane bending mode �41,42�.
An additional flow field due to the membrane currents arises
that has the form of an ICEO flow �18�. A detailed discussion
of this effect is postponed to Sec. VI, but we stress that the
additional flow is purely due to membrane conductivity
�since �� jm�G�, and is a nonequilibrium effect. For non-
conductive membranes this flow vanishes but there still is
charge accumulation ��m�0� in the Debye layers, leading
via the pressure field, Eq. �46�, to corrections to surface ten-
sion and bending rigidity proportional to �m

2 .

V. GROWTH RATE OF MEMBRANE FLUCTUATIONS

To discuss the dynamics of the membrane, we still have to
determine the growth rate s of the membrane. The elastic
properties of the membrane are described by the standard
Helfrich free energy

FH =
1

2
� d2r���0��h�2 + K0��2h�2� , �47�

where �0 is the bare surface tension and K0 the bare bending
modulus of the membrane. Force balance on the membrane

implies that the restoring force due to the membrane elastic-
ity is equal to the discontinuity of the normal-normal com-
ponent of the stress tensor defined in Eq. �28�

− ��zz,1�z=0 = −
�FH

�h�r��
= �− �0k�

2 − K0k�
4 �h�k�� . �48�

We should stress that the coupled electrostatics-
hydrodynamics problem under investigation can not be for-
mulated only in terms of bulk forces, i.e., f and the diver-
gence of a stress tensor, because the hydrodynamic and
Maxwell stress tensors enter the BC Eq. �48� explicitly. For
this reason, the force localized on the membrane surface is a
priori unknown, i.e., must be determined by BCs for the
velocity and the stress.

Equation �48� determines the growth rate s=s�k�� enter-
ing the normal stress difference. Details of the evaluation of
��zz,1�z=0 can be found in Appendix B. After isolating s and
expanding in wave number k�, the growth rate s�k�� finally
has the form

�k�s�k�� = −
1

4
��0 + ���k�

2 − ��k�
3 −

1

4
�K0 + �K�k�

4 .

�49�

The electrostatic corrections to the surface tension, ��
=���+��m, and to the bending modulus, �K=�K�+�Km
have been decomposed into outside contributions �due to the
Debye layer, index �� and inside contributions �due to the
voltage drop at the membrane, index m�. They are given by

��� = − 4
�m

2

��3 − 16
�mjm

��4D
, �50�

�K� =
3�m

2

��5 �51�

for the contributions due to the Debye layers and by

��m = − �m�E0
m�2d , �52�

�Km = �m�E0
m�2� d3

12
−

�m

E0
m

d

��3� , �53�

for the contributions due to the field inside the membrane, cf.
Eq. �22�. In Eq. �49�, we also obtain a purely nonequilibrium
correction

�� =
4�mjm

��5D
=

�

�
� . �54�

It corresponds to a term proportional to k�
3 in the effective

free energy of the membrane, which is forbidden for an equi-
librium membrane but allowed in nonequilibrium. This par-
ticular contribution arises due to the electro-osmotic flows
around the membrane �cf. Sec. VI C�, as can be shown from
a simple calculation using the Helmholtz-Smoluchowski
equation for the electro-osmotic slip velocity near the mem-
brane �15�.

We should mention that an independent check of Eqs.
�50� and �52� is provided by a direct integration of the lateral
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pressure profile as shown in Appendix C. This route avoids
the consideration of hydrodynamics but is limited to the cal-
culation of the surface tension correction.

VI. DISCUSSION

Let us discuss the corrections to the membrane moduli,
Eqs. �50�–�53� and compare them to previous theoretical
work on this question. Two particular limits have been con-
sidered before: first, the high-salt limit ��→�� of a conduc-
tive membrane. In this case, one finds that the correction to
the surface tension is only due to the inside field, since
���→0 and ��m→−�m

V2

d , in agreement with Ref. �23�. The
corrections to the bending modulus were not considered in
that reference, but can be obtained from the present calcula-
tion as �K�→0 and �Km→�m

V2

12d, similar to the nonconduc-
tive case. In this limit, we get a simple expression for the
ratio �Km /��m=−d2 /12, which is thus independent of the
applied voltage and proportional to the square of the mem-
brane thickness. While this simple dependence on the thick-
ness is restricted to the high-salt limit �where d is the only
relevant length scale�, the independence of voltage is gen-
eral: the ratio �K /�� is always independent of the applied
voltage, since �m, jm, and E0

m are proportional to V. This is a
consequence of our use of a linear ohmic response for the
membrane, linear electrostatics �Debye-Hückel approxima-
tion� for the electrolyte and of the assumption that the mem-
brane does not carry any fixed charges. A dependence of the
ratio on applied voltage, if it could be observed experimen-
tally, would imply the violation of one of these assumptions.

The second situation considered in the literature is the
case of a nonconductive membrane �jm=0, �m�0� with an
arbitrary amount of salt �19�. For G= jm=0, the sum of the
two corrections to the surface tension given by Eqs. �50� and
�52� can be expressed as

�� = −
�mV2

d

1 +
�m

��d

�1 +
�m

��2d/2�
2 , �55�

which agrees with the result of �19� �note that there, the
membrane thickness was defined as 2d�. For the total bend-
ing modulus correction, we obtain

�K =
�mdV2

12

�1 +
3

2

�m

���d/2�2 +
9

8

�m

���d/2�3�
�1 +

�m

��d/2�
2 . �56�

This formula is of the same form as the one given in �19�,
but the numerical prefactors of the finite salt correction terms
�second and third term in the upper bracket� differ slightly.
This is most probably due to a difference in the boundary
conditions which leads to differences in the expression of the
potential inside the membrane, given by Eqs. �B9� and
�B10�. Nevertheless, the high-salt limit is correct and the
overall shape of �K��� is well captured, as shown in the next
section. Thus, our general results, Eqs. �50�–�53�, extend the

work of Ambjörnsson et al. to the case of a conductive mem-
brane.

A. Effect of salt and membrane conductivity

With the expressions for the jump of the charge density at
the membrane, Eq. �27�, for the current density, Eq. �26�, and
for the internal field, Eq. �22�, we can discuss the corrections
to the membrane elastic constants given by Eqs. �50�–�53� in
detail. In particular we obtain the dependence of these elastic
moduli on the ionic strength of the electrolyte, and on the ion
conductance of the membrane per unit area, G.

We have used the following parameters: dielectric con-
stants are �=80�0 for the electrolyte and �m=2�0 for the
membrane. The membrane thickness is typically d=5 nm
leading to 	m= �

�m
d=200 nm. The diffusion coefficient of

ions is of the order of D=10−9 m2 s−1, and the viscosity �
=10−3 Pa s.

Figure 1�a� displays separately the contributions to the
surface tension as a function of the inverse Debye length �.
The dashed line represents the contribution from the Debye
layers, the dash-dotted line represents the contribution from
the field inside the membrane and the solid line is the sum of
both contributions. The value of the inverse Debye length �,
varies from ��106 m−1 �	D=1 �m� for pure water to �
=3.3�109 m−1�	D�0.3 nm� for 1M NaCl �2�. Figure 1�b�
shows the respective contributions to the membrane bending
modulus. In this figure we have assumed that the membrane
is nonconductive �G=0�. As shown in Fig. 1, the contribu-
tions from the Debye layers dominate for low salt ��
5
�106 m−1 for �� and �
108 m−1 for �K�. For high salt,
the contributions from the membrane dominate, and ap-
proach the limiting values discussed above. In this case of
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FIG. 1. Panel �a� shows the electrostatic corrections to the sur-
face tension �in units of N ·m−1� and panel �b� those to the bending
modulus �units J� as a function of � �units m−1� in the nonconduc-
tive case, G=0. Dashed lines: contributions due to the Debye layer
���� and �K� respectively�. Dash-dotted lines: contributions due to
the field inside the membrane ���m and �Km respectively�. Solid
lines: sum of both corrections. The figure was made with the pa-
rameters given in the text and V=1 V, L=1 mm.
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zero conductivity, both the Debye and the inside contribution
to the surface tension are always negative, and there is good
agreement with previous treatments for nonconductive mem-
branes �15,19�.

Figure 2 displays the corrections to the elastic coefficients
in the case where a finite membrane current jm is present,
induced by a small conductance per unit area G
=0.1 S m−2, for otherwise unchanged parameters. We find
that this rather small conductance has already a large effect
on both moduli: first, the effect of the Debye layers on the
surface tension is suppressed and the contribution from the
membrane is dominating. Second, the overall contribution
gets relevant for higher salt than in the nonconductive case.
The effect on the bending modulus is even more significant:
although the Debye contribution is still dominating for about
�
108 m−1, it is much smaller in amplitude than in the
nonconductive case �around 10−20 J compared to 10−17 J at
��5�106 m−1� and furthermore becomes nonmonotonous
�15�.

The effect of membrane conductance is highlighted in
Fig. 3, where the total contributions to surface tension �panel
a� and bending modulus �panel b� are shown as a function of
the inverse Debye length � for conductances per unit area in
the range G=0.01–10 S m−2, and otherwise unchanged pa-
rameters. We find that, except for the high-salt limit, the
bending modulus correction tends to be reduced by increas-
ing membrane conductance. To give some numbers, for a
nonconductive membrane �G=0� and V=1 V, the jump in
the charge density for �=2�107 m−1 is �m=1.5�1023 e

m3 .
Already a small value of the conductance per unit area G
=0.1 S m−2 halves the charge density to �m=8.6�1022 e

m3

and creates the current density jm=3.7�1017 e
m2s

, or 60
�10−3 A

m2 . Conductances of biological membranes can be as
high as G=10 S m−2, which is the value for a squid axon,
corresponding to a density of potassium channels of
0.5 �m−2 �4�.

We also note that the distance between the electrodes L,
i.e., the confinement, is a relevant parameter and influences
the shape of Figs. 1 and 2. Here we have used a macroscopic
distance �L=1 mm�, corresponding to the experiments men-
tioned below. If L was instead of the order of microns, the
suppression of the bending modulus correction due to mem-
brane conductivity would be much less pronounced and the
corresponding figure would become similar to the one given
in Ref. �15�. Moreover, for high enough membrane conduc-
tivity, the Debye layer contribution to the surface tension can
become positive, i.e., stabilizing. In fact, the sign of ��� is

governed by a factor −
�D�2−2G	m

��D�2+2GL�2 . In a way similar as dis-

cussed in Sec. III concerning the sign of �m, for G�
�D�2

2	m

there is a sign change, rendering the correction positive for
small �. However, the denominator containing the distance L
between the electrodes suppresses this effect for macroscopic
distances. It can be seen only if L is small, e.g., L=1 �m as
used in Ref. �15�. We note that the micron scale is particu-
larly relevant to experiments with cell membranes submitted
to electric fields �22�. It is also relevant to experiments that
one could propose to test these ideas using microfluidics de-
vices.

B. Membrane instability

Since the corrections to the membrane surface tension are
typically negative �with the exception mentioned above�,
they can overcome the bare surface tension �0. At this point,
an instability toward membrane undulations sets in �23�. Our
theory is able to go beyond previous modeling of this insta-
bility �still for early stages of the instability�, which were
limited to the high-salt limit and did not include electrostatic
corrections to the bending modulus or hydrodynamic effects
associated with the modulus �. The linear growth rate of the
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FIG. 2. Electrostatic corrections to the surface tension �panel a�
and to the bending modulus �panel b� as a function of � in a slightly
conductive case �G=0.1 S m−2�. Dashed lines: contributions due to
the Debye layer. Dash-dotted lines: contributions due to the field
inside the membrane. Solid line: sum of both corrections. Param-
eters as in previous figure except for G.
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FIG. 3. Electrostatic corrections to the surface tension �panel a�
and to the bending modulus �panel b� as a function of � for different
membrane conductivities. Parameters are as in the two previous
figures except for G: solid line G=0; dashed line G=0.01; dash-
dotted line G=0.1; dash-two-dots line G=1; dotted line G=10 in
units of S m−2.
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membrane fluctuations is given by Eq. �49� and has the form

�s�k� = −
1

4
�̃k − ��k2 −

1

4
K̃k3, �57�

where we have written simply k for k� and introduced the

effective surface tension and modulus, �̃=�0+��, K̃=K0
+�K. Figure 4�a� shows this growth rate, or dispersion rela-
tion, in rescaled units where we scaled the wave vector by �,
k�=k /�, and the time by the typical time for ions to diffuse a
Debye length, �D= 1

D�2 . The parameters are the same as in the
previous sections for a nonconductive membrane, i.e., G=0.
The control parameter is the external voltage V. Figure 4�a�
shows the growth rate for three different levels of the
voltage: the dashed line is for V=0.7 V, which lies below
the threshold of the instability, all wave numbers are
damped and the membrane is stable. The solid and the dash-
dotted line correspond to V=0.75 V and V=0.8 V and are
above threshold. A certain window of wave numbers k
� �0, kmax�V�� has positive growth rates and the membrane
is thus unstable. This window gets larger with increasing
voltage. The linear growth will be dominated by the maxi-
mum of the growth rate defining the fastest growing wave
number kfg. Given Eq. �57�, one easily calculates

kfg =
4

3K̃
�− �� +���

2 −
3

16
K̃�̃� , �58�

kmax =
2

K̃
�− �� +���

2 −
1

4
K̃�̃� , �59�

for �̃
0.
The same information given by the dispersion relation can

be expressed by the so-called neutral curve which is shown
in Fig. 4�b�. This curve, given by the solid line, separates the
negative �below� from the positive �above� growth rates in
the control parameter-wave number plane. If the voltage is

below the section of the neutral curve with the voltage axis,
the system is stable. Otherwise a certain band of wave num-
bers is unstable. The position of the fastest growing mode kfg
is given by the dashed line.

Since we have the dispersion relation in analytical form,
in principle one has formulas for all relevant observables like
the threshold voltage Vc. In terms of the system parameters,
however, they are quite lengthy. The threshold voltage is
given by the change of sign of the leading order contribution
in s�k��. In the nonconductive case it has the simple form

Vc
2�G = 0� =

�0d�2 + �	m�2

����m	m
2 + �d�

. �60�

Since both �m �and jm in case of G�0� are proportional to
the voltage, as expected the critical voltage scales like Vc

���0. In the limit of small membrane conductance, one gets
to leading order �using that L is macroscopic�

Vc
2 = Vc

2�G = 0��1 +
4GL

�D�2� . �61�

Thus membrane conductance increases the voltage value
needed to cross the instability. In the limit of high salt, �
→�, one regains the known result Vc

2=�0d /�m. The typical
wavelength of the membrane undulations above threshold
�i.e., the one of the fastest growing mode� for parameters as
in Fig. 4 is of order 	= 2�

0.5� �0.25 �m�12.5	D, so several
times the Debye length.

C. ICEO flows

We now discuss the form of the fluid flows which arise
near the membrane when it is driven by ionic currents. Fig-
ure 5�c� shows the flow field for a high membrane conduc-
tivity and low salt, in the regime where the membrane is
unstable due to the electrostatic correction to the surface ten-
sion and thus starts to undulate. This figure was generated by
selecting the fastest growing wave number kfg, defined in
Sec. VI B, and using the respective maximum growth rate
s�kfg�. Since this wave number has the fastest growth rate in
the linear regime, it will dominate the initial behavior. The
shape of the membrane undulation is represented as the black
solid curves in all plots of Fig. 5. The resulting flow, shown
in Fig. 5�c� is a superposition of two distinct flows: first, the
typical flow associated to a membrane bending mode �41,42�
as shown in Fig. 5�a�. This contribution corresponds to the
terms proportional to the growth rate s in Eqs. �44� and �45�.
Second, the flow associated with the remaining terms in Eqs.
�44� and �45�, proportional to �. This contribution yields the
typical counter-rotating vortices of an ICEO flow �18�, as
shown in Fig. 5�b�. Clearly, the superposition of these two
flow contributions, as shown in Fig. 5�c�, results in a parallel
flow close to the membrane, in contrast to the usual bending
mode flow given by Fig. 5�a�.

Since the jump of the charge density �m�0 for biological
membranes �and jm�0 by definition�, the induced flow oc-
curs for this case in the same direction as in standard ICEO
flows. Note that an inverse ICEO flow was obtained in �15�,
due to the opposite sign of �m obtained with the simple but
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FIG. 4. �a� The renormalized growth rate or dispersion relation,
�Ds, as a function of the rescaled wave number k�=k� /� for three
voltages: V=0.7 V �dashed line�, V=0.75 V �solid line�, V
=0.8 V �dash-dotted line�. �b� The neutral curve �solid line� sepa-
rating the regions of s�0 and s
0, and the fastest growing wave
number kfg �dashed line� in the plane voltage vs rescaled wave
number k�=k� /�. Parameters as previously except: no conductiv-
ity, G=0; �=2·107 m−1; �0=1 mN m−1; K0=10kBT.
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unrealistic BC Eq. �13�. Also, the situation of ICEO flows is
less general as suggested earlier: for most parameters �mod-
est conductivities, not too low salt� the flow generated by
membrane bending is usually dominating and hides the small
ICEO contribution. This is due to the fact that the former is
proportional to s which has contributions ��m

2 , while the
ICEO flow is ��mjm��m

2 . Thus, to see the situation given by
Fig. 5, a high membrane conductance G is needed. Second,
one needs low salt, since otherwise the membrane instability
is shifted to very high voltages. Also, since for macroscopic
electrode distances L �of order millimeter� and high conduc-
tance the voltage needed to induce the instability is very
high, we have used a microscopic electrode distance L

=10 �m. While it might still be possible to see these flows
for higher salt and macroscopic electrode separations, such
situations will be clearly far beyond the Debye-Hückel ap-
proximation used so far.

The ICEO flows near the membrane could also become
relevant once the system has reached a steady state. Indeed
in the case of lipid vesicles for instance, nonlinear effects
associated with the conservation of the number of lipids on
the vesicle �23� guarantee a saturation of the membrane fluc-
tuations �for not too high voltages that might lead to vesicle
rupture�, as compared to the case of the planar membrane
considered here. Since the membrane fluctuations are con-
fined by nonlinear effects and become quasistationary in the
long time limit, the system can reach a well defined nonequi-
librium steady state. In this nonequilibrium steady state, fluid
flows will persist due to ionic currents going through the
membrane, after the transient flow associated with the mem-
brane bending mode has disappeared.

D. Applications of the model to experiments

Recently, Lecuyer et al. �25� have investigated a pair of
nearby membrane bilayers in an electric field by neutron re-
flectivity. The first bilayer was close to the bottom electrode
and used to protect the second one from interacting with the
wall. Since the bare values of the elastic moduli were known
from x-ray off-specular experiments for a similar system �43�
��0�0.5 mN m−1 and K0�40kBT�, the surface tension cor-
rection was extracted from the data under the assumption
that the bending modulus is not affected by the field. The
experiments were performed in an ac electric field at several
frequencies. For the lowest frequency �10 Hz�, the electro-
static correction to the surface tension was obtained to be
���−3 mN m−1.

In the experimentally probed regime of low salt �D2O was
used as the electrolyte�, the electrostatic corrections to the
elastic moduli depend rather sensitively on both the amount
of salt and on the ionic conductance of the membrane, as
discussed in Sec. VI A. Moreover, in the above experiment,
the correction to the bending modulus was not measured.
Thus we restrain ourselves to a comparison of orders of mag-
nitude only. The distance between the electrodes was about
L=1 mm, while the voltage was in the 1–5 V range. With
the other parameters as used above, and assuming that the
membrane is nonconductive, G=0, for �=2·107 m−1 and
V=1 V, our model yields ���−2�mN m−1 and �K
�190kBT. The model thus successfully accounts for the or-
der of magnitude of the electrostatic correction to the surface
tension. However, it also shows that the bending modulus
increases about five times. In order to obtain an experimental
test of the model, it would be interesting to measure the
correction to the surface tension and to the bending modulus
simultaneously. We would also like suggest to carry out ex-
periments in which the applied electric field or the ionic
strength would be varied. Another interesting possibility
would be to study membranes of different conductivities or
thicknesses in an applied electric field.

A second field of application of the model are active
membranes, which are �artificial� lipid vesicles containing
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FIG. 5. Representation of the flows around the membrane be-
yond the instability threshold. The orientation of the electric field is
toward negative values of z. Panel �a� shows the flow generated by
the membrane bending instability �terms proportional to s in Eqs.
�44� and �45��. Panel �b� shows the ICEO flow �terms proportional
to � in Eqs. �44� and �45��. Finally, panel �c� shows the actual flow,
which is the superposition of the former two and results in a strong
flow near the membrane, oriented parallel to the surface. Both axes
are scaled by the Debye length �−1. Parameters are as in previous
figures except V=3.165 V, �=107 m−1, G=10 S m−2 and L
=10 �m.
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ionic pumps such as bacteriorhodopsin �7–9�. In these ex-
periments, no external electric field is applied. Instead the
pumps are activated by light to transport protons across the
membrane. In Ref. �9�, a lowering of the membrane tension
produced by the activity of the pumps has been reported,
which could be due to an accumulation of charges near the
membrane, as discussed here. The specificity of that experi-
ment is that this charge accumulation would result from the
activity of the pumps rather than from an applied electric
field. However, it is difficult to make a precise comparison
between the experiments and the present theory, because
only the correction to the surface tension is accurately mea-
sured and many aspects of the transport of ions are unknown.
Nevertheless, if we assume that the passive state of that ex-
periment corresponds to a nonconductive membrane �G=0�
and the active state to a membrane with G=10 S m−2, and if
we use a typical transmembrane potential of the order of 50
mV, we get the same order of magnitude for the observed
tension lowering, 3�10−7 N m−1, if we account for the
rather high amount of salt with ��5�108 m−1. We also
find that there is no measurable difference for the bending
modulus between the active and passive state, as observed
experimentally. The model predicts that a current density of
jm�1 Am−2 arises when the pumps are active, which corre-
sponds to an overall current of 1pA on a vesicle of size
1 �m. To better compare to the model, again it would be
desirable to have experiments in varying conditions �ionic
strength and conductance of the membrane, for instance�.
Another interesting possibility would be to measure the
membrane current and the transmembrane potential in the
course of the experiment, for instance using patch-clamp
techniques.

VII. CONCLUSIONS AND PERSPECTIVE

This paper offers a route to describe capacitive effects
near a conductive lipid membrane while keeping the simplic-
ity of the zero thickness approximation on which most of the
literature on lipid membranes is based. These capacitive ef-
fects are the main player in the corrections to the elastic
moduli of membranes driven by an electric field or by inter-
nal pumps or ionic channels. The present theory goes beyond
available descriptions by including nonequilibrium effects
which arise due to ionic membrane currents. These ionic
currents have a similar form as the ICEO flows studied in the
context of microfluidics and can modify the fluid flows
around the membrane from usual bending dominated flow.

Our approach is sufficiently simple to be the starting point
for further generalizations, which could include various non-
linear effects: nonlinear elastic terms associated with the
membrane or the cytoskeleton in case of a biological mem-
brane, nonlinear current-voltage response of the channels.
Also density fluctuations of the ion channels and the experi-
mentally simpler case of an ac electric field should be inves-
tigated. Further theoretical work is also needed to extend the
model to higher voltage where the Debye-Hückel approxi-
mation breaks down. In fact, this approximation only holds
when the potential satisfies everywhere the condition e�

4kBT
�1 �16�. For the experiments on supported membranes dis-

cussed above, one finds that the charge accumulation on the
membrane is too large for this approximation to hold, since
one has e�

4kBT �2. It would thus be relevant to solve the non-
linear Poisson-Nernst-Planck equations and otherwise pro-
ceed similarly as proposed in this work, in order to describe
the behavior of membranes surrounded by high charge den-
sities. Furthermore, it would be interesting to investigate a
model suitable for small system sizes, since much of the
results of this paper are based on the assumption that the
system size L is much larger than all other length scales in
the problem, as well as for more realistic boundary condi-
tions at the electrodes.
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APPENDIX A: ELECTROSTATICS TO FIRST ORDER
IN h(r�)

From the expansion of the potential given in Eq. �32�, and
using the equation of ion conservation and Poisson’s equa-
tion, one obtains the following equations to first order in
membrane height:

��z
2 − k�

2 ��1�k�,z� +
2

�
�1�k�,z� = 0, �A1�

��z
2 − k�

2 ���1�k�,z� +
�

2
�2�1�k�,z�� = 0, �A2�

and for the particle currents at the membrane one has the
condition

D�z��1 +
�

2
�2�1�

�z=h

= G� 2

��2 ��1�z=0 + ��1�z=0� . �A3�

Since we assumed L
	D, we can use �1�k� , ���
=�1�k� , ���=0 far from the membrane, and Eqs. �A2� and
�A3� and the BCs at infinity are satisfied by choosing �1=
− �

2�2�1 �and n1
+=−n1

− implying �1=en1
+�. It follows that to

first order in the height, one has a zero flux condition at the
membrane. Accordingly, the zeroth order solution enters in
the equations for the first-order solution �1 only via the
boundary conditions.

It thus remains to solve the Poisson equation �A1�,

��z
2 − k�

2 − �2��1 = 0. �A4�

Introducing l2=k�
2 +�2 one easily gets �1=A�e�lz for z�0

and z
0 respectively. To determine the constants A�, one
expands
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�z��z=h�r�� = �z�0�z=0 + �z
2�0�z=0 · h�r�� + �z�1�z=0 + O�h2� ,

�A5�

to prescribe the BC at the membrane in first order. Using this
expansion in the Robin-type BC we get Eqs. �34�.

APPENDIX B: CALCULATION OF THE STRESSES AT
THE MEMBRANE

The total normal stress at the membrane is

�zz,1 = �− P + 2��zvz +
�

2
��z��2 −

�m

2
��z�

m�2�
�z=h

�B1�

to linear order in h. Note that we have included here the
electrostatic contribution stemming from the field inside the
membrane �with potential �m�. This contribution is particu-
larly significant in the high-salt limit, where effects due to
the Debye layers become negligible. This inside contribution
enters with opposite sign than the outside contribution be-
cause of the difference of orientation of the normal �see Ap-
pendix C and Ref. �19��.

The outer electrostatic contribution reads

����z�0���z�1���z=0 + h�z�− P0 +
�

2
��z�0�2�

�z=0
,

where the second contribution vanishes since the term in the
bracket is a constant �the stress is balanced, see above�. The
electrostatic contribution from inside the membrane can be
expressed analogously, and the normal-normal stress differ-
ence at the membrane reads

��zz,1�z=0 = − �p�z=0 + 2���zvz�z=0 + ����z�0���z�1��z=0

− �m���z�0
m���z�1

m��z=�d/2. �B2�

By means of Eq. �44� one easily verifies ��zvz�z=0=0 due to
the symmetry given above. For the pressure difference, Eq.
�46� implies �p�z=0=2p�0+� and after reexpressing l by k�

and expanding in powers of k�, one obtains

�p�z=0 = h�k���8� �mjm

�D�2 +
�m

2

��
� + 4�sk� + 4�−

�m
2

��3

−
4�mjm

�D�4 �k�
2 + 16

�mjm

�D�5k�
3 + 3

�m
2

��5k�
4 � . �B3�

The electrostatic contribution from the electrolyte reads

����z�0���z�1��z=0 = h�k��8� �mjm

�D�2 +
�m

2

��
� , �B4�

which exactly cancels the k�-independent contribution of
�p�0.

The calculation of the electrostatic contribution from in-
side the membrane is slightly more involved. This contribu-
tion reads

��zz,1
m �z=0 = �m���z�0

m���z�1
m��z=�d/2. �B5�

Since the internal field at zeroth order is constant inside the
membrane due to the symmetry of the problem, this expres-
sion simplifies into

��zz,1
m �z=0 = − 2�mE0

m��z�1
m��z=+d/2. �B6�

The first-order field in the membrane is given by �use the
symmetry or cf. Ref. �15� for details�

�1
m�k�,z� = �1

m�k�,d/2�
ek�d/2

ek�d + 1
�ek�z + e−k�z� , �B7�

which leads us to

��zz,1
m �z=0 = − 2�mE0

m�1
m�k�,

d

2
�k�

ek�d − 1

ek�d + 1
. �B8�

To obtain an expression for �1
m�k� , d

2 �, to linear order in h,
one can write �15�

�1
m�k�,

d

2
� = �1�k�,

d

2
� − h��z�0

m − �z�0��z=d/2. �B9�

For the outside potential at the membrane we can approxi-
mately use �1�k� ,z�=− 2

� �m
h�k��

l here �since the exponential
decay like e−lz starts at the membrane�. After expansion in k�

�and assuming L
d� we get

�1
m�k�,

d

2
� = h�k���E0

m +
�m

��3k�
2 � . �B10�

Using Eq. �B8�, for the stress difference, ��zz,1
m �z=0, up to

order k�
4 this yields

�m���z�0
m���z�1

m��z=�d/2

= − h�k���m�E0
m�2�dk�

2 + �−
d3

12
+

�m

E0
m

d

��3�k�
4 � .

�B11�

APPENDIX C: ELECTROSTATIC CONTRIBUTION TO
THE SURFACE TENSION FROM THE STRESS

TENSOR

In this appendix, we give an alternative approach for the
derivation of the membrane tension, which avoids solving
for the fluid flow around the membrane. Here the tension is
expressed as an integral over the lateral pressure profile de-
viation or, equivalently, over the excess lateral stress �44�.

Let us call S a closed surface englobing the membrane
with the normal vector field n. We choose x to represent the
direction of the lateral stress. The force acting on the surface
S in the x direction can be calculated from the stress tensor
defined in Eq. �28� as

Fx = �
S

x · � · ndS . �C1�

Since � is divergence free, the surface S can be deformed
into an arbitrary other surface englobing S, for convenience
to a cube of size L. It is easy to see that the integral in Eq.
�C1� is nonzero only on the faces of the cube with the normal
along �x. With dS=Ldz and ��=Fx /L on the face where
n=+x, we arrive at �19�
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�� = �
−L/2

L/2

�xx�z�dz . �C2�

Equation �28� implies �xx�z�=−P0�z�− �
2 ��z�0�2, where

�0�z� is the potential and P0�z� the pressure profile in the
base state. The resulting tension �� is identical to Eqs. �41�–
�43� of Ref. �15�, where it was expressed as a sum of two
terms, �0 and �1. A cancellation of the dependence on L
occurred in the sum of these two terms, as it should be. The
present derivation fully justifies this point since the choice of
the deformed surface was arbitrary by construction. Using
Eqs. �18�, �29�, and �C2�, we obtain

��� = − 4
�m

2

��3 − 16
�mjm

��4D
, �C3�

which is exactly the result for the contribution of the Debye
layers to the tension using the hydrodynamic approach, Eq.
�50�. A similar calculation gives contribution to the tension
from inside the membrane, which reads

��m = − �md�Em
0 �2. �C4�

Note that the same method could be used to calculate the
change of spontaneous curvature induced by an electric po-
tential in the asymmetric case �19�.
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