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ABSTRACT
In concentrated electrolytes with asymmetric or irregular ions, such as ionic liquids and solvent-in-salt electrolytes, ion association is more
complicated than simple ion-pairing. Large branched aggregates can form at significant concentrations at even moderate salt concentrations.
When the extent of ion association reaches a certain threshold, a percolating ionic gel network can form spontaneously. Gelation is a phe-
nomenon that is well known in polymer physics, but it is practically unstudied in concentrated electrolytes. However, despite this fact, the
ion-pairing description is often applied to these systems for the sake of simplicity. In this work, drawing strongly from established theo-
ries in polymer physics, we develop a simple thermodynamic model of reversible ionic aggregation and gelation in concentrated electrolytes
accounting for the competition between ion solvation and ion association. Our model describes, with the use of several phenomenological
parameters, the populations of ionic clusters of different sizes as a function of salt concentration; it captures the onset of ionic gelation and
also the post-gel partitioning of ions into the gel. We discuss the applicability of our model, as well as the implications of its predictions on
thermodynamic, transport, and rheological properties.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006197., s

I. INTRODUCTION

For most dilute electrolytes with high permittivity solvents, it
is reasonable to assume that the salt is perfectly dissociated as con-
firmed by classical experiments.1 However, for moderately concen-
trated systems or dilute solutions with low permittivity solvents,
incomplete dissociation of ions can be substantial.2 Bjerrum pro-
posed the concept of ion pairing, which was able to account for some

deviations of experimental results from theoretical predictions.3 In
the Bjerrum theory of ion pairing, an ion pair is formed when the
separation of oppositely charged ions is smaller than the length
scale at which the Coulomb interaction is equivalent to thermal
energy (known as the Bjerrum length). Many theoretical studies have
focused on extending or modifying Bjerrum’s treatment/definition
of ions pairs, and we direct the readers to Ref. 4 for an extensive
review on the topic. Only a small fraction of studies considered ion
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aggregates larger than just simple ion pairs,5–8 but even those works
only apply for moderate concentrations and model only simple ionic
clusters.

In super-concentrated electrolytes, such as ionic liquids (ILs) or
solvent-in-salt electrolytes (SiSEs), the picture is more complicated.
With the recent explosion of interest in this regime for electrochem-
ical applications,9–25 a complete description of ion aggregation may
be necessary for understanding the physicochemical, electrochemi-
cal, and thermodynamic properties of these concentrated mixtures.
For ILs, it has been useful to introduce the concept of free ions, with-
out fully describing the nature of the associated species.26,27 These
concepts have been applied to ILs to reproduce the temperature
dependence of ionic conductivities28 and differential capacitance,26

although these simple pictures still cannot fully explain the so-called
underscreening paradox in ILs.27,29–32 In SiSEs there have been a
multitude of molecular dynamics33–39 and experimental37,40,41 stud-
ies detailing complex ion association and hydration, often manifest-
ing in highly asymmetric or even negative42,43 transference numbers.
Although these molecular simulations and experimental studies pro-
vide valuable insight, it is often constrained to specific systems and
is not readily transferable to new systems.

For super-concentrated electrolytes, it would therefore be ben-
eficial to have a theoretical description of ion aggregates of arbitrary
size, but to our knowledge, such a theory has not been reported in
the literature. Hence, in this article, we will formulate a thermo-
dynamic model of ionic association beyond a simple description
of ion pairing (or even triple and quadruple ions). Ultimately, we
want our model to capture a distribution of aggregate sizes and even
the formation of arbitrarily large ionic aggregates. In building such
a model, we draw inspiration from polymer physics. In the early
1940s, Flory44,45 and Stockmayer46,47 derived expressions describ-
ing the most likely distribution of polymer molecular weights in a
mixture. These expressions only require knowledge of the probabil-
ity of the polymerization reaction, as well as the functionalities, f,
of the monomers. Functionalities refer to the number of “bonds”
a monomer unit can make to extend the polymer. When f = 2,
large linear chains can be formed, but when f > 2, these aggre-
gates will be branched and increasingly complex. Moreover, when
f > 2, Flory and Stockmayer were able to show that at a certain
extent of reaction, a percolating polymer network will be sponta-
neously formed in a process referred to as gelation. In the polymer
community, this percolating network is referred to as a gel, while
the remaining finite species in the mixture are referred to as the
sol. The gelation phenomenon outlined by Flory and Stockmayer
turned out to be analogous to the percolation problem on a Bethe
lattice.48

The theories of Flory and Stockmayer were formulated to
describe the largely irreversible covalent bond formation charac-
teristic of condensation polymerization reactions, as opposed to
the more reversible physical associations of ions. Starting in the
late 1980s, Tanaka pioneered the theory of thermoreversible poly-
mer association and gelation.49–56 In his work, Tanaka modeled
the physical association between polymer strands within a ther-
modynamic framework that is able to capture the distribution of
polymeric clusters, as well the presence and breadth of gel net-
works. Of particular interest to us is the two component case
in which Tanaka described a mixture of two types of polymer
strands that associate heterogeneously in an alternating fashion.54

This is quite analogous to ion association in that ions will only
associate with counterions. Thus, our theory of ion association
and gelation in concentrated ionic systems will build upon that of
Tanaka.

This paper is split into two main sections: Sections II and III.
Section II is further split into six subsections: First, in Sec. II A,
we describe the stoichiometric definitions of our mixture, as well as
its free energy of mixing. Then, in Sec. II B, we minimize that free
energy, yielding our pre-gel cluster distribution in terms of “bare”
species volume fractions. In Sec. II C, we introduce “association
probabilities” that allow us to write the pre-gel cluster distributions
in terms of experimentally accessible overall species volume frac-
tions. In Sec. II D, we describe the mechanism for gelation and
derive the criterion for its onset. In Sec. II E, we derive the post-
gel relationships, yielding the post-gel cluster distribution and the
gel/sol partitioning. In Sec. II F, we propose a method for incorpo-
rating excess electrostatic energy into the model. We end the paper
by discussing some of our model’s implications on observable ther-
modynamic, transport, and rheological properties of the electrolyte
solution, in particular, those properties affected by the presence of
the ionic gel. The theory operates with a set of symbols for variables
and parameters. For readers’ convenience they are listed in Table I.

II. THEORY
We consider a polydisperse mixture of ∑lmsqN lmsq ionic clus-

ters, each containing l cations, m anions, s solvent molecules associ-
ated with cations, q solvent molecules associated with anions (lmsq
cluster), and (if present) an interpenetrating gel network containing
Ngel

+ cations, Ngel
− anions, and Ngel

0 solvent molecules. We model the
cations to have a functionality (defined as the number of associations
that the species can make) of f + and anions to have a functional-
ity of f −. This means that a(n) cation (anion) is able to associate
with f + (f −) anions (cations) or solvent molecules. We also consider
the ability of solvent molecules to coordinate to cations or anions
with a functionality of 1. This, in fact, means that we neglect the
ability of solvent molecules to bridge ionic clusters through interac-
tions with multiple ions and thereby neglect the formation of any
solvent-mediated clustering/gelation. This is obviously a simplifica-
tion, justified by an assumption that the clusters that are not “glued”
by direct ion–counter-ion interactions are more labile and as such
can be disregarded in the “first approximation.” A typical ion cluster
consistent with our description is depicted in Fig. 1.

It is necessary to take a moment to justify our application of
polymer physics to model super-concentrated electrolytes. Specif-
ically, the functionalities we have introduced may seem better
defined for polymer strands or monomers than for ions. Clearly,
ions cannot associate with an arbitrarily large number of counter-
ions or solvent molecules. Rather, there is a maximum number
of counter-ions or solvent molecules that ions can contact and
associate. In our model, the ion functionalities are defined by this
maximum coordination number. Moreover, by fixing the num-
ber of association sites on an ion (via the functionality), we may
directly model the competition of ion association and ion sol-
vation, as well as the crowding of associating species around a
specific ion. In fact, in dense ionic systems, there typically are
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TABLE I. List of variables and parameters. A star, ⋆, marks the model’s phenomenological parameters. If one wishes to
compare against a specific experiment or simulation, these parameters can be fitted or determined from more sophisti-
cated theories. The number of free parameters can also be limited through taking limits of this theory, as outlined in the
supplementary material.

N lmsq Number of lmsq clusters Ngel
i Number of species i in gel

f i Functionality of species i (⋆) vi Volume of species i
ξi Scaled volume of species i V Total volume of the mixture
Ω Number of lattice sites clmsq Concentration of the cluster
cgel

i Concentration of species i in the gel ctot Total concentration of clusters
ϕi Total volume fraction of species i ϕ± Volume fraction of salt
ϕsol

i Volume fraction of species i in the sol ϕgel
i Volume fraction of species i in the gel

ϕlmsq Volume fraction of an lmsq cluster ψi Concentration of association sites
Δlmsq Free energy of formation of a rank Δcomb

lmsq Combinatorial free energy of
lmsq cluster Formation of a rank lmsq cluster

Δbind
lmsq Binding free energy of Δconf

lmqs Configurational free energy of
Formation of an lmsq cluster Formation of an lmsq cluster

Δel
lmsq Electrostatic free energy of Δgel

i Free energy change of species i
Formation of an lmsq cluster Associating to the gel

μlmsq Chemical potential of cluster μgel
i Chemical potential of i in gel

K lmsq Equilibrium constant W lmsq Combinatorial enumeration
Δuij Association free energy (⋆) Z Coordination number of the lattice (⋆)
Slmsq Configurational entropy of a cluster Slmsq Configurational entropy of a cluster
Λij Association constant between i and j (⋆) Λ̃ Association ratio (⋆)
pij Association probabilities psol

ij Association probabilities in sol
ζ Number of anion–cation associations Γ Number of cation–solvent associations
Ξ Number of anion–solvent associations α Branching coefficient
n̄w Weight average of ionic aggregation αlm Fraction of ions in lm clusters
wsol

i Fraction of species in the sol wgel
i Fraction of species in the gel

K Cluster distribution constant Ge Equilibrium shear modulus

FIG. 1. A cartoon example of cation/anion/solvent clusters that may be found with
a certain probability in a model concentrated electrolyte. In this case, we have
drawn a cluster in which f + = 4, f− = 3, l = 4, m = 4, s = 7, and q = 3.

preferred configurations for ion associations and functional groups
on ions that bridge those associations,57 quite similar to the poly-
meric analogs.

Following Tanaka, we account for molecular volumes by using
a lattice model. We designate a single lattice site to have the volume
of a single solvent molecule, v0. Thus, the entire volume of the mix-
ture, V, is divided into Ω = V/v0 lattice sites. Moreover, each cation
will occupy ξ+ = v+/v0, and an anion will occupy ξ− = v−/v0 lattice
sites. Furthermore, when a gel is formed, we distinguish between the
volume fractions of the gel (superscript gel) and sol (superscript sol).
The volume fractions in the sol and gel constitute the total volume
fraction, ϕj, of a given species, j, which is given by

ϕj = ϕsol
j + ϕgel

j , (1)

in which the gel volume fraction is defined as ϕgel
j = ξjNgel

j /Ω, with

Ngel
j as the mole number of species j in the gel. The subscript j = +, −,

0 corresponds to cation, anion, and solvent, respectively. The sol vol-
ume fraction of cations, anions, and solvent molecules, respectively,
has the definitions

ϕsol
+ = ∑

lmsq
ξ+lclmsq, (2)
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ϕsol
− = ∑

lmsq
ξ−mclmsq, (3)

ϕsol
0 = ∑

lmsq
(s + q)clmsq, (4)

where clmsq = N lmsq/Ω is the dimensionless concentration of an
lmsq cluster (the number of lmsq clusters per lattice site). Simi-
larly, we define ϕ± = ϕ+ + ϕ−, which is the total volume fraction
of the salt in solution. For simplicity, the mixture is assumed to be
incompressible, i.e.,

1 = ϕ± + ϕ0 = ϕ+ + ϕ− + ϕ0. (5)

ϕ+ and ϕ− are not independent owing to electroneutrality: ϕ+/ξ+
= ϕ−/ξ−. The reduced volume of the mixture, Ω, can also be
expressed in terms of the mole number of each species/component
due to the incompressibility constraint [Eq. (5)],

Ω = ∑
lmsq
(ξ+l + ξ−m + s + q)Nlmsq + ξ+Ngel

+ + ξ−Ngel
− + Ngel

0 . (6)

This definition must be used when differentiating the free energy of
mixture. Another important quantity that will be used abundantly
later in this paper is the dimensionless concentration of association
sites (number of association sites per lattice site). We denote this
quantity by ψj and define it as follows:

ψj = fjϕj/ξj. (7)

Thus, ψj is the number of j association sites per lattice site. Note that
for solvent molecules, ψ0 = ϕ0.

A. Free energy
Thermodynamically, we first treat the electrolyte as an ideal

mixture of ion/solvent clusters. This means that there will be no
inter-cluster interactions (electrostatic or otherwise), although we
address later on a potential method for introducing excess electro-
static energy. For now, we neglect the excess electrostatic energy in
our model primarily for simplicity, but this neglect fundamentally
relies on the assumption that the majority of the electrostatic energy
in the mixture is captured via the formation of ion clusters. Implied
within the formation of these clusters is that the interactions between
species in the clusters are short ranged and constant. Therefore, the
association energy between species in a cluster is consistent with a
screened electrostatic interaction fixed at a certain distance. Thus,
we essentially fix the position at which ions interact, which is not
unlike pseudo-lattice-like descriptions of concentrated electrolytes
used in the past.58,59

Such an approach is different from the classical theories of
Bjerrum3 and more recently in Refs. 60–62. In these works, the
authors have taken effort to describe the electrostatic interaction
energy required to form an ion association in an ionic atmo-
sphere and an effective dielectric environment. Our work is more
concerned with the ability of electrolytes to form more com-
plicated ion clusters undoubtedly present in super-concentrated
mixtures. In fact, strong spin-glass, anti-ferromagnetic ordering
has been observed in molecular simulations of super-concentrated

electrolytes.63 This ordering is characterized by inherently discrete,
many-body short-range correlations, which cannot be captured
by theories focusing only on pairwise interactions in an effective
medium. By permitting the formation of high order and poten-
tially percolating ionic clusters, we capture some of these strong
many-body, short-range correlations observed in Ref. 63. Thus,
we eschew the precise microscopic picture of ion association of
Refs. 60–62 in favor of a more phenomenological description, which
allows us to undertake the additional complexity of high order ionic
clustering.

In describing the thermodynamics of an ideal mixture of non-
interacting clusters, we employ a Flory-like free energy of mixing
given in units of thermal energy, β = 1/kBT,

βΔF = ∑
lmsq
[Nlmsq ln(ϕlmsq) + NlmsqΔ

θ
lmsq]

+ Δgel
+ (ϕ±)N

gel
+ + Δgel

− (ϕ±)N
gel
− + Δgel

0 (ϕ±)N
gel
0 , (8)

where ϕlmsq = (ξ+l + ξ−m + s + q)N lmsq/Ω is the volume fraction of an
lmsq cluster, Δθlmsq is the free energy of formation of an lmsq cluster

from its unassociated constituents, and Δgel
i is the free energy change

of species, i, associated with the gel.49,64,65 Note that we have written
Δgel

i as a function of ϕ± for thermodynamic consistency, as we will
see later.

The free energy in Eq. (8) contains two essential pieces of
physics: the entropy of mixing for a distribution of ion/solvent clus-
ters and the gel, and the association free energy changes correspond-
ing to the formation of clusters or association with the gel. The
entropy of mixing takes into account that species within specific
clusters are not entropically independent; however, the individual
clusters are treated ideally. Additionally, ϕlmsq is constrained via
the incompressibility condition [Eqs. (5) and (6)]. The free energy
of mixing in Eq. (8) is written with respect to the reference solu-
tions of pure bare cations, pure bare anions, and pure bare solvent
molecules. All species are unassociated in their respective refer-
ence states. Additionally, the reference states of pure anions and
pure cations are fictitious in that they behave enthalpically as ions
in an infinitely dilute electrolyte solution. Thus, the standard state
chemical potentials, μθi , of the ions are that of ions in an infinitely
dilute electrolyte. Formally, the free energy of cluster formation is
the standard state chemical potential of the cluster subtracted by
the standard state chemical potentials of all its bare constituents,
Δlmsq = μθlmsq − lμθ+ −mμθ− − (s + q)μθ0.

Differentiating the free energy with respect to N lmsq yields the
chemical potential of a cluster rank lmsq,

βμlmsq = lnϕlmsq + 1 − (ξ+l + ξ−m + s + q)ctot + Δθlmsq

+ d[ϕ0(ξ+l + ξ−m + s + q) − s − q], (9)

where ctot = ∑lmsqclmsq is the total dimensionless concentration (per
lattice site), d = Δgel′

+ cgel
+ + Δgel′

− cgel
− + Δgel′

0 cgel
0 (the ′ notation refers to a

derivative with respect to ϕ±), and cgel
i = Ngel

i /Ω is the dimensionless
concentration of i in the gel (number of species i in the gel per lattice
site). Note that we have used the explicit definition of Ω in Eq. (6)
when differentiating the free energy.
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Additionally, we may define the chemical potential of species
immersed in the gel,

βμgel
+ = Δ

gel
+ − ξ+ctot + ξ+dϕ0, (10)

βμgel
− = Δ

gel
− − ξ−ctot + ξ−dϕ0, (11)

βμgel
0 = Δ

gel
0 − ctot + dϕ±. (12)

Establishing an equilibrium between bare species in the sol and
species in the gel results in the following expressions for Δgel

i :

Δgel
+ (ϕ±) = ln(ϕ1000) + 1, (13)

Δgel
− (ϕ±) = ln(ϕ0100) + 1, (14)

Δgel
0 (ϕ±) = ln(ϕ0010) + 1, (15)

where the bare species’ volume fractions (ϕ1000, ϕ0100, ϕ0010) must
be solved for in terms of ϕ± as we will outline in Sec. II C. Thus,
Eqs. (13)–(15) demonstrate that Δgel

i must be a function of ϕ± for
thermodynamic consistency, as mentioned earlier.

B. Pre-gel cluster distribution
The distribution of clusters can be derived by enforcing a

chemical equilibrium between all of the clusters and their bare
constituents (unassociated components),

l[bare cation]+m[bare anion]+(s+q)[bare solvent] ⇌ [lmsq cluster].
(16)

The chemical equilibrium requires that the chemical potentials of
bare species and those in clusters are equivalent,

lμ1000+mμ0100+(s+q)μ0010 = μlmsq = lμ+
lmsq+mμ−lmsq+(s+q)μ0

lmsq. (17)

We would like to take a moment to discuss the nature of bare ions
with the corresponding chemical potentials μ1000 for bare cations
and μ0100 for bare anions. In dilute electrolytes with typical inor-
ganic salts, the probability of bare ions existing in solution will be
nearly negligible; in order to dissolve the salt, the ions must be exten-
sively hydrated. Our use of bare ions in the equilibrium condition
[Eq. (17)] does not mean that there will be a significant fraction
of bare ions in the electrolyte. Rather, the bare ions (as well as the
bare solvent) are used in the equilibrium condition because the bare
species are the fundamental “units” that comprise any general clus-
ter. In fact, as we will show, when a good solvent is used, there will
be an insignificant fraction of bare ions in solution, in the dilute salt
limit, as we would expect from intuition.

Furthermore, note that we may refer to bare solvent molecules
with either the index 0001 or 0010. For simplicity, we will use the
index 0010 to refer to bare solvent molecules, for the remainder
of the text. In Eq. (17), we have defined the chemical potential of
a cation, anion, or solvent molecule in an arbitrary cluster in the
following manner:

μ+
lmsq =

∂μlmsq

∂l
= μ1000, (18)

μ−lmsq =
∂μlmsq

∂m
= μ0100, (19)

μ0
lmsq =

∂μlmsq

∂s
=
∂μlmsq

∂q
= μ0010. (20)

Solving Eq. (17) for an arbitrary lmsq cluster obtains the follow-
ing relation:

ϕlmsq = Klmsqϕ
l
1000ϕ

m
0100ϕ

s+q
0010, (21)

where ϕ1000, ϕ0100, and ϕ0010 are the bare species’ volume fractions of
cations, anions, and solvent molecules, respectively, and K lmsq is the
equilibrium constant, given by

Klmsq = exp(l + m + s + q − 1 − Δθlmsq). (22)

Thus, the partitioning of the species into clusters of different sizes
is strongly governed by Δθlmsq. As such, this is where much of the
physics of the ion/solvent association will be included. It contains
three contributions,

Δθlmsq = Δ
comb
lmsq + Δbind

lmsq + Δconf
lmsq, (23)

where Δcomb
lmsq is the combinatorial (entropic) contribution, describing

the multiplicity of clusters with the same number of constituents;
Δbind

lmsq is the binding contribution, describing the binding energy of

the constituents in the cluster; and Δconf
lmsq is the configurational con-

tribution, describing the configurational entropy change upon form-
ing a cluster from base constituents. We would like to emphasize
that the binding contribution is largely electrostatic in nature. As
we have previously mentioned, the fact that we have neglected elec-
trostatic interactions between clusters relies on the assumption that
the majority of the electrostatic energy is incorporated in the forma-
tion of the ion clusters (via this binding contribution), as opposed to
between different clusters.

The entropy associated with the combinatorial enumeration,
W lmsq, of all of the possible ways a cluster with l cations, m anions,
and s + q solvent molecules can be formed is given by

Δcomb
lmsq = − ln(Wlmsq). (24)

To derive W lmsq, we use a two step procedure. First, we enumerate
the number of ways to construct a network containing l anions and
m cations, which are associated together in an alternating fashion,
W lm. This combinatorial problem is well known,66

Wlm =
( f+l − l)!( f−m −m)!

l!m!( f+l − l −m + 1)!( f−m − l −m + 1)!
. (25)

In the second step, we enumerate the number of ways s + q solvent
molecules can be placed on the cation–anion cluster. We know that
we may only place the s solvent molecules on the remaining f +l − l −
m + 1 open cation sites. Thus, s must be less than or equal to f +l − l
−m + 1. This enumeration is expressed via the binomial coefficient

C
f+ l−l−m+1
s =

( f+l − l −m + 1)!
s!( f+l − l −m − s + 1)!

. (26)

Similarly, we must place q solvent molecules on the remaining f −m
−m − l + 1 open anion sites, which can be enumerated via

C
f−m−m−l+1
q =

( f−m −m − l + 1)!
q!( f−m −m − l − q + 1)!

. (27)
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Thus, we have

Wlmsq =WlmC
f+ l−l−m+1
s C

f−m−m−l+1
q

=
( f+l − l)!( f−m −m)!

l!m!s!q!( f+l − l −m − s + 1)!( f−m −m − l − q + 1)!
. (28)

Next, the binding contribution, Δbind
lmsq, is described simply via

the binding free energies: Δuij between species i and j, where i ≠ j
and Δuij = Δuji. As we have mentioned, these binding energies, espe-
cially the ionic association energy, are largely electrostatic in nature.
Here, we assume that the association energy is a simple constant,
which would be consistent with a screened electrostatic interaction
at a fixed distance.

Recall that our model does not allow for solvent molecules to
form clusters among themselves. For this reason, if a cluster contains
0 cations and anions, the cluster will necessarily only contain a single
solvent molecule, corresponding to a bare solvent molecule. Thus,
Δbind

0010 = Δ
bind
0001 = 0. Overall, we can write Δbind

lmsq as

Δbind
lmsq = [(l + m − 1)Δu+− + sΔu+0 + qΔu−0]

× [1 − δl,0δm,0(δq,0δs,1 + δq,1δs,0)], (29)

where δi ,j is the Kronecker delta function. For l + m > 0, the
association free energy for an lmsq cluster is

Δbind
lmsq = (l + m − 1)Δu+− + sΔu+0 + qΔu−0. (30)

The coefficient in front of the cation–anion binding energy, Δu+−, is
due to the fact that there must be many cation–anion associations to
form a cluster with l cations and m anions.

For the configurational contribution, Δconf
lmsq, we use Flory’s lat-

tice theoretical expression for the entropy of disorientation.64,65

Tanaka adapted and modified Flory’s expression for more compli-
cated associating polymer mixtures in Refs. 49, 55, and 67, through a
procedure outlined by Flory, involving the subsequent placement of
lattice sized bits of molecules onto adjacent lattice sites. From this,
we write the configurational entropy, Slmsq, of an lmsq cluster as

Slmsq = − ln(
(ξ+l + ξ−m + s + q)Z(Z − 1)ξ+ l+ξ−m+s+q−2

exp(ξ+l + ξ−m + s + q − 1)
), (31)

where Z is the coordination number of the lattice. The configura-
tional bit of Δlmsq is then

Δconf
lmsq = Slmsq − lS1000 −mS0100 − (s + q)S0010

= − ln
⎛
⎜
⎝

(ξ+l + ξ−m + s + q)[(Z − 1)2
/Ze]l+m+s+q−1

ξl
+ξm−

⎞
⎟
⎠

. (32)

Having defined each component of Δθlmsq, it is useful to intro-
duce the notion of the “association constant,” Λij, for the association
of species i and j. The association constant characterizes the driv-
ing force or affinity—or more accurately, the exponentiated driv-
ing force/affinity—for a specific type of association. It is written as
follows:

Λ+− =
(Z − 1)2

Z
exp(−Δu+−). (33)

The ion–solvent association constant, Λ±0, contains only a non-
electrostatic part of the association constant,

Λ±0 =
(Z − 1)2

Z
exp(−Δu±0). (34)

We then plug in each contribution of Δθlmsq into Eq. (21). Due
to the Kronecker deltas in Eq. (29), the distribution is most eas-
ily written separately for clusters containing ions and bare solvent
molecules. First, for ion-containing clusters (l + m ≥ 1), we obtain
the distribution

clmsq =
Wlmsq

Λ+−
(ψ1000Λ+−)l

(ψ0100Λ+−)m

× (ϕ0010Λ+0)
s
(ϕ0010Λ−0)

q, (35)

where ψ1000 = f +ϕ1000/ξ+ and ψ0100 = f +ϕ0100/ξ+ are the num-
ber of association sites per lattice site for bare cations and bare
anions, respectively. For clusters not containing ions, the only non-
zero component of the distribution corresponds to bare solvent
molecules,

c0010 = c0001 = ϕ0010. (36)
Equations (35) and (36) give the thermodynamically consis-

tent number distribution for clusters in the electrolyte mixture. It
can readily give the volume fraction of a cluster of any size and
makeup, if the volume fraction of the bare cations, anions, and sol-
vent molecules is known. However, these bare species volume frac-
tions are not experimentally accessible. Thus, we must write the vol-
ume fractions of the bare species in terms of the overall salt/solvent
fractions, which are experimentally accessible.

C. Association probabilities
Once again, we follow Tanaka by introducing the association

probabilities, pij. These probabilities are useful because we may write
the bare species’ volume fractions in terms of them. Formally, pij
is defined as the fraction of association sites of species, i, that are
occupied in association with species, j. Recall that cations, anions,
and solvent molecules are said to have f +, f −, and 1 association site
per molecule, respectively. This implies that generally pij ≠ pji, unless
the functionalities and concentrations of species i and j are equiva-
lent, as we will show below. We may write, assuming independent
associations, the bare cation volume fraction as

ϕ1000 = ϕ+(1 − p+− − p+0)
f+ . (37)

The above equation arises because the probability that a given cation
association site will be “dangling” (not participating in associations)
will be 1 − p+− − p+0. Thus, the probability for all f + sites to be dan-
gling is (1−p+−−p+0)

f+ . Analogously, for the bare anions and solvent
molecules, we have

ϕ0100 = ϕ−(1 − p−+ − p−0)
f− , (38)

ϕ0010 = ϕ0(1 − p0+ − p0−). (39)

We may insert Eqs. (37)–(39) into Eq. (35), obtaining a clus-
ter distribution in terms of overall species volume fractions and the
association probabilities, pij. However, we now have six new vari-
ables, pij, which are unknown and a function of the overall species
volume fractions. Thus, we need six equations to determine these
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six unknowns. We can obtain three equations straight away due
to a conservation of each type of association. For cation–anion
associations, we have

ψ+p+− = ψ−p−+ = ζ, (40)

where ζ is the number of cation–anion associations per lattice site.
For cation–solvent associations, we have

ψ+p+0 = ϕ0p0+ = Γ, (41)

where Γ is the number of cation–solvent associations per lattice site.
Finally, for anion–solvent associations, we have

ψ−p−0 = ϕ0p0− = Ξ, (42)

where Ξ is the number of anion–solvent associations per lattice site.
We obtain the last three equations following Tanaka, by

employing the law of mass action on the number of associations
using the association constants Λ+−, Λ+0, and Λ+0. For cation–anion
associations, we have

Λ+−ζ =
p+−p−+

(1 − p+− − p+0)(1 − p−+ − p−0)
. (43)

Similarly, for the cation–solvent associations, we have

Λ+0Γ =
p+0p0+

(1 − p+− − p+0)(1 − p0+ − p0−)
. (44)

Finally, for the anion–solvent associations, we have

Λ−0Ξ =
p−0p0−

(1 − p−+ − p−0)(1 − p0+ − p0−)
. (45)

Here, Λ+−, Λ+0, and Λ−0 are treated as equilibrium constants for
the individual associations made. Similar mass action laws have been

used in the past to treat ion pair formation,3,60–62 in which the asso-
ciation constants were determined self-consistently from the inter-
action potential between the associating species. This type of proce-
dure would be complicated by the formation of complex ion/solvent
aggregates and is beyond the scope of our current work.

Thus, Eqs. (40)–(45) provide six equations from which we may
find each pij in terms of the overall species volume fractions. With-
out making approximations, we cannot obtain an analytical solution
to this system of equations, but nonetheless, we may solve it numer-
ically. A useful approximation based on assumptions of ion symme-
try and “stickiness” permits an analytical solution of the association
probabilities in terms of overall species volume fractions and is out-
lined in the supplementary material. These association probabilities
close the model so that we may now obtain the full distributions of
clusters as a function of the overall electrolyte composition.

In Fig. 2, we plot sample curves of the concentration depen-
dence of these association probabilities. The parameters detailed in
the caption of Fig. 2, which will be used for the majority of this paper,
were chosen to be representative of salts used in typical water-in-salt
electrolytes (WiSEs), such as lithium bis(trifluoromethanesulfonyl)
imide (LiTFSI),11 sodium trifluoromethane sulfonate (NaOTF),17 or
even potassium containing analogs.23 Note that although these salts
have extremely high solubility limits, they would likely precipitate
from solution prior to reaching the pure salt limit (x = 1). Nev-
ertheless, our figures will extend to the pure salt limit, in order
to explore the behavior of the model in this regime. Furthermore,
for different sets of parameters that are more representative of an
ionic liquid salt, for example, the pure salt limit would be extremely
relevant.

Thus, the parameters used in most of our examples represent a
model water-in-salt electrolyte. As would be expected for a LiTFSI-
water or NaOTF-water system, the cation–solvent association con-
stant (Λ+0 = 500) is considerably larger than the anion–solvent

FIG. 2. Association probabilities, pij , as a function of the mole fraction of salt for a model water-in-salt electrolyte. The ion–counter-ion association probabilities are plotted in
the left panel (p+− and p−+), the ion–solvent association probabilities are plotted in the middle panel (p+0 and p−0), and the solvent–ion associations are plotted in the right
panel (p0− and p0+). These curves are generated for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.
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association constant (λ−0 = 5). The anion is also made to be much
larger (ξ− = 10) than the cation (ξ+ = 1). Additionally, the cation has
a larger functionality f + = 5 than the anion (f − = 4) to emphasize
further cation/anion asymmetry.

The ion–counter-ion association probabilities, p±∓ (left panel
in Fig. 2), increase monotonically with salt volume fraction, and the
difference between the solid and dotted blue curves in Fig. 2 comes
from the difference in cation and anion functionality; for a given
total number of cation–anion associations, a lower fraction of cation
association sites will be occupied with associations with anions.

The ion–solvent association probabilities, p±0 (middle panel in
Fig. 2), both decrease monotonically with the increase in ion concen-
tration. This monotonically decreasing behavior is expected because
there is less water available to associate to ions, and more associa-
tions with counter-ions at high salt volume fractions. Again, the sol-
vent is more likely to associate with cations because the association
constants considered here dictate the solvent to interact stronger
with cations than anions. In the dilute limit, the ion–solvent associa-
tion probability tends toward λ±0/(λ±0 + 1). Thus, for the vigorously
solvated cation, only an extremely small fraction (0.2%) of cation
association sites are not occupied with an association with solvent
molecules in the dilute limit. This would correspond to a fraction of
bare cations (not associated with anything) of 3.2 × 10−12%, which
is consistent with our aforementioned assertion that for vigorously
solvated ions, the fraction of bare ions will be negligible.

The cation:anion asymmetry in functionality is manifested
most clearly for the solvent–ion association probabilities, p0± (right
panel in Fig. 2). The solvent–cation association probability increases
monotonically with the salt volume fraction due to the increase
in the concentration of cations and thus cationic association sites.
However, the same argument does not hold for the solvent–anion
association probability, which displays non-monotonic behavior.
Initially, p0− increases due to the increase in anion concentration
but then decreases because the cations monopolize the solvent asso-
ciation at high ion concentrations. The reason for this is that our
chosen parameters dictate that cations associate more favorably than
anions with solvent molecules. (Λ+0 > Λ−0). Moreover, cations also
have more association sites than anions (f + > f −) and thus can accept
more solvent associations.

D. Sol/gel transition
Since the functionalities, f ±, of anions and cations are both

greater than two, the clusters have the potential to become infinitely
large if the probabilities, p+− and p−+, are large enough. The point
at which this occurs (i.e., the gelation point) can be determined in
the following manner with the help of Fig. 3. Consider, for exam-
ple, that we traverse along a specific branch of the cluster until we
stop arbitrarily at a cation, labeled “1” in Fig. 3. The cation contains
f + − 1 sites in addition to the site that was traversed to arrive at the
cation. In order for the cluster to proceed infinitely—thus forming a
gel—one of the additional f + − 1 sites must continue the chain with
a probability of unity,68

( f+ − 1)α∗ = 1, (46)

where α (not to be confused with the fraction of free species, α+,
α−, or α0, which will be defined later) is known as the branching
coefficient with “∗” denoting its critical value for gelation, and the

FIG. 3. A schematic illustrating the concept of the branching coefficient, α, which
is an essential quantity in determining the criterion for gelation [Eq. (46)]. Starting
at the node labeled 1 (referring to a cation), we note that the cluster proceeds
arbitrarily to the left. We then consider the probability (α) of the cluster continuing to
the right to the next cationic node (marked as 2 with a “?” to denote that the cluster
may continue to any one of these cations). In order for the cluster to continue to
the right, the cationic node marked 1 must associate with an anion (with probability
p+−) and then one of the f−− 1 remaining anionic association sites must associate
with another cation (with probability p−+). Thus, the branching coefficient, α is the
compounding of the probabilities for a cluster to proceed from cation 1 to an anion
and then to any of the cations marked with a 2.

factor of f + − 1 arises because there are f + − 1 additional branches
on the cation capable of extending the cluster. The same criterion
arises for mean-field percolation on a Bethe lattice with a coordina-
tion number of f +.48 In our case, though, α refers to the probability
that cation 1 continues to a subsequent cationic node (labeled 2 in
Fig. 3) along any available branch, as depicted by the dotted arrows
in Fig. 3. In order to get from one cationic node to the next cationic
node, we require that one of the cation sites associates with an anion
with probability p+− and that one of the f −− 1 remaining anionic
sites reacts with a cation with probability p−+. Thus,

α = p+−( f− − 1)p−+. (47)

The criterion for gelation is then

( f+ − 1)p∗+−( f− − 1)p∗−+ = 1. (48)

If this criterion is met, then we expect a macroscopic ionic
gel network to spontaneously form and percolate through the elec-
trolyte. Thus, if we know the probabilities, p+− and p−+, as functions
of concentration, then we may predict the critical concentration at
which gelation will occur using Eq. (48).

We can also see this criterion arise when analyzing the weight
averaged degree of ionic aggregation, n̄w (the average sized cluster of
which an ion is a part), which is defined by the following formula:

n̄w =
∑lmsq(l + m)2clmsq

∑lmsq(l + m)clmsq
. (49)

We can then plug in Eq. (35) and perform the sum over s and q by
invoking the binomial theorem obtaining

n̄w = ∑
lm
(l + m)αlm, (50)
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where αlm is the fraction of total ions in clusters containing l cations
and m anions. For clusters containing more than one ion, αlm is
given by

αlm =
K

2
(l + m)Wlm(

p−+

1 − p−+
(1 − p+−)f+−1

)

l

× (
p+−

1 − p+−
(1 − p−+)

f−−1
)

m

, (51)

where K = f+(1 − p+−)(1 − p−+)/p−+ (analogously defined by
Stockmayer in Ref. 66).

We can write the sum in Eq. (50) in a closed form with the
help of Stockmayer (Ref. 66) or with the methods developed within
Ref. 69,

n̄w = 1 +
p+−p−+(( f+ − 1)p+− + ( f− − 1)p−+ + 2)

(
p+−
f−

+ p−+
f+
)(1 − ( f+ − 1)( f− − 1)p+−p−+)

. (52)

Thus, n̄w diverges when (f + − 1)p+−(f −− 1)p−+ = 1, which is the
exact condition we previously derived for gelation.

As an example, we plot the weight averaged degree of aggrega-
tion as a function of concentration in Fig. 4 using Eq. (52) with the
model parameters listed in the caption, corresponding to the afore-
mentioned fictitious water-in-salt electrolyte. As can be seen, the
weight average degree of aggregation diverges at the gelation point.
In the inset of Fig. 4, we display a log–log plot of the weight aver-
age degree of aggregation as a function of deviation of the product
p+−p−+ from the critical value, yielding a linear curve with a slope
of −1. Thus, n̄w diverges at the gel point with a critical exponent of
−1. This type of behavior is expected, when considering the direct
analogy of our gelation model with percolation on a Bethe lattice.

FIG. 4. The weight averaged degree of ion aggregation, n̄w , plotted against the vol-
ume fraction of salt, ϕ±, using Eq. (52) with probabilities for association restricted
to the sol (excluding the gel). In the inset, we plot (on a log–log scale) the weight
averaged degree of ion aggregation, n̄w , against the deviation from the gel point,
∣p+−p−+ − p∗+−p∗

−+∣, showing a critical exponent of −1. This curve was generated
for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.

Interestingly, in Fig. 4, beyond the gel point, n̄w rapidly
decreases. This is because we plot the weight averaged degree of
aggregation for species in the sol only, excluding the gel. After the
gel forms, the vast majority of ion associations contribute to the gel,
as opposed to finite clusters in the sol. As we approach the no-solvent
limit (ionic liquid/crystal limit), the degree of aggregation in the sol
is essentially 1, implying that at large salt fractions, the electrolyte
looks like a simple mixture of dilute free ions immersed in an ionic
gel.

E. Post-gel regime
For salt concentrations beyond the critical concentration, we

expect a gel to be present in the electrolyte containing an increasing
fraction of the electrolyte’s ions. Thus, we must quantify the fraction
of the species in the gel and in the sol. We employ Flory’s treatment
of the post-gel regime in which the volume fraction of bare species
can be written equivalently in terms of overall association probabil-
ities, pij, and association probabilities taking into account only the
species residing in the sol, psol

ij ,

ϕ+(1 − p+− − p+0)
f+ = ϕsol

+ (1 − psol
+− − psol

+0)
f+ , (53)

ϕ−(1 − p−+ − p−0)
f− = ϕsol

− (1 − psol
−+ − psol

−0)
f− , (54)

ϕ0(1 − p0+ − p0−) = ϕsol
0 (1 − psol

0+ − psol
0−), (55)

where ϕsol
i is the volume fraction of species, i remaining in the sol.

We may determine each of the three unknown ϕsol
i variables, as well

as the six unknown sol association probabilities, psol
ij , using (53)–

(55) in addition to Eqs. (40)–(45); however, in this case, we use
sol-specific quantities.

Thus, we have nine equations and nine unknowns (six sol asso-
ciation probabilities and three sol species volume fractions). The
fraction of species, i, in the gel is simply given by

wgel
i = 1 − ϕsol

i /ϕi. (56)

Note that prior to the critical gel concentration, we have the triv-
ial solution that pij = psol

ij and ϕi = ϕsol
i , yielding a gel fraction

of wgel
i = 0. However, beyond the gel point, there is a non-trivial

solution yielding wgel
i > 0.

As an example, we plot the “sol” association probabilities in
Fig. 5 using the model parameters listed in the caption, correspond-
ing to the aforementioned fictitious water-in-salt electrolyte. As
expected, we observe distinct cusps in the “sol” association proba-
bilities at the gel point. These cusps are the result of a bifurcation
in the solutions to the equations. One solution branch belongs to
the overall association probabilities that transition smoothly through
the gel point, and the other solution branch belongs to the “sol”
association probabilities that bifurcate from the gel point. Gener-
ally, beyond the gel point, the sol association probabilities decrease
because the majority of associations are consumed by the gel, caus-
ing species to be more “free” in the sol. We see this generality break
for psol

+0 in the middle panel of Fig. 5. Immediately beyond the gel
point, psol

+0 increases due to the fact that the cation–anion association
strongly decreases in the sol. The decreasing ion association in the
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FIG. 5. The “sol” association probabilities, psol
ij , are plotted against the mole fraction of salt. The ion–counter-ion association probabilities (psol

+− and psol
−+) are plotted in the left

panel, the ion–solvent association probabilities (psol
+0 and psol

−0) are plotted in the middle panel, and the solvent–ion associations (psol
0− and psol

0+) are plotted in the right panel.
These curves are generated for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4. The vertical black dotted line corresponds to the gel point.

sol means that ions in the sol become slightly more free to associate
with solvent, especially the cations (λ+0 >> 1). Eventually, the over-
all decreasing solvent fraction causes psol

+0 to strongly decrease at high
salt mole fractions.

In the left panel of Fig. 6, we plot the concentration dependence
of various ion clusters of different sizes (1 ≤ l + m ≤ 10 and the ionic
gel). We note that the yellow curve in Fig. 6 corresponds to the frac-
tion of so-called “free ions.” Free ions are ions that are simply not
associated with counter-ions but can be solvated to any degree. This
should not be confused with our naming of bare ions, which are ions
not associated with anything. As expected, we see that the fraction
of free ions (l + m = 1) decreases monotonically as a function of salt
volume fraction due to the increase in ionic association probability.
Interestingly, all other finite ion clusters behave non-monotonically

with salt fraction. In general, ion clusters with l + m ≥ 2 first increase
with salt concentration due to the increase in ion association prob-
ability. However, as salt concentration increases further, more and
more associations are directed toward the formation of higher
order clusters and eventually the ionic gel. Figure 6 also defines
three distinct “regimes” in the solution. In the low concentration
regime (0 < ϕ± ≤ 0.15), free ions are the major ionic species in the
electrolyte. For 0.2 < ϕ± ≤ 0.3, finite ion clusters dominate the elec-
trolyte. Finally, for high salt concentrations (ϕ± > 0.3), the electrolyte
is majorly comprised of the ionic gel.

In the right panel of Fig. 6, we plot the same cluster fractions but
consider only the ions that remain in the sol. The curves are identi-
cal to those in the left plot of Fig. 6 prior to the gel point. Beyond the
gel point, the cluster fractions behave in a very peculiar manner. The

FIG. 6. Fraction of ion clusters of different sizes (l + m), including both total finite cluster fraction (l + m ≥ 2) and the gel fraction as a function of salt volume fraction. Thus, the
black dashed curve corresponds to all finite clusters excluding the free ions; free ions are depicted by the yellow curve; and the solid black curve corresponds to the fraction
of gel. The plot on the left corresponds to cluster fractions considering all ions in the electrolyte, while the right corresponds to cluster fractions for ions in the sol only. These
curves are generated for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.
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FIG. 7. Probability distribution of ion clusters rank lm (containing l cations and m anions) for various mole fractions of salt. (Left) The cluster distribution for a pre-gel salt mole
fraction of x = 0.08. (Middle) The cluster distribution for a near-gel salt mole fraction of x = 0.17. (Right) The cluster distribution for a post-gel salt mole fraction of x = 0.44. In
each plot, the black dashed curve corresponds to a 1:1 anion:cation ratio, and the solid red curve corresponds to the most probable cluster of total rank l + m. Note that the
probabilities are plotted on a log scale to better visualize the distribution. These plots are generated for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.

fraction of free ions in the sol increases as a function of concentra-
tion. This is due to the fact that the ion association probabilities for
ions in the sol decrease after the gel point. Thus, the sol looks more
and more like “dilute” electrolyte as we increase the overall salt con-
centration. For the parameters chosen in Fig. 6, we see that nearly
all of the ions in the sol are free as we approach the pure salt limit.
Though, this is a very small fraction of free ions overall because the
electrolyte is nearly all gel. For model parameters more akin to an
ionic liquid salt, we might expect a much larger fraction of free ions
in the pure salt limit.28

Although, Fig. 6 demonstrates how clusters of overall size
(l + m) vary as a function a salt concentration, it does not tell us
specifically how many anions or cations compose those clusters.
That knowledge requires the use of the full bivariate probability dis-
tribution, αlm, defined in Eq. (51), and plotted in Fig. 7 for various
mole fractions of salt. We have chosen three different mole frac-
tions of salt for plotting the distribution: x = 0.08 (pre-gel), x = 0.17
(near-gel), and x = 0.44 (post-gel). Both the pre-gel and near-gel dis-
tributions are skewed below the neutral cluster line (black dashed
line), centered around the red solid line (denoting the most prob-
able cluster of rank l + m). This indicates that clustered ions have
a slight tendency to be negatively charged, containing more anions
than cations. This effect is expected when the functionalities for ions
are different. In this case, because the cations have a larger func-
tionality than anions, each cation can accept more ion associations
than each anion. Thus, there will be a tendency for there to be more
anions in each cluster than cations.

Additionally, the cluster distribution is pushed toward larger
clusters as the mole fraction is increased from 0.08 to 0.17 due to the
increase in ionic association probability. However, as the mole frac-
tion is increased to 0.44 (well above the gel point), the distribution
is both pushed toward smaller clusters than at x = 0.44, as well as
being skewed above the neutral cluster line, indicating that the finite
clusters will on average more likely be positively charged. When the
gel is formed, it absorbs many of the large negative clusters and is
overall negatively charged. Therefore, the sol will have a net positive
charge, leading to positively skewed cluster distribution.

We may probe the effect of solvent or salt type by tun-
ing the different association constants, Λij. If we assume that ion
association sites are never empty (either occupied by solvent or

counter-ions) and that the ions have equal functionality, we may use
the “sticky symmetric ion approximation,” which is outlined in the
supplementary material. If we operate within the sticky symmetric
ion approximation, we are left with one primary variable to manipu-
late: Λ̃ = Λ+−/Λ+0Λ−0. By varying Λ̃, we are tuning the “strength” of
the electrolyte: weak electrolytes have Λ̃≫ 1 and strong electrolytes
have Λ̃ ≪ 1. In Fig. 8, we display a pseudo-phase diagram of the
most probable ionic “state” (either free, in a finite cluster, or in the
ionic gel) of an ion as a function of Λ̃ and ϕ±. Note that Fig. 8 is gen-
erated within the sticky symmetric ion approximation and thus does
not use the same parameters as Fig. 2 and Figs. 4–7. As was noted
in Fig. 6 (left), free ions dominate at low salt fractions and gel domi-
nates at moderately high salt fractions, with a narrow region of phase
space where finite aggregates dominate. The critical gel boundary is
denoted by the red dotted line, which generally resides within the

FIG. 8. A pseudo-phase diagram of the most probable ionic “state” (either free, in
a finite cluster, or in the gel) as a function of Λ̃ and ϕ±. The red dotted line denotes
the critical gel boundary. The diagram was generated within the sticky symmetric
ion approximation (see supplementary material) for ξ+ = ξ− = 5 and f + = f− = 4.
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finite aggregate region of the phase diagram, because along the gel
boundary, the fraction of ions within the gel will be infinitesimal.
However, the gel tends to grow rapidly beyond the gel point by con-
suming larger ion clusters. Thus, the gel dominates the mixture soon
after crossing the gel boundary. For ln(Λ̃) > 0, the strength of the
ion–ion attraction is more favorable than the ion–solvent interac-
tion, which results in the onset of gelation occurring at smaller salt
fractions. However, for ln(Λ̃) < 0, the favorable ion–solvent inter-
action tends to “pull” free ions out of finite aggregates and gel, which
pushes out the onset of gelation to larger salt fractions.

F. Toward the inclusion of excess electrostatic energy
On account of our various assumptions, principally our

assumption of non-interacting clusters, the above developed model
should not be applied to the entire range of salt concentrations but
rather the moderate to super-concentrated regime. Other models
may capture the behavior of electrolytes in the dilute to moderately
concentrated regime.60,61,70–72 This is further emphasized by the fact
that our developed model does not recover Debye–Huckel behav-
ior73 in the dilute regime due to our neglect of the excess electrostatic
energy of the electrolyte. Here, we will demonstrate how our the-
ory can be augmented to recover Debye–Huckel theory in the dilute
regime, which may potentially expand the concentration range (to
include more dilute salt concentrations) within which our model is
applicable.

As we have mentioned, our model of super-concentrated elec-
trolytes treats the electrolyte as an ideal mixture of a polydisperse
distribution of aggregates. In this way, clusters do not interact with
each other, electrostatically or otherwise. However, charged clusters
are expected to have electrostatic interactions with the surrounding
medium, owing to the long range nature of electrostatics.

In principle, the free energy, originally written in Eq. (8), should
include an additional term accounting for the excess electrostatic
energy of the clusters (ΔFel), written as follows:74

βΔF∗ = β∑
lmsq
[e(l −m)Nlmsq ∫

1

0
Ψ0

lmsq(λ)dλ], (57)

where Ψ0
lmsq is the mean-field electrostatic potential at the surface

of a rank lmsq cluster and λ is the charging parameter used in the
Debye charging process. However, whereas all charged clusters may
have excess electrostatic energy, free ions are expected to dominate
the ionic strength of the electrolyte. Although charged clusters are
permitted and expected in our model, they will generally be in rela-
tively low concentrations and have a low charge to mass ratio. Thus,
we expect that accounting for excess electrostatic energy of free ions
will be the dominating contribution of the total excess electrostatic
energy. The corresponding approximation reads

βΔF∗ ≈ β∑
lmsq
[e(l −m)(δl,1δm,0 + δl,0δm,1)Nlmsq ∫

1

0
Ψ0
(λ)dλ]

= (α+ + α−)N± ∫
1

0
Ψ0
(λ)dλ, (58)

where Ψ0 is the electrostatic potential on the surface of a free ion, i.e.,
an ion that is not associated with a counter-ion but may be solvated
to any degree. Thus, the Debye charging process will integrate over
only the charges on the free ions with the assumption that we may

charge the ions composing the clusters without incurring any excess
electrostatic energy.

Ψ0 can be approximated by solving the linearized Poisson–
Boltzmann equation (Debye–Huckel approximation) for a spher-
ical ion of radius a±, screened by a medium with permittivity ε
and a concentration of (α+ + α−)N±/V diffuse free ions, where α+
and α− are the fraction of free cations and anions, respectively. For
monovalent free ions (with charge eλ), this procedure yields

Ψ0
(λ) =

eλ
4πε0εa±

−
eλκ(λ)

4πε0ε(1 + a±κ(λ))
, (59)

where ε is the permittivity of the medium, a± is the radius of a free
ion, and κ is the inverse Debye Length. Equation (59) contains two
terms. The first term is the so-called self-energy of the free ions,
which results in an implicit solvation energy of the free ions. The
second term is the interaction of the free ions with the surround-
ing free ion atmosphere. Thus, for free ions, our model contains
both implicit and explicit solvation. The radius of the ion used in
Eq. (59) must be that of a fully solvated ion to avoid a potential
“double-counting” for solvation. Essentially, for free ions, we han-
dle the first solvation shell explicitly via ion–solvent association but
account for the outer solvation shells implicitly via the self-energy.
Note that for simplicity, we have assumed that all free ions have the
same radius, a±, but this could be relaxed in principle. κ is a function
of the concentration of free ions, which is why we write κ = κ(λ),

κ(λ) =
√

λ2e2N±(α+ + α−)
ε0εkBTV

= λκ0, (60)

where κ0 is simply the inverse Debye length upon full charge of the
free ions. Note that, for simplicity, we have made a strong assump-
tion that ε ≠ ε(λ). Thus, ε does not change upon Debye charging the
free ions, unlike in Ref. 71, but we will still allow it to be a function of
the total volume fraction of salt, i.e., ε = ε(ϕ±). In this case, the Debye
charging process of the excess electrostatic energy free energy, ΔF∗,

βΔF∗ =
β(α+ + α−)N±e2

8πε0εa±
+

V
4πa3±

[ln(1 + κ0a±) − a±κ0 +
a2
±κ2

0

2
],

(61)

in which the first term is similar to the Born solvation energy
and the second term is the classic Debye–Huckel result. This addi-
tional excess free energy term will affect the cluster equilibrium
and thus the cluster distribution. Differentiating the free energy
[Eq. (8)], including the excess electrostatic free energy [Eq. (61)],
and establishing a cluster equilibrium results in the following cluster
distribution:

Klmsq = exp(l + m + s + q − 1 − Δθlmsq − Δ
∗
lmsq), (62)

where Δ∗lmsq is the excess electrostatic free energy of formation of
cluster rank lmsq (derived explicitly in the supplementary material),

Δ∗lmsq = (l + m)(δm,1δl,0 + δl,1δm,0 − 1)(ln γDH
± + uBorn

± ), (63)
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where γDH
± is the Debye–Huckel activity coefficient,

ln γDH
± =

e2

8πkBTε0ε
(

κ0

1 + a±κ0
), (64)

and uBorn
± is the dimensionless Born solvation energy for free ions,

uBorn
± =

e2

8πkBTε0εa±
. (65)

Note that the Born energy given by Eq. (65) is not defined in a con-
ventional way–not as an absolute value of electrostatic free energy
of transfer of an ion from vacuum to the liquid–but as electrostatic
“self-energy” of an ion in the liquid. We may solve for the cluster
distribution in the exact same manner as before, except with the new
definition for the ionic association constant,

Λ+− = γDH
± exp(uBorn

± )Λ
θ
+−. (66)

Note that γDH
± and uBorn

± are both functions of ϕ± and pij via κ0 and ε,
altering the solution to the system of Eqs. (40) and (41).

Let us now compare the behavior of the model including and
excluding the excess electrostatic free energy contribution. In Fig. 9,
we plot the ionic association probabilities excluding excess electro-
statics (blue curves), accounting for excess electrostatics with ε = 80
(red curves), and accounting for excess electrostatics with ε = ε(ϕ±)
(yellow curves). For the salt concentration dependent permittivity,
we employ a simple phenomenological interpolation model,

ε = εsα0(1 − x) + ε∗s (1 − α0)(1 − x) + ε∗±(1 − α±)x, (67)

where x is the mole fraction of salt, α0 is the fraction of the free sol-
vent, εs is the permittivity of the pure solvent, ε∗s is the dielectric
constant contribution of the bound solvent, and ε∗± is the dielec-
tric constant contribution of bound ions. Equation (67) is meant
to be a simple interpolation formula in that ε changes from εs in
the dilute regime to ε∗± as the solvent disappears and ions become
more and more bound in clusters. We emphasize that this is not
a linear interpolation between these limits as α± and α0 are highly
nonlinear in overall salt concentration. For additional information
on this permittivity formula, including a comparison of its concen-
tration dependence with a typical empirical model, see Sec. III of the
supplementary material.

FIG. 9. A comparison of cation–anion association probability, p+− (left), and anion–
cation association probability, p−+ (right), when not accounting for excess elec-
trostatic energy (blue), accounting for excess electrostatic energy with ε = 80
(red), and accounting for excess electrostatic energy with ε = ε(ϕ±) (yellow) with
εs = 78.4, ε∗s = 10, and ε∗

±
. These curves are generated for ξ+ = 1, ξ− = 10,

Λθ
+− = 50, Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.

Overall, we see that the ionic association is similar no matter
if the excess electrostatic energy is included or not. Certainly, the
constant permittivity model performs almost identically to the orig-
inal model. Accounting for electrostatics with a variable permittivity
leads to a slight deviation in association probability from the origi-
nal model. This deviation stems mostly from the fact that uBorn

± for
free ions becomes very large at high salt concentrations (resulting
from the decreasing permittivity), which drives the system equilib-
rium further toward the formation of clusters, as seen in Eq. (66).
Overall, the exclusion of excess electrostatic energy, as in the original
model, seems to be a reasonably justified approximation for model-
ing ionic association, but excess electrostatic energy can be included
without an unreasonable increase in model complexity.

III. DISCUSSION
We have set forth a thermodynamic theory of super-

concentrated electrolytes, in which we treat the electrolyte as a mix-
ture of non-interacting, solvent-decorated ionic clusters. The most
direct output of our theory is the distribution of clusters, which
has already been discussed and displayed extensively in Sec. II E.
However, our model can be useful beyond the determination of the
cluster distribution. In this section, we discuss the major thermody-
namic, transport, and rheological implications of our theory.

A. Thermodynamic implications
Our theory can also be used to predict some important ther-

modynamic quantities, such as the activity coefficients of species in
the mixture. In Eq. (9), we wrote the chemical potential of a clus-
ter of rank lmsq. The equilibrium condition [Eq. (17)] implies that
the chemical potential of species in the cluster will be equal to their
bare counterparts. Thus, we may write the chemical potential of
an ion or solvent molecule as simply the chemical potential of a
bare ion or solvent molecule. There is also an additional contribu-
tion associated with the excess electrostatic contribution to the free
energy [Eq. (61)] for both ions (log γ∗±) and solvent (log γ∗0 ), which
are derived explicitly in the supplementary material,

βΔμ+ = βΔμ1000 = ln(ϕ1000) + ξ+(1 − ctot + ϕ0d) + log γ∗±, (68)

βΔμ− = βΔμ0100 = ln(ϕ0100)ξ−(1 − ctot + ϕ0d) + log γ∗±, (69)

βΔμ0 = βΔμ0010 = lnϕ0010 + 1 − ctot + ϕ±d + log γ∗0 . (70)

We may derive ionic activity coefficients (with respect to a
dilute solution reference state) by obtaining the excess part of the
chemical potential. First, we must subtract off ideal entropy of mix-
ing terms (lnϕi). Then, we must subtract off the excess part of the
chemical potential of the ions in the dilute limit, obtaining

ln γ± = βΔμ± − ln{ϕ+,−(1 − p○±∓ − p○±0)
f±} − (1 − ξ±c○tot) − ξ±ϕ0d○,

(71)

where the “○” superscript denotes the dilute limit (as salt concentra-
tion approaches 0) and ϕ+,− denotes ϕ+ or ϕ− (not to be confused
with ϕ±, the volume fraction of salt). The limiting ionic association
probabilities, p○±∓, tend toward 0. However, the limiting ion–solvent
association probabilities, p○±0, tend toward Λ±0/(Λ±0 + 1). Thus, if
Λ±0 ≫ 1, we would expect ions to be fully associated with water in
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the dilute limit. Similarly, the total dimensionless concentration, c0
tot ,

tends toward 1, and d is zero before the gel point. We can then write
the ionic activity coefficient as

ln γ± = f± ln{(1 − p±∓ − p±0)(1 + Λθ
±0)}

+ ξ±(1 − ctot + ϕ0d) + log γ∗±. (72)

Similarly, we may write the activity coefficient of solvent molecules as

ln γ0 = ln(1 − p0+ − p0−) + 1 − ctot + ϕ±d + log γ∗0 . (73)

It is also useful to define a mean ionic activity coefficient, γ̄±
= (γ+γ−)1/2, which is the more experimentally accessible quantity.

In Fig. 10, we plot the mean ionic activity coefficient, as well
as that of the solvent, as a function of the volume fraction of salt. A
fairly general prediction of our model, which is shown in Fig. 10, is
that the activity of the salt tends to rise extraordinarily as a function
of concentration, while that of the solvent simultaneously decreases.
The salt activity increases for two primary reasons. First, the mag-
nitude of the Born solvation energy of free ions increases due to the
decrease in the dielectric constant of the electrolyte; free ions become
more active in lower dielectric constant fluids. Second, ions become
more paired with counter-ions as opposed to the solvent, which is
unfavorable entropically, as well as enthalpically, for very strongly
hydrating solvents. At the same time, the solvent activity tends to
decrease at high salt concentrations due to the increase in the frac-
tion of solvent that is favorably incorporated within the hydration
shell of ions.

These trends in salt and solvent activity are interesting because
one of the primary reasons water-in-salt electrolytes (WiSEs), in par-
ticular, have garnered so much interest is their ability to form a
passivating solid|electrolyte interface (SEI) at the negative electrode
in lithium-ion batteries (LIBs). This SEI layer suppresses the delete-
rious hydrogen evolution reaction, which prevents the use of dilute
aqueous electrolytes in LIBs. Specifically, at the negative electrode,
the solvent, in this case water, will not be stable to large electrode
polarizations and will be spontaneously reduced to form hydrogen.
When an SEI layer is present, the water does not come into direct

FIG. 10. The activity coefficients of the salt and solvent are plotted against the
mole fraction of salt. These curves are generated for ξ+ = 1, ξ− = 10, Λ+− = 50,
Λ+0 = 500, λ−0 = 5, f + = 5, f− = 4.

contact with the electrode; thus, its electrochemical decomposition
is suppressed. Therefore, it is desirable to form a stable SEI layer to
prevent the electrochemical decomposition of the solvent. The SEI
layer on an anode in contact with a WiSE would consist of reduc-
tion products involving the salt. By raising the activity of the salt
(the reactant), the reduction potential of the salt is increased, and the
overall driving force to form an SEI is increased. Similarly, by lower-
ing the activity of the solvent (the reactant), the reduction potential
of water is decreased, and the overall driving force to evolve hydro-
gen is decreased. Thus, by increasing salt concentration, the affinity
to form an SEI layer is expected to increase and that to evolve hydro-
gen is expected to decrease, as observed experimentally.11 At some
salt concentration, there is likely a crossover, where it becomes more
favorable to form an SEI layer than to evolve hydrogen. Because
our model can capture the trends in activity for both ions and
the solvent, it could potentially help predict when this crossover
might occur and how it might change for different electrolyte
materials.

B. Transport implications
Although our model does not include any dynamics, we can

begin to speculate on how certain transport properties, such as
conductivity or ion transference numbers, may be influenced by
ion association in the super-concentrated regime. For transport in
multi-component, concentrated mixtures, it is often necessary to
consider coupled diffusive fluxes,75–77 which are related to the vec-
tor of species chemical potential gradients through the Onsager
linear-response tensor or, after transformation to concentration
gradients, the Stefan–Maxwell diffusivity tensor. This mathemat-
ical framework is the basis for concentrated solution theories of
electrolyte transport,78 which have been widely applied to batter-
ies79,80 and fitted to experiments81–83 and molecular simulations.84

The Stefan–Maxell formulation has also been extended to charged
electrolytes in double layers.85,86 Even for moderately concentrated
electrolytes, however, the diffusivity tensor and ionic activity coef-
ficients are fitted to experimental data with little theoretical guid-
ance, and complex many-body interactions with solvent at high
concentration are neglected. Our statistical model could provide
a detailed, microscopic basis to model coupled fluxes in super-
concentrated electrolytes as originating from the presence of ionic
clusters.

Remarkably, as a result of the ion clustering predicted by our
model, superconcentrated electrolytes may behave more like dilute
electrolytes in that low concentrations of mobile charge carrier drift
and diffuse with nearly independent fluxes. As such, for an associa-
tive mixture of ions, Ref. 38 proposed a modified Nernst–Einstein
equation for conductivity, σ,

σ =
e2csalt

kBT ∑lm
(l −m)2αlmDlm, (74)

where Dlm is the diffusivity of a cluster of rank lm, and the factor
of (l − m)2 arises because l − m is the valence charge of a cluster of
rank lm. Our model is able to predict the cluster fractions, αlm, (as
in Fig. 7) for different electrolyte compositions and temperatures,
which could be extremely helpful when designing more conduc-
tive electrolytes. However, the cluster diffusivities, Dlm, would still
be unknown, although they would undoubtedly decrease with the
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increase in cluster size. As detailed in Refs. 38, 42, and 43, the con-
tribution of clusters to the ionic current may be largely responsible
for the very interesting observation of negative transference num-
bers for species in IL mixtures and solid-state electrolytes [see Eq.
(5) of Ref. 38]. Though, for binary liquid electrolytes, we would
not expect such exotic observations in ion transference numbers.
Along the same vein, observations of negative Stefan–Maxwell dif-
fusion coefficients87,88 have been reported for ion transport of con-
centrated electrolytes through membranes, which may be due to ion
clustering.

Although there are likely systems in which ion clusters play a
large role in conducting ionic current, recent work in Ref. 28 found
that free ions (l + m = 1) are the major contributor to ionic current
in neat ionic liquids. In that case, conductivity obeys an even simpler
equation

σ =
e2csalt

kBT
(α+D+ + α−D−), (75)

where α+ = (1−p+−)f+ is the fraction of free cations, α− = (1−p−+)
f−

is the fraction of free anions, and D± is the diffusivity of the free
cation or anion. The ability to use Eq. (75) instead of (74) depends
on if we can neglect the cluster contribution to the ionic strength
of the electrolyte. Our model allows us to predict the ionic strength
and decompose the respective contributions from free ions and clus-
ters. In the left panel of Fig. 11, we plot the dimensionless ionic
strength (non-dimensionalized by the overall salt concentration).
The dashed line in Fig. 11 represents the free ion contribution to
the ionic strength, while the solid curve represents the total ionic
strength. It is apparent that free ions dominate the ionic strength of
the electrolyte no matter the salt concentration, at least for the model
parameters given in the caption. There is a small region where there
is a perceptible contribution of ion clusters to the ionic strength,
which corresponds to concentrations very close to the gel point of
the electrolyte (x = 0.18). Nonetheless, it appears as if Eq. (75) could
suffice for modeling the conductivity of our fictional electrolyte.

Within our model, the concentration of free ions can display
nonlinear or even non-monotonic behavior as a function of over-
all salt concentration. At high concentrations, adding more salt

can, in fact, decrease the number of free ions in solution. This
is shown in Fig. 11, where we have plotted the concentration of
free ions as a function of the mole fraction of salt. Here, we have
used the parameters listed in the caption to generate the curves,
which are the same parameters that have been used for the major-
ity of the paper. The non-monotonic concentration of free ions is
likely largely responsible for the non-monotonic ionic conductivity
that has been widely observed for concentrated electrolytes89 or IL-
solvent mixtures.90–92 Though, we must note that D± is also expected
to have a large role in the concentration dependence of ionic
conductivity.

One interesting aspect of this model is that for asymmetri-
cally associating ions, we obtain different fractions of free anions
and cations, as shown in Fig. 11. If the free anions and cations
have equivalent diffusivities, then we can write the transference
number as

t± =
α±

α+ + α−
. (76)

Thus, assuming free ions are the dominant carrier of charge, our
model would predict asymmetric transference numbers (t± ≠ 0.5)
for salts with ions that do not have equivalent functionalities, as
shown in the inset of Fig. 11. In general, for binary mixtures of
monovalent salts, the ion with more association sites will have a
higher fraction of free ions than the ion with less association sites.
The reason for this is quite subtle. Ultimately, when f + > f −, for
a fixed number of ion–counter-ion associations, the cations need
less molecules to form those associations than anions. Thus, more
cations will be free than anions, and we would observe that t+ >

0.5 and t− < 0.5. The opposite would be true for the electrolyte
if f − > f +.

C. Rheological implications
Gel-forming electrolytes should display intriguing viscoelastic

properties. In polymers, typically the presence of gel is detected by
probing the rheology of the mixture. At the gel point, the viscosity is
expected to diverge and the equilibrium shear modulus is expected
to become finite.65 Because our gel is composed of reversible phys-
ical associations between ions, we do not expect the viscosity to

FIG. 11. (Left) A plot of the dimensionless ionic strength as a function of the mole fraction of salt when account for all charged clusters (solid line) or just free ions (dashed
line). The inset of the left panel displays the same curves on a log–log plot to visualize better the high mole fraction regime. (Right) The concentration of free anions and
cations is plotted against the mole fraction of salt, displaying non-monotonic salt concentration dependence. Within the inset of the right panel, the transference number of
anions (t−) and cations (t+) is plotted against the mole fraction of salt according to Eq. (76). These curves are generated for ξ+ = 1, ξ− = 10, Λ+− = 50, Λ+0 = 500, λ−0 = 5,
f + = 5, f− = 4.
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formally diverge. Nonetheless, thermoreversible gels should display
a finite shear modulus. Flory related the equilibrium shear modu-
lus, Ge, to the fraction of the gel in the mixture for tetrafunctional
associating polymer strands.65 This was later extended for any f
functional associating polymer strand by Nijenhuis. This extension
would be applicable for our case of ion gels if the ions have the equal
functionalities, f,

Ge = −2cRT(
ln wsol

±
1 − wsol±

⋅
1 − (wsol

± )
f /2

1 − (wsol± )f /2−1
⋅

f − 2
f

+ 1)(1 − wsol
± ), (77)

where c is the molar concentration of salt and R is the gas constant.
Equation (77) predicts, as expected, that Ge will be zero prior to the
formation of gel and then increase with the increase in gel fraction.
If we again operate within the sticky symmetric ion approximation,
then we can see how the equilibrium shear modulus is modulated by
the electrolyte concentration (via ϕ±) and strength (via Λ̃).

In Fig. 12, we display a contour map of the equilibrium shear
modulus using Eq. (77) as functions of ϕ± and log Λ̃. The shear
modulus is predictably zero (white region), when there is no ionic
gel present in the electrolyte, and becomes finite beyond the gel
point. Additionally, the shear modulus increases monotonically with
the increase in gel fraction. As such, it increases with concentra-
tion but tends to decrease as the electrolyte becomes weaker (logΛ
decreases). There is a subtlety to this statement, as can be seen by
the non-monotonicity in the contours of Ge at high salt concentra-
tions. For very strong electrolytes (log Λ̃ < 2) and for a given volume
fraction of salt that is beyond the gel boundary, by increasing Λ̃
(increasing the affinity for ion association), the gel fraction, in fact,
decreases. This is counter-intuitive because we would expect more
gel when the affinity for ion association is stronger. However, within
the gel, the model allows for intra-cluster loops (defined as a closed

FIG. 12. A contour map of the equilibrium shear modulus, Ge, as a function of
Λ̃ and ϕ±. The red dotted line denotes the critical gel boundary. The region of
white denotes the pre-gel region, where the equilibrium shear modulus is exactly
0. The diagram was generated within the sticky symmetric ion approximation (see
supplementary material) for ξ+ = ξ− = 5 and f + = f− = 4.

path that is formed from traversing bonds in a cluster). Increas-
ing the affinity for ion association induces more intracluster loops,
which frees up ions from the gel while simultaneously containing
more ion–counter-ion associations. Thus, in this regime, increasing
the affinity for ion association decreases the shear modulus.

This subtlety should not obscure the result that when an ionic
gel is present, the mixture may display viscoelastic properties. Inter-
estingly, viscoelastic properties have indeed been observed experi-
mentally for some common imidizolium-based ILs.93 In that work,
the equilibrium shear modulus of elasticity decreases as a function
of temperature, which would be consistent with the melting and
destruction of an ionic gel.

There is limited literature on this topic, however. Furthermore,
Ref. 93 does not attempt to compute a gel point. Perhaps, the most
reliable method for determining the exact gel point was introduced
by Winter and Chambon.94 They determined the gel point to occur
at the intersection of the dynamic loss and the storage moduli for an
oscillatory shear experiment. This could be a route to experimentally
probe gelation in concentrated electrolytes.

IV. CONCLUSION
Here, we have cast the mean-field theory of thermoreversible

association and gelation from polymer physics into the context
of electrolytes. The presented theory allows complicated, branched
ionic aggregates to be included in models of concentrated elec-
trolytes. Previously, only ion pairs and occasionally ion triplets were
included in models of ionic association for concentrated electrolytes.
However, these models break down when the system becomes suffi-
ciently concentrated, which motivated the presented theory. More
specifically, we developed a model for aggregation and gelation
between cations, anions, and solvent molecules, with alternating
cation–anion aggregates/gel and solvent molecules decorating this
“ionic backbone.”

The theory can describe the cluster composition of an elec-
trolyte as a function of salt concentration (or temperature), where
different ionic states (free, aggregated, or gelled) dominate depend-
ing on the conditions. Higher salt concentrations favor the forma-
tion of a percolating gel, while low salt concentrations tend to have
only free ions; between these extremes exists a narrow domain where
finite aggregates dominate in the electrolyte.

We expect that our model will have implications for the bulk
thermodynamic, transport, and rheological properties of super-
concentrated electrolytes, which can be probed experimentally and
used to guide the design of these dense ionic fluids.

The developed theory is best applied to super-concentrated
electrolytes with “complicated” ions, where crystalline solids can-
not precipitate out. This includes neat ionic liquids, water-in-salt
electrolytes, ionic liquid-solvent mixtures, or hydrate melts, which
are highly relevant for battery or super-capacitor applications. Often
super-concentrated electrolytes contain bulky, asymmetric ions that
lead to high solubility and low melting points of the salts. Asymmet-
ric ions in ILs have been shown to exhibit preferential orientations
from density functional theory (DFT).57 Moreover, some ILs can, in
fact, form hydrogen bonds between ions, permitting strong and well-
defined bonds between ions.57 Therefore, our assumption of a fixed
functionality for each ion might be justified for super-concentrated
electrolytes, where such asymmetric ions are common.
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The ion aggregates that are formed in these systems tend
to be irregular and disordered, which is quite consistent with
our approximation of Cayley tree-like ion aggregates. Inorganic
salts, such as NaCl, form aggregates that may be ordered and
semi-crystalline, as opposed to the branched structures that are char-
acteristic of Cayley trees. Ordered aggregates nucleate, phase sepa-
rate, and induce the precipitation of crystalline salt, without forming
a gel. In these types of systems, the physics of ion gelation would
probably not be as relevant, and our description of ion aggregation
would be flawed. Nonetheless, we expect that our model is well-
equipped for capturing the ion association, solvation, and gelation
in super-concentrated electrolytes.

It may be possible to extend our approach to interfacial prop-
erties as well. Specifically, it has already been shown that under-
standing the partitioning of ions27,32,95 and solvent96 between free
and bound states is extremely enlightening in modeling the elec-
trical double layer (EDL) of ionic liquids and WiSE’s. Our model
provides a more detailed and generalized picture of the states of
ions or solvent, which may be leveraged to develop more accurate
and general models of the EDL. EDL properties will also influ-
ence electrokinetic phenomena and may help explain many puzzling
observations, such as flow reversals in concentrated electrolytes.97,98

As with polymers under confinement, it will also be interesting to
extend our model to nanopores, where cluster sizes are influenced
by geometrical constraints.

SUPPLEMENTARY MATERIAL

See the supplementary material for (1) model results with alter-
nate chosen parameters, (2) derivation of the “sticky cation approx-
imation,” and (3) more information and derivations concerning the
excess electrostatic energy of the electrolyte.
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