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We present a multiscale simulation algorithm for amorphous materials, which we illustrate and validate in a
canonical case of dense granular flow. Our algorithm is based on the recently proposed spot model, where
particles in a dense random packing undergo chainlike collective displacements in response to diffusing “spots”
of influence, carrying a slight excess of interstitial free volume. We reconstruct the microscopic dynamics of
particles from the “coarse grained” dynamics of spots by introducing a localized particle relaxation step after
each spot-induced block displacement, simply to enforce packing constraints with a �fairly arbitrary� soft-core
repulsion. To test the model, we study to what extent it can describe the dynamics of up to 135 000 frictional,
viscoelastic spheres in granular drainage simulated by the discrete-element method �DEM�. With only five
fitting parameters �the radius, volume, diffusivity, drift velocity, and injection rate of spots�, we find that the
spot simulations are able to largely reproduce not only the mean flow and diffusion, but also some subtle
statistics of the flowing packings, such as spatial velocity correlations and many-body structural correlations.
The spot simulations run over 100 times faster than the DEM and demonstrate the possibility of multiscale
modeling for amorphous materials, whenever a suitable model can be devised for the coarse-grained spot
dynamics.
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I. INTRODUCTION

The geometry of static sphere packings is an age-old
problem �1� with current work focusing on jammed random
packings �2,3�, but how do random packings flow? Here, we
consider the case of granular drainage �4�, which is of prac-
tical importance �e.g., in pebble-bed nuclear reactors �5,6��
and also raises fundamental questions in nonequilibrium sta-
tistical mechanics �7�. In fast, dilute flows, Boltzmann’s ki-
netic theory of gases can be modified to account for inelastic
collisions �8�, but slow, dense flows �as in Fig. 1� require a
different description due to long-lasting, many-body contacts
�9�. Although ballistic motion may occur at the nanoscale
�10� ��0.01% of a grain diameter�, collisions do not result in
random recoils, as in a gas.

In crystals, diffusion and flow are mediated by defects,
such as vacancies and dislocations, but in disordered phases
it is not clear what, if any, “defects” might facilitate struc-
tural rearrangements. Perhaps the only candidate in the lit-
erature is an empty “void” in the random packing into which
a single particle may hop, thereby displacing the void. The
void mechanism was proposed by Eyring for viscous flow
�11� and has re-appeared in theories of the glass transition
�12�, shear flow in metallic glasses �13�, compaction in vi-
brated granular materials �14�, and granular drainage from a

silo �15�, but it is now seen as unrealistic. In glasses, coop-
erative relaxation �involving many particles at once� has
been observed �16,17�, presumably facilitated by free vol-
ume �18–20�. In granular drainage, the void model gives a
reasonable fit to the mean flow �21,22�, and yet it grossly
overpredicts diffusion �9�.

A collective mechanism for random-packing dynamics
has recently been proposed to resolve this paradox and ap-
plied to granular drainage �23�. The basic hypothesis, shown
in Fig. 2�a�, is that a block of neighboring grains makes a
small, correlated downward displacement

�rp = − w�rs, �1�

in response to the random upward displacement, �rs, of a
diffusing “spot” of free volume. The coefficient w �more
generally, a smooth function of the particle-spot separation�
is set by local volume conservation. In the simplest approxi-
mation, a spot carries a slight excess of interstitial volume,
Vs, spread uniformly across a sphere of radius Rs. When the
spot engulfs N particles, each of volume Vp, the model pre-
dicts w�Vs /NVp��� /�2, where �� is the local change in
volume fraction �. Allowing for some spot overlaps yields
the estimate w�10−2–10−3 from the observation that
�� /��1% in dense flows, which is consistent with diffu-
sion measurements in experiments �9,22� and our simula-
tions below. Unlike the void model �which requires w=1�,
each grain’s “cage” of nearest neighbors also persists over
long distances �9�; the spot model is able to capture such
features of drainage experiments, while remaining simple
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enough for mathematical analysis, because it does not explic-
itly enforce packing constraints, only the tendency of nearby
particles to diffuse together.

In order to preserve valid packings, a multiscale spot al-
gorithm has also been suggested �23�, which we implement
here. As shown in Fig. 2, each spot-induced block displace-
ment �a� is followed by a relaxation step �b�, in which the
affected particles and their nearest neighbors experience a
soft-core repulsion �with all other particles held fixed�. The
net displacement in �c� involves a cooperative local deforma-
tion, whose mean is roughly the block motion in �a�. It is not
clear a priori that this procedure can produce realistic flow-
ing packings, and, if so, whether the relaxation step domi-

nates the simple dynamics from the original model.
To answer these questions, we calibrate and test the spot

model against large-scale computer simulations of granular
drainage, shown in Fig. 1. Simulations are advantageous in
this case since three-dimensional packing dynamics cannot
easily be observed experimentally. We begin by running
discrete-element method �DEM� simulations, described in
Sec. II. We then calibrate the free parameters in the spot
model by measuring various statistical quantities from the
DEM simulation, as described in Sec. III. In Sec. IV, we
describe the computational implementation of the spot
model, before carrying out a detailed comparison to the
DEM in Sec. V.

II. DEM SIMULATION METHOD

We employ a DEM �24,25� to simulate N frictional, vis-
coelastic, spherical glass beads of diameter, d=3 mm, mass
m under the influence of gravity g=9.81 ms−1. Similar to the
experiments of Refs. �9,22� the silo has width 50d and thick-
ness 8d with sidewalls at x= ±25d and front and backwalls at
y= ±4d, all with friction coefficient �=0.5. The initial pack-
ing is generated by pouring N=55 000 particles in from a
fixed height of z=170d and allowing them to come to rest
under gravity, filling the silo up to H0�110d. We also stud-
ied a taller system with N=135 000 generated by pouring
particles in from a height of z=495d, which fills the silo to
H0�230d. We refer to these systems by their initial height
H0. Drainage is initiated by opening a circular orifice of
width 8d centered at x=y=0 in the base of the silo �z=0�. A
snapshot of all particle positions is recorded every 2�104

time steps ��t=1.75�10−6 s�. Once particles drop below
z=−10d, they are removed from the simulation.

The particles interact according to Hertzian, history de-
pendent contact forces. If a particle and its neighbor are
separated by a distance r, and they are in compression, so
that �=d− �r��0, then they experience a force F=Fn+Ft,
where the normal and tangential components are given by

FIG. 1. �Color online� A simulation of the experiment in Ref. �9�
by discrete element simulations. �a� First, 55 000 glass beads are
poured into a quasi-two-dimensional silo �eight beads deep� and let
come to rest. �b� Slow drainage occurs after a slit orifice is opened.
�The grains are identical, but colored by their initial height.�

FIG. 2. �Color online� The mechanism for structural rearrangement in the spot model. The random displacement rs of a diffusing spot of
free volume �dashed circle� causes affected particles to move as a block by an amount rp �a�, followed by an internal relaxation with
soft-core repulsion �b�, which yields the net cooperative motion �c�. �The displacements, typically 100 times smaller than the grain diameter,
are exaggerated for clarity.�
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Fn = ��/d�kn�n −
�nvn

2
	 , �2�

Ft = ��/d�− kt�st −
�tvt

2
	 . �3�

Here, n=r / �r�. vn and vt are the normal and tangential
components of the relative surface velocity, and kn,t and
�n,t are the elastic and viscoelastic constants, respectively.
�st is the elastic tangential displacement between spheres,
obtained by integrating tangential relative velocities during
elastic deformation for the lifetime of the contact, and is
truncated as necessary to satisfy a local Coulomb yield
criterion �Ft�	��Fn�. Particle-wall interactions are treated
identically, but the particle-wall friction coefficient is set
independently. For the current simulations we set kt=

2
7kn,

and choose kn=2�105mg /d. While this is significantly less
than would be realistic for glass spheres, where we expect
kn
1010mg /d, such a spring constant would be prohibitively
computationally expensive, as the time step must have the
form �t
kn

−1/2 for collisions to be modeled effectively. Pre-
vious simulations have shown that increasing kn does not
significantly alter physical results �25�. We make use of a
time step of �t=1.75�10−6 s, and damping coefficients
�n=�t=50�g /d.

III. CALIBRATION OF THE MODEL

We first look for evidence of spots in the DEM simulation
and then proceed to calibrate the model. All the calibrations
are carried out for the small H0=110d system, after which
the same parameters are used for the larger H0=230d system.

The theory predicts large numbers of spots �since many
are released as each particle exits the silo�, so we seek a
statistical signature of the passage of many spots. We there-
fore consider the spatial correlation for velocities in the x
direction, defined by

C�r� =
�ux�0�ux�r��

��ux�0�2��ux�r�2�
,

where the expectations are taken over all pairs of velocities
�ux�0� ,ux�r�� of particles separated by a distance r in a given
test region. For a uniform spot influence out to a cutoff ra-
dius, Rs�d, as shown in Fig. 2�a�, two random particle dis-
placements are either identical, if they are caused by the
same spot, or independent. In that case, the spatial velocity
correlation function is given by

C�r� = 
1 −
3

4

r

Rs
+

1

16
� r

Rs
	3

r � 2Rs

0 r � 2Rs
� , �4�

which is the intersection volume of spheres of radius Rs
separated by r �scaled to 1 at r=0�. The shape of C�r� is
affected by the relaxation step in Fig. 2�b�, but the decay
length is set by the spot size.

As shown in Fig. 3, we see spatial velocity correlations in
the DEM simulations at the scale of several particle diam-

eters, consistent with the spot hypothesis. Similar correla-
tions have also been seen in experiments �26� using the
methods of Choi et al. �9�, which attests to the generality of
the phenomenon, as well as the realism of the simulations.
Since the shape of C�r� is not precisely that of Eq. �4�, due to
relaxation effects, we fit the simulation data to a simple de-
cay, C�r�=�e−r/
 with 
=1.87d. We also fit a simple decay
of the same form to Eq. �4�, finding 
=0.72Rs, so we infer
Rs=2.60d as the spot radius. Thus a grain has significant
dynamical correlations with neighbors up to three diameters
away.

Next, we infer the dynamics of spots, postulating indepen-
dent random walks as a first approximation. We assume that
spots drift upward at a constant mean speed, vs=�zs /�t,
�determined below�, opposite to gravity, while undergoing
random horizontal displacements of size �xs in each time
step �t. The spot diffusion length, bs=Var��xs� /2�zs, is ob-
tained from the spreading of the mean flow away from the
orifice. In DEM simulations, the horizontal profile of the
vertical velocity component is well described by a Gaussian,
whose variance grows linearly with height, as shown in Fig.
4. Applying linear regression gives Var�uz�=2.28zd+1.60d2,
which implies bs=2.28d /2=1.14d. To reproduce the spot
diffusion length, we chose �zs=0.1d and �xs=0.68d.

The typical excess volume carried by a spot can now be
obtained from a single bulk diffusion measurement. From
Eq. �1�, the particle diffusion length, bp, is given by

bp =
Var��xp�

2�zp
=

Var�w�xs�
2w�zs

= wbs.

We measure bp in the DEM simulation by tracking the vari-
ance of the x displacements of particles that start high in
the silo as a function of their distance dropped. We find
bp=2.86�10−3d and thus w=2.50�10−3. During steady
flow in the DEM simulation, a typical packing fraction of
particles is 57.9%, so a spot with radius Rs=2.60d influences
on average 81.7 other particles. Thus we find that a spot
carries roughly 20% of a particle volume: Vs=81.7Vp /w
=0.205Vp.

FIG. 3. �Color online� Comparison of velocity correlations cal-
culated over the time period 0.52 s� t�1.57 s. Calculations are
based on particle velocity fluctuations about the mean flow in a
16d�16d region high in the center of the container. For
H0=110d.
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The three spot parameters so far �radius, Rs, diffusion
length, bs, and influence factor, w� suffice to determine the
geometrical features of a steady flow, such as the spatial
distribution of mean velocity and diffusion, but two more are
needed to introduce time dependence. The first is the mean
rate of creating spots at the orifice �for simplicity, according
to a Poisson process�. In the DEM simulation, particles exit
at a mean rate of 4.40�103 s−1, so spots carrying a typical
volume Vs=0.205Vp should be introduced at a mean rate of
�s=2.15�104 s−1. The second remaining spot parameter is
the vertical drift speed, or, equivalently, the mean waiting
time between spot displacements, �t, which can be inferred
from the drop in mean packing fraction during flow. In the
DEM simulation, we find that there are initially 9400 par-
ticles in the horizontal slice, 50d�z�70d, which drops to
8850 during flow. Choosing the spot waiting time to be
�t=8.68�10−4 s reproduces this decrease in density in
the spot simulation. The spot drift speed is thus
vs=0.1d /�t=115d / s=34.5 cm/s, which is roughly ten times
faster than typical particle speeds in Fig. 4.

IV. SPOT MODEL SIMULATION

Having calibrated the five parameters �Rs, bs, w, �s, vs�,
we can test the spot model by carrying out drainage simula-
tions starting from the same static initial packing as for the
DEM simulations. For efficiency, a standard cell method
�also used in the parallel DEM code� is adapted for the
spot simulations. The container is partitioned into a grid of
10�3�Nz cells, each responsible for keeping track of the
particles within it, with Nz=30 for H0=110d and Nz=60 for
H0=230d. When a spot moves, only the cells influenced by
the spot need to be tested, and particles are transferred be-
tween cells when necessary. Without further optimization,
the multiscale spot simulation runs over 100 times faster than
the DEM simulation.

The flow is initiated as spots are introduced uniformly at
random positions on the orifice �at least Rs away from the

edges� at random times according to a Poisson process of
rate �s. �The waiting time is thus an exponential random
variable of mean �s

−1.� Once in the container, spots also move
at random times with a mean waiting time, �t=vs /�zs. Spot
displacements in the bulk are chosen randomly from four
displacement vectors, �rs= �±�xs ,0 ,�zs� , �0, ±�xs ,�zs�,
with equal probability, so spots perform directed random
walks on a body centered cubic lattice �with lattice parameter
2�zs=0.2d�. We make this simple choice to accelerate the
simulation because more complicated, continuously distrib-
uted and/or smaller spot displacements with the same drift
and diffusivity give very similar results. Spot centers are
constrained not to come within d of a boundary, and once a
spot reaches the top of the packing, it is removed from the
simulation. More realistic models for the orifice, walls, and
free surface are left for future work; here we focus on flow-
ing packings in the bulk.

The particles in the simulation move passively in response
to spot displacements without any lattice constraints. Al-
though the influence of a spot can take a very general form
�23�, the most important aspect is its length scale, so here we
choose the simplest possible model in Eq. �1�, where the spot
influences particles uniformly in a sphere of radius Rs. As
shown in Fig. 2�a�, we center the spot influence on the mid-
point of its step, which seems the most consistent with the
concept of moving interstitial volume from the initial to the
final spot position. To be precise, when a spot moves from rs
to rs+�rs, all particles less than Rs away from rs+�rs /2 are
displaced by −w�rs.

To preserve realistic packings, we carry out a simple elas-
tic relaxation after each spot-induced block motion, as in Fig.
2�b�. All particles within a radius Rs+2d of the midpoint of
the spot displacement exert a soft-core repulsion on each
other, if they begin to overlap. Rather than relaxing to equi-
librium or integrating Newton’s laws, however, we use the
simplest possible algorithm: Each pair of particles separated
by less than d moves apart with identical and opposite dis-
placements, �d−r��, for some constant ��1. Similarly, a
particle within d /2 of a wall moves away by a displacement,
� d

2 −r��. Particle positions are updated simultaneously once
all pairings are considered, but those within the shell,
Rs+d�r�Rs+2d, more than one diameter away from the
initial block motion, are held fixed to prevent long-range
disruptions.

It turns out that, due to the cooperative nature of the spot
model, only extremely small relaxation is required to enforce
packing constraints, mainly near spot edges where some
shear occurs. Here, we choose �=0.8 and find that the dis-
placements due to relaxation are typically less than 25% of
the initial block displacement, which is at the scale of
1 /10 000 of a particle diameter: 0.25w�rs�2�10−4d. Due
to this tiny scale, the details of the relaxation do not seem
to be very important; we have obtained almost indistinguish-
able results with �=0.6 and �=1.0 and also with more
complicated energy minimization schemes. As such, we do
not view the soft-core repulsion as introducing any new
parameters.

V. RESULTS

The spot and DEM simulations are compared using snap-
shots of all particle positions taken every 2�104 time steps.

FIG. 4. �Color online� Comparison of the mean velocity
profile, for three different heights calculated over the time period
4.37 s� t�5.25 s once steady flow has been established. The spot
model successfully predicts a Gaussian velocity profile near the
orifice and the initial spreading of the flow region with increasing
height, although the DEM flow becomes more plug-like higher in
the silo.
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As shown in Fig. 5, the agreement between the two simula-
tions is remarkably good, considering the small number of
parameters and physical assumptions in the spot model. It is
clear a posteriori that the relaxation step, in spite of causing
only minuscule extra displacements, manages to produce
reasonable packings during flow, while preserving the realis-
tic description of the mean velocity and diffusion in the basic
spot model. Only one parameter, bs, is fitted to the mean
flow, but we find that the entire velocity profile is accurately
reproduced in the lower part of the container, as shown in
Fig. 4, although the flow becomes somewhat more pluglike
in DEM simulation higher in the container. Similarly, we fit
w to the particle diffusion length in middle of the DEM
simulation, bp=2.86�10−3d, without accounting for the
elastic relaxation step, so it is reassuring that the same mea-

surement in the spot simulation yields a similar value,
bp=2.73�10−3d.

The most surprising findings concern the agreement be-
tween the DEM and spot simulations for various microscopic
statistical quantities. First, we consider the radial distribution
function, g�r�, which is the distribution of interparticle sepa-
rations, scaled to the same quantity in a ideal gas at the same
density. For dense sphere packings, the distribution begins
with a large peak near r=d for particles in contact and
smoothly connects smaller peaks at typical separations of
more distant neighbors, while decaying to unity. As shown in
Fig. 6�a�, the functions g�r� from the spot and DEM simula-
tions are nearly indistinguishable, across the entire range of
neighbors for the H0=110d system. This cannot be attributed
entirely to the initial packing because each simulation

FIG. 5. �Color online� Time evolution of the random packing �from left to right� in the DEM �top� and the spot simulation �bottom�, for
the H0=230d system, starting from the same initial state. Each image is a vertical slice through the center of the silo near the orifice well
below the free surface.
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evolves independently through substantial drainage and
shearing.

Next, we consider the three-body correlation function,
g3���, which gives the probability distribution for “bond
angles” subtended by separation vectors to first neighbors
�defined by separations less than the first minimum of g�r� at
1.38d�. For sphere packings, g3��� has a sharp peak at 60°
for close-packed triangles, and another broad peak around
110°–120° for larger crystal-like configurations. In Fig. 6�b�,
we reach the same conclusion for g3��� as for g�r�: The spot
and DEM simulations evolve independently from the initial
packing to nearly indistinguishable steady states.

The striking agreement between the spot and DEM simu-
lations seems to apply not only to structural, but also to
dynamical, statistical quantities. Returning to Fig. 3, we see
that the two simulations have very similar spatial velocity
correlations. Of course, the spot size, Rs, in the spot model
�without relaxation� was fitted roughly to the scale of the
correlations in the DEM simulation, but the multiscale spot
simulation also manages to reproduce most of the fine struc-
ture of the correlation function.

At much longer times, however, the random packings are
no longer indistinguishable, as a small tendency for local
close-packed ordering appears the spot simulation. As shown
in Fig. 7, the spot simulation develops enhanced crystal-like

peaks in g�r� at r=�3d, 2d, ¼. The number of particles
involved, however, is very small �
2% �, and the effect
seems to saturate, with no significant change between 8 and
16 s. This is consistent with even longer spot simulations in
systems with periodic boundary conditions, which reach a
similar, reproducible steady state �at the same volume frac-
tion� from a variety of initial conditions �27�. In all cases, the
spot algorithm never breaks down �e.g., due to jamming or
instability�, and unrealistic packings with overlapping par-
ticles are never created.

The structure of the flowing steady state is fairly
insensitive to various details of the spot algorithm. For
example, changing the relaxation parameter �in the range
0.6	�	1.0�, rescaling the spot size �by ±25%�, and using
a persistent random walk �for smoother spot trajectories�,
all have no appreciable effect on g�r�. On the other
hand, decreasing the vertical spot step size �in the range
0.025d	�z	0.1d� tends to inhibit spurious local ordering
and reduce the difference in g�r� between the spot and DEM
simulations �e.g., measured by the L2 norm�. Therefore, our
spot algorithm appears to “converge” with decreasing time
step �and increasing computational cost�, analogous to a
finite-difference method, although this merits further study.

VI. CONCLUSIONS

Our results suggest that flowing dense random packings
have some universal geometrical features. This would be in
contrast to static dense random packings, which suffer from
ambiguities related to the degree of randomness and defini-
tions of jamming �2,3�. The similar packing dynamics in the
spot and DEM simulations suggest that geometrical con-
straints dominate over mechanical forces in determining
structural rearrangements, at least in granular drainage. Some
form of the spot model may also apply to other granular
flows and perhaps even to glassy relaxation, where localized,
cooperative motion also occurs �16,17�.

The spot model provides a simple framework for the mul-
tiscale modeling of liquids and glasses, analogous to dislo-

FIG. 6. �Color online� Comparison of radial distribution func-
tions �top� and bond angles �bottom� for particles in the region
−15d�x�15d, 15d�z�45d for H0=110d system. Three curves
are shown on each graph, the first calculated from the initial static
packing �common between the two simulations�, and the second
and third calculated over the range 1.04 s� t�1.40 s.

FIG. 7. �Color online� Evolution of the radial distribution
function g�r� for H0=230d in the region −15d�x�15d,
15d�z�45d. The spot simulation �dashed curves� reaches a some-
what different steady state from the DEM simulation �solid curve�,
after a large amount of drainage has taken place.
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cation dynamics in crystals. Our algorithm, which combines
an efficient, “coarse-grained” simulation of spots with lim-
ited, local relaxation of particles, runs over 100 times faster
than fully particle-based DEM for granular drainage. On cur-
rent computers, this means that simulating one cycle of a
pebble-bed reactor �5� can take hours instead of weeks �6�,
although a general theory of spot motion in different geom-
etries is still lacking. This may come from a stochastic for-
mulation of Mohr-Coulomb plasticity, where spots perform
random walks along slip lines of incipient failure �28�, which
could, in principle, be applied to different materials by
changing the yield criterion. Alternatively, a multiscale
model for supercooled molecular liquids could involve spots
moving along chains of dynamic facilitation �20,29�. In any
case, we have demonstrated that dense random-packing dy-

namics can be driven entirely by the motion of simple, col-
lective excitations.
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