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Phase separation of stable colloidal clusters
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This article presents a nonequilibrium thermodynamic theory for the mean-field precipitation, aggregation,
and pattern formation of colloidal clusters. A variable gradient energy coefficient and the arrest of particle
diffusion upon “jamming” of cluster aggregates in the spinodal region predicts observable gel patterns that,
at high intercluster attraction, form system-spanning, out-of-equilibrium networks with glasslike, quasistatic
structural relaxation. For reactive systems, we incorporate the free energy landscape of stable prenucleation
clusters into the Allen-Cahn reaction equation. We show that pattern formation is dominantly controlled by the
Damkohler number and the stability of the clusters, which modifies the autocatalytic rate of precipitation. As
clusters individually become more stable, bulk phase separation is suppressed.
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I. INTRODUCTION

A colloid is a collection of nanometer- to micron-sized
particles interacting in a fluid or solution. There has been
much interest in studying colloids due to their ability to mimic
atomic systems inaccessible to microscopy [1] and configure
into functional, self-assembling structures [2—4]. For instance,
the colloidal nature of cement paste, a material of vast societal
importance, has only recently been exploited to gain insight
into the characteristics that lend to its exceptional mechanical
properties [5—7]. Likewise, the discharge products of lithium-
ion batteries are being engineered to maximize ion transport
and increase energy storage [8,9], and magnetic nanoparticles
are being functionalized as drug delivery vehicles, sealants,
and separation aids [10-12].

Recent experiments on the thermodynamics of reactive
colloids have demonstrated pathways toward amorphous or
crystalline bulk structures via precipitation of stable prenu-
cleation clusters and reconciled these findings with classical
nucleation theory [12]. In fact, two-step nucleation from
stable precursors has been demonstrated in a host of particu-
late and biomineral systems [13—18]. Stabilizing mechanisms
such as long-range electrostatic forces [19-22], favorable ion
coordination [15], and polar or micellar association [23] allow
persistent intermediates to form that settle into bulk structures
upon supersaturation. Yet no physically consistent, systematic
study has been brought forth to investigate the influences that
control phase separation in these systems.
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In this article, we examine the mean-field nonequilibrium
thermodynamics of reactive colloids that form mesoscale
structures by aggregation and precipitation of stable precur-
sors. Before introducing the reaction rate, it is shown that
a convex gradient energy penalty reproduces characteristics
akin to viscoelastic phase separation [24,25], where contrast-
ing entropic driving forces rather than differing constitutive
behaviors summon a rich set of gel-patterns also observable
in nature. Dynamic asymmetry between the low-density gas
and high-density gel phases is imposed by arresting particle
diffusion at local percolation in the spinodal region, allowing
a quasistatic system-spanning gel to form. Next, we show
that once reactive kinetics are included, the heterogeneity
of the system is principally controlled by the Damké&hler
number — the ratio between the reaction rate and the cluster
diffusion rate — and the stability of the cluster intermediates.
In particular, the thermodynamic landscape of clusters fully
parameterizes a generalized Eyring reaction rate that enhances
or suppresses bulk nucleation from solution [12,26].

II. NONEQUILIBRIUM THERMODYNAMICS
OF ATTRACTIVE COLLOIDS

Experimental observations and mode-coupling theory have
demonstrated that two length scales dominate the physics of
attractive colloids [27-29]: Colloids aggregate into clusters
of characteristic size, which further assemble into an arrested
mesoscopic network. Upon quenching — that is, rapidly
increasing the relative attractive strength between particles,
for instance, by decreasing the temperature or changing the
constitution of the solvent — these systems undergo glasslike
dynamic arrest where cluster-cluster aggregation exhibits lim-
ited bond breakage and the structure factor S, does not
significantly change on observational timescales. Akin to an
athermal granular medium, the colloid-rich phase undergoes a

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.095602&domain=pdf&date_stamp=2018-09-25
https://doi.org/10.1103/PhysRevMaterials.2.095602

PETERSEN, BAZANT, PELLENQ, AND ULM

PHYSICAL REVIEW MATERIALS 2, 095602 (2018)

(a) 2.0 binodal (b) (L) 2 dynamic arrest
; b}?ﬁ%(?al 0.3 E SN diffusion reaction
L8 ——  ¢,-local percolation gx \\ - controlled controlled
- o I=s / N Fres
. - 2 0.2 , . 0
_ 16 . 13 // \ ~ SN
5 fyid | A N = -
4 0.1 / spinodal region / S 3 I
= -9 \*\\ bl fo =8
1.2 0.0 miscibility gap -
Lo 02 04 06 08 10 0.0 02 030 075 100 0.00 025 050 0.75  1.00

FIG. 1. (a) Stability diagram depicting the binodal, spinodal, and
to Eq. (6), and the black line indicates € = 4.0 selected for panels

gelation lines at varying quench depths; the gelation line corresponds
(b) and (c), and all simulation results of nonconserved systems. (b)

Homogeneous part of Gibbs free energy of the clusters g,, where the linear term ( — jig)$ has been added for clarity. (c) Homogeneous
part of the diffusional chemical potential fi,, with jig — Q and reservoir i, indicated by dashed, horizontal lines. The red star indicates the

packing fraction at the gelation transition.

jamming transition due to the local crowding of cluster aggre-
gates, as opposed to grains, which presents a “hidden” binodal
at densities far below the thermodynamically predicted dense
equilibrium [30-32]. As an example, this gelation line is
drawn in red in the stability diagram shown in Fig. 1(a). For
mechanically unperturbed systems, thermal fluctuations pro-
mote densification toward equilibrium so slowly that further
advances are made principally by reactive precipitation into
the local structure.

In particle systems with purely attractive interactions, er-
godicity breaking at the scale of clusters creates polydisperse
cluster sizes. However, if weak, long-range repulsive forces
are introduced, simulations and experiments have shown col-
loids to form dilute suspensions of stable clusters with a
narrow size distribution that persists over days [20,21]. Only
after further increasing the mean packing density or attractive
strength does further aggregation and phase separation pro-
ceed, leading to eventual arrest at the scale of cluster aggre-
gates. To model the physics of these two length scales, we
introduce a dynamic reaction-diffusion equation for colloidal
clusters. Clusters are treated as renormalized particles of
characteristic size a, whose local packing density is advanced
by a field variable ¢ and diffusion is driven by gradients in
the chemical potential of the clusters u. The ability of the
dynamic equation to evolve realistic density patterns of col-
loidal gels is first demonstrated on conserved systems, where
an initially homogeneous density field is assigned, and no
additional insertion or deletion of clusters is permitted. These
systems phase separate into high- and low-density regions,
where clusters, initially disconnected from one another, form
cluster aggregates whose diffusivity is exponentially reduced
at local percolation. Though we admit that polydispersity in
sizes of cluster aggregates are relevant to the dynamics [33,34]
and that the dynamics are a history-dependent function of
¢, the present study aims to reduce model complexity by
focusing on the mesoscopic parameters that predict instability
and pattern formation. Thus, we do not explicitly track the size
distribution of the cluster aggregates; we reserve a forthcom-
ing study to add an additional microscopic order parameter
to investigate the elasticity of colloids in a continuum setting.
We continue our study by deriving a general reaction rate to
form clusters that are individually stable but may collectively
phase separate if a mesoscopic energy barrier is crossed.

Specifically, the Allen-Cahn reaction equation, which was first
introduced into electrochemistry to model phase separation
in lithium-ion batteries [35,36], utilizes the thermodynamic
landscape of the stabilized clusters to measure the net rate of
insertion. In other words, we model bulk nucleation as a two-
step process. Throughout this article we refer to clusters as
stabilized base units that assemble into an out-of-equilibrium,
mesoscopic gel network.

A. Dynamic equation for density patterns

We posit the internal chemical potential of a cluster
u(¢, Vo) as nonuniform, depending principally on the local
packing density ¢ and its gradient V¢ [37]. Thus, local cluster
rearrangements are driven by spatial variations in u, and the
evolution of the system is modeled by a general reaction-
diffusion equation for nonequilibrium thermodynamic mix-
tures [35,37,38],

v. (

¢

a
where kgT sets the thermal energy scale, D(@) is the tracer
diffusivity, R is a reaction rate controlling insertion or deletion
of clusters, and 0 < q3 = ¢/¢m < 1 1is the filling fraction with
¢m the maximum packing density (~ is henceforth used to
signify nondimensionalized and normalized quantities). The
first, conserved term is a Cahn-Hilliard kernel that tracks
cluster diffusion within the domain [37], and the second,
nonconserved term is an Allen-Cahn reaction rate that acts
as a cluster source or sink [35,38]. While diffusion depends
only on the local chemical potential, the reaction rate in this
open system depends also on the external reservoir potential
Ures- The explicit expression for R will be derived in a section
below.

To calculate u, the free-energy landscape of a system of

volume V is measured using a Ginzburg-Landau functional,
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where the Gibbs energy density g is expressed as a sum of

homogeneous and inhomogeneous contributions. Because the
energy demanded in separating monomers quenched into
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clusters far exceeds that needed to separate clusters
themselves, and we aim to model stabilized clusters that
form at a characteristic size, the homogeneous free energy
density is expressed as a regular solution of cluster-occupied
sites and vacancies,
b

8D G0+ (1 -l - @) — 2 + i, ©)

nskBT
with site density ng [35]. Thus clusters act as renormalized
particles where Q= Q/ksgT and Iy = po/kgT are, respec-
tively, the interaction parameter between clusters and chem-
ical potential of a cluster in a dilute system, each measured
with respect to the thermal energy scale. The double-well
shape of g" is plotted in Fig. 1(b), where two minima define
low- and high-density thermodynamic equilibria, and the
concave spinodal region indicates packing densities at which
homogeneous base states in conserved systems are unstable to
density fluctuations. The variable gradient energy coefficient
for the inhomogeneous free-energy contribution is chosen as

K@) 2 k&
nsa?kgT ~— 9¢(1 —¢)’

and encodes the interface width [ >~ (2/3)+/ko/S2 and surface
energy of the density field. De Gennes derived the expression
in Eq. (4) by relating the response of fluctuations in the
entropic portion of a free energy density similar to Eq. (3) to
the static structure factor and radius of gyration of polymer
coils [39,40]. Here, we repurpose his result for our attractive
colloids, where ergodicity breaking at the scale of the clusters
sets the length scale of the density fluctuations. With Gibbs
free energy defined, the diffusional chemical potential is
calculated using the Euler-Lagrange equation [35]:

“
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T 99 " aw}_ln<1—¢3> 28 + o
+ 52952 -9 (£G99) ©

This is the continuum analog to the standard definition of
the chemical potential in particle-resolved systems. Above,
" denotes ordinary differentiation, and the gradient operator
V= LV has been normalized by the linear size of the
system L. The shape of the homogeneous part of the
chemical potential i" = dg"/d¢ is plotted in Fig. 1(c) and
will be discussed in relation to the reactive system’s stability
in greater depth below.

B. Glasslike arrest of particle diffusion

Several experimental investigations of phase-separating
colloids have shown that dynamic arrest is initiated when
cluster aggregates crowd their local volume and the rate of
bond formation exceeds the rate of bond breakage at a gelation
line aptly described by [31,41]

¢o = ¢7 exp (— 2 ) ©6)
& £ XkBT ’

Above, x is a constant of order unity, and qbg is a packing
density near the glass transition of hard spheres, here chosen
as qbg = 1.5 ¢,. As stated in Ref. [31], the exponential form of
Eq. (6) is suggestive of a thermally activated process whereby

¢, acts as the local packing at which the number of kinetic
pathways toward a lower energy state drastically reduces.
Approaching this threshold leads to a rapid increase of the
mean size of the cluster aggregates and a sharp decrease in
local particle diffusion. A plethora of details are relevant to
accurately model particle motion, including the size distribu-
tion of the aggregates, its hydrodynamic interactions with the
solvent [42], the history dependence of the aggregation pro-
cess, and dynamical heterogeneity that varies across orders of
magnitude [33]. Because this article investigates aggregation
that is largely unidirectional, favoring net densification, and
we wish to maintain model parsimony, we opt to introduce an
expression for the tracer diffusivity that captures the general
physics of motion, though admittedly needs to be parameter-
ized for the system at hand.

On approach of the gelation line from low densities, bulk
measurements on attractive colloids show power-law diver-
gence in viscosity [31], observations expected to be the result
of particle motion that is increasingly collective [43—45]. As
a consequence, we assume the diffusivity to scale as D ~
&E/a)!V ~|p — ¢g|77 for ¢ < ¢, where y and v are critical
exponents for the diffusivity and correlation length &, respec-
tively. Though diffusion drastically reduces once the percola-
tion cluster forms, continued motion in physical systems per-
sists due to the finite size of the system [46], cluster aggregates
that remain disconnected from the percolation cluster [47],
and activated events caused by internal stresses and thermal
fluctuations [48]. Hence, we adjust the power-law relation for
& toits characteristic length at gelation and infer ¢ = ¢ as the
packing density at which the cluster aggregates percolate their
cage of size &,. Specifically, we relate @, and &, = (£,/a) in
our expression for the tracer diffusivity as follows:

'él/u 4
D=Do|:€H(€)+§g_l/vexp <—g7|€|>:| . 7

Above, Dy ~ kgT /3man is the tracer diffusivity in a dilute
system, with 1 being the solvent viscosity, € = (qu — (;Nb)/qNbg
is the reduced density, and H is the Heaviside function.
The form of Eq. (7) imparts the following characteristics on
D: (i) a power-law dependence on the packing density at
low ¢, (ii) &, as the relevant length scale at ¢,, and (iii) a
stretched exponential relaxation upon arrest [48]. Similar to
Vogel-Fulcher-Tammann relaxation in glasses [49], Eq. (6)
ascribes dynamic arrest to the loss of thermally activated
rearrangement, and Eq. (7) imposes an exponential decay in
the collective diffusion of cluster aggregates upon jamming.

C. Results for conserved systems

Before deriving the reaction rate R, we exemplify the
flexibility of our model in resolving pattern formation of
conserved fields. Simulations were run by implementing the
weak form of Eq. (1) in the open source Multiphysics Object-
Oriented Simulation Environment (MOOSE) [50], a finite-
element analysis software. Trials were run by initializing the
density field at a homogeneous base state with mean filling
fraction ® = (f;, $dV)/V = 1/3 and adding Langevin noise
with variance scaled by D to account for thermal fluctua-
tions [51]. Figures 2(a)-2(f) compare snapshots of simulated
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FIG. 2. (a)~(c) Snapshots of ¢(x) for conserved colloidal systems at 7 = rL2 /Dy = 1.0 for varying quench depths €2; darkness is

sys

proportional to @. (d)-(e) Experimental images for (d) the demixing of milk protein [52], (e) polystyrene-poly(vinyl methyl ether) [53],
and (f) polystyrene-diethyl malonate solutions [54]. (g) Time evolution of the characteristic domain size 7, where 7, denotes the time of

0

maximum interface area. (h) Evolution of the characteristic domain size rescaled to show its stretched exponential behavior; 7, corresponds to
the domain size at 7y, and the insets show 8 >~ Co(Q — o) and In(r) =~ C,(Q — )/[Ca + ( — )] with fitting constants C;. Simulations
were run at numerical resolution 512 x 512 and system size Ly, = 1 with parameters kq/nkg TLfyS =0.001, x =3.0,y =1.2,v=0.88,

& = 50, and ¢? /¢ = 0.4.

and observed colloidal mixtures quenched into varying states
of intercluster attraction. As displayed, adjusting intercluster
attractive strength Q predicts dramatic changes to the texture
and dynamics of the resulting fields, despite fixing the mean
filling fraction. The fields predict droplet nucleation at low
€2, metastable filaments at moderate €2, and a spanning hon-
eycomb network at high Q [Figs. 2(a)-2(c)], similarly seen
in experimental analogs [Figs. 2(d)-2(e)]. For the relevant
system, our model reproduces several features also observed
in viscoelastic phase separation [24,25]: (i) nucleation of a
colloid-rich phase, (ii) volume shrinking of the colloid-rich
phase and nucleation of holes therein, and (iii) the formation
of a spanning network. However, instead of attributing the
kinetic asymmetry to differences in elasticity, here the asym-
metry results from differences in the entropic penalty from
density fluctuations. The convex shape of « and arrest of the
colloid-rich phase in the spinodal region dramatically reduces
its interfacial tension, whence the field in Fig. 2(b) evolved
into its quasistable nonspherical shape. For arrest at lower
¢, the aggregates become increasingly cohesive, invading the
solvent to form long-range bridges as seen in Fig. 2(c). Unlike
viscoelastic phase separation, spanning systems of colloidal
aggregates become quiescent, showing little structural evolu-
tion over decades [42,55], and phase inversion is not observed;
simulations for Q = {4.5, 5.0} were run for a decade beyond
the results shown in Fig. 2 without observing phase inversion.

For an isotropic density field, the structure factor is calcu-
lated as

Sq(q) = ®)

(Pp(@e" (@)

%
where (]3(@) is the Fourier transform of ¢ (%), * indicates com-
plex conjugation, and brackets denote spherical averaging.
Increased quench depths shift the peak frequency in S, toward
shorter wavelengths, and a decline, rather than growth, of
long wavelengths (low §) signifies a system-spanning gel of
increasingly rigidifying, thinning ligaments as discerned in
Fig. 3(a). This finding is verified in Fig. 2(g), which depicts
the evolution of the characteristic domain size measured from

the first moment in § as

~ ~\ —1
fch — (M) s (9)
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FIG. 3. (a) Structure factor of ¢(x) for various Q at 7 — 7, = 1.0
(thick lines) and 7 — 7, = 10.0 (thin lines), where 7, denotes the time
at which the interface area is at its maximum; curves are vertically
offset for clarity. (b) Time evolution of the peak integrated intensity
iq = [ 8,dg; the legend indicating Q also corresponds to the curves
in (a). Dissolution and redeposition of small “droplets” onto adjacent
larger structures — Ostwald ripening — is marked by step changes in
1, for 2 =2.5and & = 3.0. Time and length scales are normalized
by the dilute limit self-diffusivity of a cluster Dy and the system size
Lyys as follows: 7 = tDy/L% and § = gLy,

sys
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where I, = [ S,dg is the integrated peak intensity. For low
Q, coarsening proceeds via Ostwald ripening [e.g., Q@ = 2.5;
Fig. 2(a)] and contraction of gel filaments [e.g., 2 = 3.5;
Fig. 2(b)], adhering to early-stage diffusive 7'/3 power-law
scaling for 7y, [56-58]. In fact, loss of step changes in the
evolution of /, in Fig. 3(b) indicates a clear distinction in
coarsening dynamics. As  is increased, diffusive scaling in
Fen 1s abandoned and domain growth arrests into an out-of-
equilibrium gel with anticipated bulk elasticity [59,60]; here,
percolation of the bulk volume is a prerequisite for arrest.
Denoting € as the minimal quench depth to form a system-
spanning gel, Fig. 2(h) demonstrates stretched exponential
relaxation in the evolution of r., — typical of glass-forming
colloids — where the Vogel-Fulcher-Tammann timescale ©
and stretching exponent g are functions of the deviation from
the mesoscopic percolation threshold Q — Qy [61]. As low
stretching exponents 8 < 1 are the result of spatially het-
erogenous dynamics and f increases with €, heterogeneous
dynamics are most prominent in weakly attractive systems
close to the gelation threshold.

D. Reaction rate governed by stable cluster precursors

Our reaction rate R adapts to evidence that many chemi-
cal systems demonstrate pathways to nucleation from stable
prenucleation clusters [14—18,62]. These intermediates accel-
erate (decelerate) nucleation by decreasing (increasing) the
change in free energy A = 1 — s upon being added to
the bulk structure [12]. Specifically, we denote Au as the
difference in Gibbs free energy between a cluster precipi-
tated into the local volume p and its constituent monomers
dissolved in the external reservoir, fin.s: It is the diffusional
chemical potential of a cluster in an open system [35]. In
the following, we demonstrate nucleation of precursors that
are stabilized by long-range electrostatic forces as is seen in,
for instance, the early stages of cement paste setting [34,63]
and sedimentation of charged nanoparticles [19], though we
remark that the generality of the framework is readily adapted
to alternative stabilization mechanisms.

For weakly screened particles with a surface charge, the
classical energy contributions that scale with cluster volume
and surface area are supplemented by a higher-order term that
results from Coulomb interactions [64]. The Gibbs free energy
of formation of such a cluster of N monomers is approximated
by [64]

Alac = ﬁO(N) — [hres
3
= NAGD + N*3 A6 + N5/32—,\Bp3v2, (10)
a

where Afig is the change in energy upon placing a free
monomer into the interior of the cluster normalized by kg7,
& is the surface energy, and A is a constant shape factor. The
electrostatic self-energy due to the particles’ surface charge
scales with the Bjerrum length Ap and the square of the
charge density p2 [65], and v is the characteristic volume
of a monomer. The N3 dependence of this term derives
from the number of Coulomb interactions measuring ~N 2
while their mean separation distance measures ~N!/3. This
choice of the free-energy landscape, displayed in Fig. 4(a),
allows a local minimum to form stable clusters en route to

bulk nucleation. The free energy of formation of such a stable
cluster is denoted by Ajig = Aji.(N ~ ma’/6).

In a consistent description of reaction kinetics of nonequi-
librium thermodynamic mixtures, the reaction complex ex-
plores the excess chemical potential landscape between local
minima of cluster-vacant sites u&* and cluster-occupied sites
p. If expressions for u&* and p* are known and the ac-
tivation barrier of the transition state u$* can be estimated,
the net reaction rate is calculated from the probabilities of
precipitating and dissolving stable clusters from a lattice as
follows [35]:

- e
R = ko|:(1 — ¢)exp (__k—T>
B

~ Mex _MSX
—¢exp(——ikBT )} (11

where the likelihood of cluster insertion or deletion is scaled
by the fraction of vacant or occupied sites, respectively, and
the attempt frequency, denoted by k), is assumed equal in both
directions.

With reference to Appendix A, a thermodynamically con-
sistent choice for the homogeneous parts of the chemical
potentials of cluster-occupied and cluster-vacant sites read

b =kgT In(1 — @) + p

= kT In(1 — @) + QP + fes, (12a)
e = kg T In(@) + "
— kg T In(d) + (P — 2)F + o, (12b)

where u* is set to the chemical potential of the reservoir
plus the mean change in interaction energy upon adding a
vacancy, Q¢2, and n is set to the chemical potential of a
cluster in a dilute solution plus the mean change in interaction
energy upon inserting a cluster, Q¢(¢ —2). It is readily
observed that the extensive property of the chemical potentials
recovers Gibbs energy density, g" = ¢ul + (1 — ¢)uh, and
that replacing a vacancy by an occupancy is equivalent to
inserting a particle from an external source, Apu = [ty — [Lo.
If the transition state excludes one site during precipitation
and dissolution reactions [35], and we further estimate its
excess chemical potential from the landscape of Gibbs energy
of formation of a cluster in Eq. (10), we can write

u$ =kgTIn(1 — @) + apd + (1 —a)us™ + Apg,  (13)

where « is a symmetry factor measuring the fractional aggre-
gation of monomers required to reach the transition state [66],
and Apler = aApg + Apy = uf) — Hres 1S the energy barrier
with respect to the reservoir potential — otherwise termed
the energy of formation of a critical-sized cluster, for which a
geometric interpretation is given in Fig. 4(a). Hence, Eq. (13)
assumes the excess chemical potential of the transition state,
us*, to be estimated from a weighted average of the ex-
cess chemical potentials of cluster-inserted and cluster-vacant
states that are separated by a barrier of average height Apuy;
lastly, kg T measures the energetic cost to the system in occu-
pying a site during the transition. With the help of expressions
in Egs. (12a), (12b), and (13), the reaction rate in Eq. (11) can
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FIG. 4. (a) Thermodynamic landscape of the transition state to form stable cluster precursors for varying Aug' [see Eq. (10)]. (b) Reaction
rate (left axis) and autocatalytic rate (right axis) in function ¢. (c) Integrated growth rate of the § Fourier mode as calculated from the /> norm
of a perturbation for differing Da. All plots correspond to 2 = 4.0 and line colors correspond to trials listed in Table I: blue — T1, orange — T2,

green — T3, and red — T4.

be rewritten as a nonlinear function of A,

A A
R = R0|:exp (—ockB—/;> — exp <(1 — Ol)kB—l;)], (14)

for which the reaction rate coefficient obeys

Ta INl—a A

Ro = kop"(1 — ) “exp <—B—>- (15)
Equation (14) is the Allen-Cahn reaction rate for colloidal
cluster formation, for which we highlight several salient fea-
tures: (i) It adheres to the De Donder relation requiring reac-
tion rates to proceed in the direction of the chemical affinity,
sgn(R) = —Ayu. (ii) In the limit § — 0, it recovers the dilute
cluster nucleation rate ny = ko exp(—Ajfie), an expression
consistent with classical nucleation theory. (iii) The reaction
rate coefficient Ry adjusts the autocatalytic behavior of R
through its dependence on the filling fraction, ¢.

At this point, it is helpful to recapitulate how physics at
both the scale of the cluster and the mesoscale inform R. The
formation barrier and size of a cluster is dictated by Apc(N)
in Eq. (10) and sets the baseline relation between internal
and external potentials Apy as graphically represented in
Fig. 1(c). Clusters form more readily if Apg decreases,
the surface energy & reduces, or the electrostatic repulsion
subsides. Importantly, clusters with attractive interactions can
be metastable with respect to the reservoir potential, where
Apg > 0, yet lead to stable bulk nuclei at the mesoscale.
In theory, the energy barrier to nucleate a high-density bulk
phase from stable clusters is made up of the stabilizing
intercluster repulsive forces and the kinetic energy of the
clusters that transition from translational motion in the gas
phase to vibrational motion in the jammed phase. In practice,
the free energy density is fit to experimental observations of
the miscibility gap and solubility limits by adjusting € and
Ko [67]; these quantities are otherwise difficult to measure.
As a result, diluting effects of the electrostatic repulsion
upon crowding of clusters and size-dependent scaling of the
cluster-cluster interaction energy are subsumed into these
mesoscopic parameters. Bulk nuclei form once the chemical
driving force Ay is sufficient to drive ¢ into the spinodal
region, where Cahn-Hilliard dynamics promote phase sepa-

ration under permitting characteristics of the reaction rate.
These characteristics are explored next.

E. Results for nonconserved systems

In this section, we explore pattern formation in reactive-
diffusive systems by adjusting the thermodynamic landscape
of clusters, while maintaining a constant reservoir potential
and intercluster attraction. We elect to modify the landscape
as follows: Decreasing A lowers Ao and shifts the sym-
metry of the reaction rate toward lower o [see Fig. 4(a)].
Figure 4(b) plots four sample reaction rates, whose param-
eters are listed in Table I. To make predictions about sta-
bility and dominant length scales, a linear stability analysis
of the reaction-diffusion equation, Eq. (1), is performed in
Appendix B. We show that stability is ensured by a negative
growth rate coefficient, a)((f&h, q) < 0, which measures the
rate of change of small sinusoidal fluctuations 8¢ with wave
number ¢ from a homogeneous base state ¢ = @". For a
purely reactive system, where D = 0, the autocatalytic rate
A predicts stability if [68]

OR AR du"
Al = (_~ + —L) -0,
0  ou do

The autocatalytic rates are plotted on the secondary axis in
Fig. 4(b), where it is shown that decreasing Auy makes R
more autoinhibitory. Thus, increasingly stable clusters sup-
press preferential precipitation onto existing bulk phases. To
further analyze the implications of an autoinhibitory reaction
rate, Fig. 4(c) displays the integrated growth rate of unsta-
ble modes in course of reaction f ®R df, where @ is the

(16)

TABLE 1. Parameters defining the free energy landscapes of the
stable cluster precursors, where Aji. = ARJN + BN*? 4+ CN33,
and B = 0.023 and C = 2.608 are left constant.

Trial AL Afio o

T1 —0.890 2.350 0.324
T2 —0.900 2.240 0.273
T3 —0.915 1.636 0.219
T4 —0.950 0.000 0.144
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FIG. 5. Snapshots of reactive systems for varying precursor landscapes T; and Da at (a) = 0.4, (b) & = 0.6, and (c) ® = 0.8.

linearized growth rate of the § Fourier mode [68]. Growth
rates are plotted for different Apy and Damkohler number
Da = nl?/ Dy, where Dy = kgT/3nna and rng = R(¢ —
0) = ko exp(—Afi.) are the diffusivity and cluster nucleation
rate in a dilute suspension, respectively. Increasing Da damp-
ens the peak in [ @R df caused by the Cahn-Hilliard kernel,
and simultaneously decreasing Ay — that is, increasing the
stability of the prenucleation clusters — allows near complete
suppression of mode growth.

These predictions are verified by the pattern evolution
depicted in Figs. 5(a)-5(c) for increasing reaction extents ® =
{0.4, 0.6, 0.8}. The characteristic size of the emergent bulk
nuclei scale as ~[« /(du" /d¢)]'/? and depend critically on the
location within the spinodal region at which fluctuations grow.
Strongly diffusive clusters (low Da) phase separate readily
near the spinodal, amplifying large wavelengths, whereas
reaction-controlled dynamics (high Da) delay the growth
of instabilities toward higher ®, forming smaller nuclei in
larger abundance or proceeding by spinodal decomposition.
Importantly, dynamic arrest in diffusion at q~§g halts Cahn-
Hilliard mode growth, indicating that microtextural patterns
in attractive colloids are determined in the low-density portion
of the spinodal region. As Ay is decreased, further cluster
insertion shifts from surface growth of bulk nuclei toward
homogeneous densification; similar observations were made
in molecular-dynamics simulations of crystallizing Lennard-
Jones fluids in Ref. [69]. These physics are further reflected
in the two-point density correlation function C, plotted in
Fig. 6(b), where auto-inhibitory kinetics moderate its ampli-

FIG. 6. The two-point density correlation functions for Da = 0.1
as measured by the inverse Fourier transform of §, for ® = 0.6 and
Q =4.0.

tude and move the location of the second peak toward closer
separation distances 7. That is, as A becomes less positive, the
mean packing fraction of the gel phase CTDg behaves increas-
ingly linearly with the overall reaction extent (see inset of
Fig. 7) and density fluctuations form at smaller wavelengths.
Lastly, we calculate the mean pore size m, from the pore-
chord length probability density function with threshold ¢,
between gas and gel phases using the following relation [70]:

m:/ )z, (17
0

where p(z) is the pore-chord length probability density func-
tion and z measures the length of a sampled chord. As seen
in Fig. 7, the location of onset of bulk nucleation predicts 7,
prior to entering Avrami-like growth, where precipitation at
lower A universally produces smaller pores. This reduction
in pore size is facilitated both by accessing smaller wave-
lengths at phase separation, and more uniformly precipitating
stable precursors once the cluster aggregates have dynami-
cally arrested. Mesoscale texture is critical in predicting a
host of important material properties — elasticity, fracture
toughness, fluid and electrical conductivity, to name a few —
and Fig. 7 shows that pattern formation can be controlled if
the reaction rate is adjusted within the mobile portion of the

10(]

R

g 107!

1072

mobile kinetically arrested ]
0.2 04 06 0.8 1.0
¢y @

FIG. 7. Mean pore size 7, in function of the overall packing
fraction. The shaded domain corresponds to the spinodal region, red
and blue lines correspond to T1 and T4, respectively, and solid,
striped, and dotted lines correspond to Da = 0.1, 0.4, and 1.0,
respectively.
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spinodal region. The most important finding of our model is
that the thermodynamic landscape of the prenucleation clus-
ters is instrumental in suppressing or enhancing mesoscopic
patterns. By increasing the stability of the clusters, which
concurrently lowers «, the range of the unstable growth modes
of the Allen-Cahn reaction kernel narrows and shifts outside
the spinodal region of the Cahn-Hilliard diffusion kernel.

III. CONCLUSIONS

In summary, we have developed a mean-field, nonequi-
librium thermodynamic model for interacting colloids that
respects experimental observations made at two essential
length scales: Clusters nucleate as stable building blocks
at the microscale [71], and aggregate into an arrested, out-
of-equilibrium structure at the mesoscale [7,55]. Including
a variable, entropic gradient energy penalty in Gibbs free
energy provides a physics-grounded approach to simulate the
evolution of mean-field gel patterns. Previous studies have
proposed control of the reaction rate to modulate dominant
wavelengths during phase separation [36,68,72]. But the ex-
pressions derived in Egs. (14) and (15), which marry the
reactive landscape of stable intermediates into the Allen-Cahn
reaction equation [35], lend precision. They provide a tem-
plate to manipulate bulk colloidal structures that emerge from
stable prenucleation clusters by adjusting Ay upon entering
the mobile portion the spinodal region. While, the present
study focused on the response of homogeneous systems to
sudden changes in the normalized attractive strength and
supersaturation of the solution (i.e., Afig'), future work should
assess how adjustments in the reservoir potential in course
of reaction can manipulate ensuing colloidal patterns. This
could advance design of tailor-made colloidal structures that
enhance selected mechanical properties.
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APPENDIX A: CHEMICAL POTENTIAL
OF VACANCIES AND OCCUPANCIES

We briefly outline relations for the chemical potentials of a
vacancy [, and an occupancy i,. Using the classical thermo-
dynamic definition of a chemical potential, 1, quantifies the
change in Gibbs free energy due to a change in the number
of vacancies (voids) N, while keeping the temperature 7,

the pressure P (which we have not explicitly defined), and
number of occupancies (clusters) N, constant,

(3G _ (G v
e=\av. )y, —\av ), o, )y,
5G RYo)
+(5s),, (),
nsé¢ V.T N, N..T

Above, V is the system volume, and an equivalent expres-
sion can be written for u, by replacing N, with N,. Using
Eq. (2) for G and noting the total number of sites as Ny =
Vns = N, + N, with packing density ¢ = N,/N, Eq. (A1)
readily yields

(AD)

Mg = gh — (p,uh =kgT In(1 — (f;) + 9(52 + Mres, (A2a)
= g" 4+ (1 — o) = kg T In(P) + Q2 — 2)¢ + p0.
(A2b)

Here, Q@” is the mean change in interaction energy at-
tributed to adding a new site into the lattice, while —2943
measures the mean change in interaction energy upon placing
a cluster into that site.

APPENDIX B: LINEAR STABILITY ANALYSIS
OF THE REACTION-DIFFUSION EQUATION

This Appendix outlines the criterion for stability of our
reaction-diffusion equation that describes the nonequilibrium
thermodynamics of attractive colloids, Eq. (1). The derivation
follows closely the procedure outlined by one of the authors
in Ref. [68], which may be consulted for additional details.
Starting from a homogeneous base state where ¢(x) = ¢",
the field is perturbed by small fluctuations 8¢. We measure
the aggregate strength of the fluctuations by the /> norm of the
perturbation field,

L= l/(5¢3)2dv. (B1)
2 )y

For a base state to be stable with respect to the dynamics
imposed by Eq. (1), £ must be a decreasing function of time.
That is,

ar - (38¢
Stable if: —— = / 8¢ 39 1y
dt v at

= / 8P(—D(VSp)? + A(8P)*)dV < 0,
\%4

(B2)
where the chemical diffusion D and autocatalytic rate A,
sil
p=1% (B3a)
8¢
SR OR ORS[ OR i
S L e G5 1)
5 3¢ OROP  Ofies 09

are evaluated at ¢(x) = ¢" and L = D¢ /kgT is the Onsager
coefficient. Next, the variational derivative of the internal
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chemical potential i simplifies to

s G dph .,
5% = miaT@pr ~ g TR @9

once insignificant terms dependent on V¢ are removed.
Lastly, we choose the perturbation to be sinusoidal with
Fourier frequency g, for which V8¢ = ¢8¢. If the growth rate
of the perturbation is linearized as [0(8¢)/dt] = w8¢ with
growth rate coefficient w, the stability criterion in Eq. (B2)

can be rewritten as

. dL -
Stable if: — =w | (6¢)°dV <0, (BS)
dt v
with
~ OR dR dIfi
h Y e res
CL)(¢ ,Q)_(a(i—i_a[’lres 8(]3 )

~h
qu) (% + @2). (B6)

N IR
I

[1] P.J. Lu and D. A. Weitz, Annu. Rev. Condens. Matter Phys. 4,
217 (2013).

[2] D. J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D.
A. Weitz, A. van Blaaderen, J. Groenewold, M. Dijkstra, and
W. K. Kegel, Proc. Natl. Acad. Sci. USA 109, 10787 (2012).

[3] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzan,
ACS Nano 4, 3591 (2010).

[4] X. Zhou, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, Adv. Energy
Mater. 2, 1086 (2012).

[5] H. M. Jennings, Cem. Concr. Res. 30, 101 (2000).

[6] E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S.
Yip, Phys. Rev. Lett. 109, 155503 (2012).

[7] K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E.
Masoero, S. Yip, E-J. Ulm, P. Levitz, R. J.-M. Pellenq, and E.
Del Gado, Proc. Natl. Acad. Sci. USA 113, 2029 (2016).

[8] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, and W.
Wilcke, J. Phys. Chem. Lett. 1, 2193 (2010).

[9] B. Horstmann, T. Danner, and W. G. Bessler, Energy Environ.
Sci. 6, 1299 (2013).

[10] M. Lattuada and T. A. Hatton, Langmuir 23, 2158 (2007).

[11] A. Ditsch, P. E. Laibinis, D. I. Wang, and T. A. Hatton,
Langmuir 21, 6006 (2005).

[12] J. Baumgartner, A. Dey, P. H. Bomans, C. Le Coadou, P. Fratzl,
N. A. Sommerdijk, and D. Faivre, Nat. Mater. 12, 310 (2013).

[13] V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301,
483 (2003).

[14] C. C. Carcouét, M. W. van de Put, B. Mezari, P. C. Magusin,
J. Laven, P. H. Bomans, H. Friedrich, A. C. C. Esteves, N. A.
Sommerdijk, R. A. van Benthem et al., Nano Lett. 14, 1433
(2014).

[15] D. Gebauer, A. Volkel, and H. Colfen, Science 322, 1819
(2008).

[16] P. Tan, N. Xu, and L. Xu, Nat. Phys. 10, 73 (2014).

[17] T. H. Zhang and X. Y. Liu, J. Am. Chem. Soc. 129, 13520
(2007).

[18] V. Privman, D. V. Goia, J. Park, and E. Matijevi¢, J. Colloid
Interface Sci. 213, 36 (1999).

[19] T. H. Zhang, J. Klok, R. H. Tromp, J. Groenewold, and W. K.
Kegel, Soft Matter 8, 667 (2012).

[20] A. I. Campbell, V. J. Anderson, J. S. van Duijneveldt, and P.
Bartlett, Phys. Rev. Lett. 94, 208301 (2005).

[21] F. Sciortino, S. Mossa, E. Zaccarelli, and P. Tartaglia, Phys. Rev.
Lett. 93, 055701 (2004).

[22] A. Stradner, H. Sedgwick, F. Cardinaux, W. C. Poon, S. U.
Egelhaaf, and P. Schurtenberger, Nature (London) 432, 492
(2004).

[23]1 J. N. Israelachvili, Intermolecular and Surface Forces
(Academic Press, New York, 2011).

[24] H. Tanaka, Phys. Rev. Lett. 76, 787 (1996).

[25] H. Tanaka and T. Araki, Phys. Rev. Lett. 78, 4966 (1997).

[26] D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H.
Colfen, Chem. Soc. Rev. 43, 2348 (2014).

[27] J. Bergenholtz and M. Fuchs, Phys. Rev. E 59, 5706 (1999).

[28] K. Kroy, M. E. Cates, and W. C. K. Poon, Phys. Rev. Lett. 92,
148302 (2004).

[29] M. E. Cates, M. Fuchs, K. Kroy, W. C. Poon, and A. M. Puertas,
J. Phys.: Condens. Matter 16, S4861 (2004).

[30] F. Cardinaux, T. Gibaud, A. Stradner, and P. Schurtenberger,
Phys. Rev. Lett. 99, 118301 (2007).

[31] P. N. Segre, V. Prasad, A. B. Schofield, and D. A. Weitz, Phys.
Rev. Lett. 86, 6042 (2001).

[32] U. Gasser, E. R. Weeks, A. Schofield, P. Pusey, and D. Weitz,
Science 292, 258 (2001).

[33] E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).

[34] K. Ioannidou, M. Kandu¢, L. Li, D. Frenkel, J. Dobnikar, and
E. Del Gado, Nat. Commun. 7, 12106 (2016).

[35] M. Z. Bazant, Acc. Chem. Res. 46, 1144 (2013).

[36] P. Bai, D. A. Cogswell, and M. Z. Bazant, Nano Lett. 11, 4890
(2011).

[37] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258
(1958).

[38] S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

[39] P. De Gennes, J. Chem. Phys. 72, 4756 (1980).

[40] P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, NY, 1979).

[41] T. Gibaud, F. Cardinaux, J. Bergenholtz, A. Stradner, and P.
Schurtenberger, Soft Matter 7, 857 (2011).

[42] Z. Varga and J. Swan, Soft Matter 12, 7670 (2016).

[43] T. A. Witten, Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[44] P. Wiltzius, Phys. Rev. Lett. 58, 710 (1987).

[45] W. Hess, H. L. Frisch, and R. Klein, Z. Phys. B: Condens.
Matter 64, 65 (1986).

[46] D. Stauffer, Phys. Rep. 54, 1 (1979).

[47] P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

[48] L. Cipelletti, S. Manley, R. C. Ball, and D. A. Weitz, Phys. Rev.
Lett. 84, 2275 (2000).

[49] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

[50] Idaho National Laboratory, USA, “Multiphysics object-oriented
simulation environment”, Accessed: 08-20-2017.

[51] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435
1977).

095602-9


https://doi.org/10.1146/annurev-conmatphys-030212-184213
https://doi.org/10.1146/annurev-conmatphys-030212-184213
https://doi.org/10.1146/annurev-conmatphys-030212-184213
https://doi.org/10.1146/annurev-conmatphys-030212-184213
https://doi.org/10.1073/pnas.1116820109
https://doi.org/10.1073/pnas.1116820109
https://doi.org/10.1073/pnas.1116820109
https://doi.org/10.1073/pnas.1116820109
https://doi.org/10.1021/nn100869j
https://doi.org/10.1021/nn100869j
https://doi.org/10.1021/nn100869j
https://doi.org/10.1021/nn100869j
https://doi.org/10.1002/aenm.201200158
https://doi.org/10.1002/aenm.201200158
https://doi.org/10.1002/aenm.201200158
https://doi.org/10.1002/aenm.201200158
https://doi.org/10.1016/S0008-8846(99)00209-4
https://doi.org/10.1016/S0008-8846(99)00209-4
https://doi.org/10.1016/S0008-8846(99)00209-4
https://doi.org/10.1016/S0008-8846(99)00209-4
https://doi.org/10.1103/PhysRevLett.109.155503
https://doi.org/10.1103/PhysRevLett.109.155503
https://doi.org/10.1103/PhysRevLett.109.155503
https://doi.org/10.1103/PhysRevLett.109.155503
https://doi.org/10.1073/pnas.1520487113
https://doi.org/10.1073/pnas.1520487113
https://doi.org/10.1073/pnas.1520487113
https://doi.org/10.1073/pnas.1520487113
https://doi.org/10.1021/jz1005384
https://doi.org/10.1021/jz1005384
https://doi.org/10.1021/jz1005384
https://doi.org/10.1021/jz1005384
https://doi.org/10.1039/c3ee24299d
https://doi.org/10.1039/c3ee24299d
https://doi.org/10.1039/c3ee24299d
https://doi.org/10.1039/c3ee24299d
https://doi.org/10.1021/la062092x
https://doi.org/10.1021/la062092x
https://doi.org/10.1021/la062092x
https://doi.org/10.1021/la062092x
https://doi.org/10.1021/la047057+
https://doi.org/10.1021/la047057+
https://doi.org/10.1021/la047057+
https://doi.org/10.1021/la047057+
https://doi.org/10.1038/nmat3558
https://doi.org/10.1038/nmat3558
https://doi.org/10.1038/nmat3558
https://doi.org/10.1038/nmat3558
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1021/nl404550d
https://doi.org/10.1021/nl404550d
https://doi.org/10.1021/nl404550d
https://doi.org/10.1021/nl404550d
https://doi.org/10.1126/science.1164271
https://doi.org/10.1126/science.1164271
https://doi.org/10.1126/science.1164271
https://doi.org/10.1126/science.1164271
https://doi.org/10.1038/nphys2817
https://doi.org/10.1038/nphys2817
https://doi.org/10.1038/nphys2817
https://doi.org/10.1038/nphys2817
https://doi.org/10.1021/ja073598k
https://doi.org/10.1021/ja073598k
https://doi.org/10.1021/ja073598k
https://doi.org/10.1021/ja073598k
https://doi.org/10.1006/jcis.1999.6106
https://doi.org/10.1006/jcis.1999.6106
https://doi.org/10.1006/jcis.1999.6106
https://doi.org/10.1006/jcis.1999.6106
https://doi.org/10.1039/C1SM06570J
https://doi.org/10.1039/C1SM06570J
https://doi.org/10.1039/C1SM06570J
https://doi.org/10.1039/C1SM06570J
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.94.208301
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1103/PhysRevLett.93.055701
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1038/nature03109
https://doi.org/10.1103/PhysRevLett.76.787
https://doi.org/10.1103/PhysRevLett.76.787
https://doi.org/10.1103/PhysRevLett.76.787
https://doi.org/10.1103/PhysRevLett.76.787
https://doi.org/10.1103/PhysRevLett.78.4966
https://doi.org/10.1103/PhysRevLett.78.4966
https://doi.org/10.1103/PhysRevLett.78.4966
https://doi.org/10.1103/PhysRevLett.78.4966
https://doi.org/10.1039/C3CS60451A
https://doi.org/10.1039/C3CS60451A
https://doi.org/10.1039/C3CS60451A
https://doi.org/10.1039/C3CS60451A
https://doi.org/10.1103/PhysRevE.59.5706
https://doi.org/10.1103/PhysRevE.59.5706
https://doi.org/10.1103/PhysRevE.59.5706
https://doi.org/10.1103/PhysRevE.59.5706
https://doi.org/10.1103/PhysRevLett.92.148302
https://doi.org/10.1103/PhysRevLett.92.148302
https://doi.org/10.1103/PhysRevLett.92.148302
https://doi.org/10.1103/PhysRevLett.92.148302
https://doi.org/10.1088/0953-8984/16/42/005
https://doi.org/10.1088/0953-8984/16/42/005
https://doi.org/10.1088/0953-8984/16/42/005
https://doi.org/10.1088/0953-8984/16/42/005
https://doi.org/10.1103/PhysRevLett.99.118301
https://doi.org/10.1103/PhysRevLett.99.118301
https://doi.org/10.1103/PhysRevLett.99.118301
https://doi.org/10.1103/PhysRevLett.99.118301
https://doi.org/10.1103/PhysRevLett.86.6042
https://doi.org/10.1103/PhysRevLett.86.6042
https://doi.org/10.1103/PhysRevLett.86.6042
https://doi.org/10.1103/PhysRevLett.86.6042
https://doi.org/10.1126/science.1058457
https://doi.org/10.1126/science.1058457
https://doi.org/10.1126/science.1058457
https://doi.org/10.1126/science.1058457
https://doi.org/10.1088/0953-8984/19/32/323101
https://doi.org/10.1088/0953-8984/19/32/323101
https://doi.org/10.1088/0953-8984/19/32/323101
https://doi.org/10.1088/0953-8984/19/32/323101
https://doi.org/10.1038/ncomms12106
https://doi.org/10.1038/ncomms12106
https://doi.org/10.1038/ncomms12106
https://doi.org/10.1038/ncomms12106
https://doi.org/10.1021/ar300145c
https://doi.org/10.1021/ar300145c
https://doi.org/10.1021/ar300145c
https://doi.org/10.1021/ar300145c
https://doi.org/10.1021/nl202764f
https://doi.org/10.1021/nl202764f
https://doi.org/10.1021/nl202764f
https://doi.org/10.1021/nl202764f
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1063/1.439809
https://doi.org/10.1063/1.439809
https://doi.org/10.1063/1.439809
https://doi.org/10.1063/1.439809
https://doi.org/10.1039/C0SM01175D
https://doi.org/10.1039/C0SM01175D
https://doi.org/10.1039/C0SM01175D
https://doi.org/10.1039/C0SM01175D
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1039/C6SM01285J
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.58.710
https://doi.org/10.1103/PhysRevLett.58.710
https://doi.org/10.1103/PhysRevLett.58.710
https://doi.org/10.1103/PhysRevLett.58.710
https://doi.org/10.1007/BF01313690
https://doi.org/10.1007/BF01313690
https://doi.org/10.1007/BF01313690
https://doi.org/10.1007/BF01313690
https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.51.1119
https://doi.org/10.1103/PhysRevLett.84.2275
https://doi.org/10.1103/PhysRevLett.84.2275
https://doi.org/10.1103/PhysRevLett.84.2275
https://doi.org/10.1103/PhysRevLett.84.2275
https://doi.org/10.1063/1.1696442
https://doi.org/10.1063/1.1696442
https://doi.org/10.1063/1.1696442
https://doi.org/10.1063/1.1696442
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435

PETERSEN, BAZANT, PELLENQ, AND ULM

PHYSICAL REVIEW MATERIALS 2, 095602 (2018)

[52] P. W. de Bont, G. M. van Kempen, and R. Vreeker, Food
Hydrocolloids 16, 127 (2002).

[53] K. El-Mabrouk, M. Belaiche, and M. Bousmina, J. Colloid
Interface Sci. 306, 354 (2007).

[54] H. Tanaka, Phys. Rev. Lett. 71, 3158 (1993).

[55] P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino,
and D. A. Weitz, Nature (London) 453, 499 (2008).

[56] 1. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35
(1961).

[57] E. D. Siggia, Phys. Rev. A 20, 595 (1979).

[58] A. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield,
U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W.
V. Meyer et al., Phys. Rev. Lett. 99, 205701 (2007).

[59] V. Testard, L. Berthier, and W. Kob, Phys. Rev. Lett. 106,
125702 (2011).

[60] M. C. Grant and W. B. Russel, Phys. Rev. E 47, 2606 (1993).

[61] M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem.
Soc. 77, 3701 (1955).

[62] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L.
Penn, Science 289, 751 (2000).

[63] R.J.-M. Pellenq and H. Van Damme, MRS Bull. 29, 319 (2004).

[64] J. Groenewold and W. K. Kegel, J. Phys. Chem. B 105, 11702
(2001).

[65] Though p? is inversely related to ¢ in closed systems, its
dependence is less certain in open systems where ion exchange
is possible and we hold it constant here.

[66] A. M. Kuznetsov and J. Ulstrup, Electron Transfer in Chemistry
and Biology: An Introduction to the Theory (John Wiley & Sons,
Ltd., New York, 1999).

[67] D. A. Cogswell and M. Z. Bazant, ACS Nano 6, 2215 (2012).

[68] M. Z. Bazant, Faraday Discuss. 199, 423 (2017).

[69] F. Trudu, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 97,
105701 (2006).

[70] S. Torquato, Random Heterogeneous Materials: Microstructure
and Macroscopic Properties (Springer Science & Business
Media, New York, NY, 2013), Vol. 16.

[71] D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433
(1984).

[72] S. C. Glotzer, E. A. Di Marzio, and M. Muthukumar, Phys. Rev.
Lett. 74, 2034 (1995).

095602-10


https://doi.org/10.1016/S0268-005X(01)00070-4
https://doi.org/10.1016/S0268-005X(01)00070-4
https://doi.org/10.1016/S0268-005X(01)00070-4
https://doi.org/10.1016/S0268-005X(01)00070-4
https://doi.org/10.1016/j.jcis.2006.10.051
https://doi.org/10.1016/j.jcis.2006.10.051
https://doi.org/10.1016/j.jcis.2006.10.051
https://doi.org/10.1016/j.jcis.2006.10.051
https://doi.org/10.1103/PhysRevLett.71.3158
https://doi.org/10.1103/PhysRevLett.71.3158
https://doi.org/10.1103/PhysRevLett.71.3158
https://doi.org/10.1103/PhysRevLett.71.3158
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1038/nature06931
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1103/PhysRevA.20.595
https://doi.org/10.1103/PhysRevA.20.595
https://doi.org/10.1103/PhysRevA.20.595
https://doi.org/10.1103/PhysRevA.20.595
https://doi.org/10.1103/PhysRevLett.99.205701
https://doi.org/10.1103/PhysRevLett.99.205701
https://doi.org/10.1103/PhysRevLett.99.205701
https://doi.org/10.1103/PhysRevLett.99.205701
https://doi.org/10.1103/PhysRevLett.106.125702
https://doi.org/10.1103/PhysRevLett.106.125702
https://doi.org/10.1103/PhysRevLett.106.125702
https://doi.org/10.1103/PhysRevLett.106.125702
https://doi.org/10.1103/PhysRevE.47.2606
https://doi.org/10.1103/PhysRevE.47.2606
https://doi.org/10.1103/PhysRevE.47.2606
https://doi.org/10.1103/PhysRevE.47.2606
https://doi.org/10.1021/ja01619a008
https://doi.org/10.1021/ja01619a008
https://doi.org/10.1021/ja01619a008
https://doi.org/10.1021/ja01619a008
https://doi.org/10.1126/science.289.5480.751
https://doi.org/10.1126/science.289.5480.751
https://doi.org/10.1126/science.289.5480.751
https://doi.org/10.1126/science.289.5480.751
https://doi.org/10.1557/mrs2004.97
https://doi.org/10.1557/mrs2004.97
https://doi.org/10.1557/mrs2004.97
https://doi.org/10.1557/mrs2004.97
https://doi.org/10.1021/jp011646w
https://doi.org/10.1021/jp011646w
https://doi.org/10.1021/jp011646w
https://doi.org/10.1021/jp011646w
https://doi.org/10.1021/nn204177u
https://doi.org/10.1021/nn204177u
https://doi.org/10.1021/nn204177u
https://doi.org/10.1021/nn204177u
https://doi.org/10.1039/C7FD00037E
https://doi.org/10.1039/C7FD00037E
https://doi.org/10.1039/C7FD00037E
https://doi.org/10.1039/C7FD00037E
https://doi.org/10.1103/PhysRevLett.97.105701
https://doi.org/10.1103/PhysRevLett.97.105701
https://doi.org/10.1103/PhysRevLett.97.105701
https://doi.org/10.1103/PhysRevLett.97.105701
https://doi.org/10.1103/PhysRevLett.52.1433
https://doi.org/10.1103/PhysRevLett.52.1433
https://doi.org/10.1103/PhysRevLett.52.1433
https://doi.org/10.1103/PhysRevLett.52.1433
https://doi.org/10.1103/PhysRevLett.74.2034
https://doi.org/10.1103/PhysRevLett.74.2034
https://doi.org/10.1103/PhysRevLett.74.2034
https://doi.org/10.1103/PhysRevLett.74.2034



