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Ion transport in extremely narrow nanochannels has gained increasing interest in recent years due to
unique physical properties at the nanoscale and the technological advances that allow us to study them.
It is tempting to approach this confined regime with the theoretical tools and knowledge developed for
membranes and microfluidic devices, and naively apply continuum models, such as the Poisson-Nernst-
Planck and Navier-Stokes equations. However, it turns out that some of the most basic principles we take
for granted in larger systems, such as the complete screening of surface charge by counter-ions, can break
down under extreme confinement. We show that in a truly one-dimensional system of ions interacting
with three-dimensional electrostatic interactions, the screening length is exponentially large, and can
easily exceed the macroscopic length of a nanotube. Without screening, electroneutrality breaks down
within the nanotube, with fundamental consequences for ion transport and electrokinetic phenomena.
In this work, we build a general theoretical framework for electroneutrality breakdown in nanopores,
focusing on the most interesting case of a one-dimensional nanotube, and show how it provides an ele-
gant interpretation for the peculiar scaling observed in experimental measurements of ionic conductance
in carbon nanotubes.
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1. Introduction

The transport of ions in extreme confinement has applications
ranging from physiology to chemical engineering [1-12]. Whether
we consider ions traveling through the protein channels in the cell
membrane or through pores in an ion-exchange membrane, the
underlying physics shares many similarities [13,14]. A growing
interest in ionic transport through nanopores has emerged in
recent years owing to nano-fabrication advances that enable us
to study pristine nano-channels at the single-channel level, such
as carbon nanotubes, boron-nitrite nanotubes or silicon nano-
channels [15-19]. These experiments have revealed that our
understanding of even the basic physics is incomplete, and impor-
tant theoretical knowledge gaps still exist [20].

Classical theories of ion transport were inspired by the mem-
brane technology that was available at that time [21-23]. The com-
plicated interplay of fluxes and potential gradients (chemical,
electrical, and pressure) was naturally modeled with continuum
theories. The so-called “capillary-pore model,” based on the
Poisson-Boltzmann (PB) equation for the charge distribution nor-
mal to the pore walls under the local equilibrium assumption, with
Navier-Stokes and Nernst-Planck equations for the fluid flow and
ionic flux, is a continuum linear response theory of transport in
charged cylinders [11], which is widely used in different electro-
chemical applications, from electro-osmotic pumps to energy con-
version devices [24-29]. A competing school of thought, rooted in
transition state theory [30], emerged in the biophysical commu-
nity. Experiments on ion channels show that when open, the trans-
port of the ions is best described by a discrete, single-file reaction
model, where ions are attached to specific binding in the channel
by a chemical reaction [1,4,31,2,3,32].

Evidently, a new theory is required for nanochannels with a
pore diameter of less than 10 nm (single-digit nanopores, or SDNs
[20]), in order to span between the two limiting regimes, from dis-
crete to continuum behavior. While the two traditional pictures
have some merit, neither can exactly capture experimentally mea-
sured conductivity curves. Unusual scaling behavior of ionic con-
ductance in carbon nanotubes (CNTs), for example, was recently
reported by Secchi et al. [33] and was subsequently interpreted
with a Space-Charge continuum model [34]. The conductance of
a narrow CNT porin, in contrast, was fitted to a Michaelis-
Menten reaction model [35], suitable for a single-file transport
mechanism.

In this work, we propose a new theoretical framework for elec-
trolytes in nanopores, consisting of confined ions with three-
dimensional (3d) electric fields that extend into the surrounding
matrix. In the most interesting and relevant case of SDNs, we con-
struct a truly one-dimensional (1d) mean-field theory of ions con-
fined to a long, thin nanopore in a 3d matrix, in contrast to
previous models of ion chains with 1d Coulomb interactions [33-
35]. Surprisingly, 1d electrolytes exhibit several interesting behav-
iors, most notable is the breakdown of global electroneutrality: a
system can have a net charge where the total charge of the ionic
solution does not exactly cancel out external charges. When the
pore diameter is comparable to the spacing between ions, the sys-
tem essentially behaves like a 1d correlated electrolyte. Ions are
not necessarily restricted to transport in single-file, but the nature
of the electrostatic interactions resembles a 1d chain. Despite our
interest in transport, this paper will only focus on the equilibrium
properties of ion channels. The equilibrium properties can in turn
be used to understand transport properties of the nanotube
[34,22]. Moreover, we limit our discussion to the behavior of ions
inside the pore, and do not consider entrance and edge effects.

Electroneutrality breakdown in nanopores has been observed in
Monte-Carlo simulations [36-43], and was recently even measured

experimentally [44]. However, it was not interpreted as a unique
feature of the 1d geometry. Instead, the breakdown was assumed
to occur due to an excess screening of charges outside of the pore.
This type of local breakdown of charge neutrality is not suited to
most transport problems, where the channel is surrounded by a
constant dielectric medium.

Without charge neutrality, electric fields leak out of the con-
fined region into the outer substrate. We derive (Section 2) a
mean-field theory of a confined electrolyte by properly accounting
for the outer region as well, and present and illustrate using
numerical simulations the emergence of electroneutrality break-
down. In Section 3 we consider a uniformly charged pore and solve
a self-consistent algebraic mean-field equation for the excess
charge. Three length-scales govern the accumulated charge: the
Debye screening length (ion-ion interactions), the Gouy-
Chapman length (ion-wall interactions) and the pore diameter. In
Section 4 we present a general scaling argument for the enhanced
screening length in low dimensions. We show that electroneutral-
ity breakdown is a unique feature of 1d systems due to their expo-
nentially long screening length that can easily exceed the size of
the system. Finally (Section 5), we solve a full 1d lattice mean-
field equation and observe the emergence of ionic ordering at high
concentrations. The breakdown of electroneutrality has profound
implications on the transport of ions through nanochannels, and
in Section 6 we show that our model can account for the unusual
scaling of conductance in CNT.

In each section, emphasis is placed on understanding the com-
petition between electrostatics which drives the system towards
electroneutrality and entropy which drives the system to disor-
dered electroneutrality breakdown within the pore domain. While
1d confinement increases the entropic penalty of ions entering the
pore domain, the electrostatic energy within the domain is also
significantly altered by the 1d confinement, pushing the balance
towards electroneutrality breakdown.

2. Mean-field theory of confined electrolytes

Electroneutrality is often a hidden assumption of continuum
models: it hides in the boundary conditions for the Poisson-
Boltzmann equation, where the electric fields outside the elec-
trolyte are assumed to vanish [34,11,22-24,33,45-51]. According
to Gauss's law, if there is no electric flux emanating from the elec-
trolyte in the pore, it has zero net charge. Electroneutrality relies
on the nanometer-scale screening length, which guarantees
macroscopic charge fluctuations are negligible. A rigorous analysis
requires us to solve the Laplace equation outside the electrolyte, in
addition to the PB equation inside.

It is important to note that electroneutrality is not always
assumed [52,53,44,54,12]. As a recent example, Colla et al. [54]
considered two charged plates immersed in water, with free ions
on both sides of each plate, and solved a density functional theory
(DFT) in the entire space. Since the screening is not symmetric,
especially when the screening length is large, the accumulated
charge between the plates can be small. The authors consider this
as an example of a local breakdown of electro-neutrality (LEC), and
while it shares some similarities with our approach, LEC is funda-
mentally different from the pore-wide electroneutrality break-
down which we discuss, and is not a unique property of a 1d
geometry.

As an aside, 1d confinement is confinement in which ions are
bounded by pore walls which enclose a line from one reservoir
to another reservoir, such as a cylindrical pore. One can contrast
this dimensionality of confinement to 2d confinement, in which
the bounding walls enclose a plane between the two reservoirs.
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The extent of confinement is determined by comparing the con-
finement length scale (the radius for a cylinder, for example) to
the dominant length scales in the double layer, the Debye length
and the Gouy-Chapman length. When the double layers are thick
relative to the confining dimension, the electrolyte is strongly
confined.

2.1. General equations

Let us consider the PB equation for a symmetric binary monova-
lent electrolyte, fixed at a chemical potential that is set by an exter-
nal reservoir with ionic concentration ¢y, and confined to a small
region in space (Q, see Fig. 1). We further assume that the elec-
trolyte is embedded in a constant dielectric medium with permit-
tivity &ut, and the boundary is charged with a surface charge g,.
The electrostatic potential (¢) is determined by a set of PB and
Laplace equations:

&inV* §in(T) = 2coe sinh [efepiy (1))
goutvz¢out(r) =0

vreQ

vr ¢ Q. M
where e is the electron charge, ¢, and &, are the dielectric con-
stants in the solvent and dielectric matrix, respectively, and
B =1/kgT is the inverse temperature and kg is the Boltzmann con-
stant. A similar approach was previously introduced to calculate the
effect of image charges on the ionic self energy in confinement [55],
and to study the transport of ions through porous media [12], but
the resulting electroneutrality breakdown was not emphasized.

For a cylinder with length L, radius R, and charge density g, on
the pore walls, the boundary conditions for this system are:

[Bouc(T) — ¢in(r)}\1reaﬂ =0
£0Utvd)0ut(r)}V0<r<R,0<Z<L = QS (2)
¢out(r)|rﬂoo = 03

l'l(l') . [Siﬂv¢in -

where 0Q is the electrolyte boundary, and n is an outward unit vec-
tor normal to the boundary.
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Fig. 1. Sketch of a confined electrolyte, in chemical equilibrium with an external
reservoir (in the grand canonical ensemble). The governing equation in the inner
region (Q) is the usual Poisson-Boltzmann equation. The outer region has a fixed
dielectric constant and is described by a Laplace equation. The surface charge on the
boundary layer (9Q) determines the jump in the normal component of the electric
field.

Solving the set of PB/Laplace equations for a finite cylinder can
only be done numerically. In many cases, we will find that account-
ing for outer electric fields is redundant, since the outer electric
fields vanish. In other cases, dramatic differences in the charge pro-
file can be observed. In the remaining sections of the paper, we will
present simplified models that permit analytical results, which will
help us explore the implication of Eq. (1). While some of the accu-
racy of the complete model is lost, we will gain a much better
physical understanding, as well as mathematically convenient
approximations.

2.2. Numerical simulation

Remarkably, despite numerous theoretical investigations of
ionic channels, there is currently no analysis of this simple and
fundamental problem, to the best of our knowledge. In many cases,
the full set of PB/Laplace equations is oversimplified by disregard-
ing the outer dielectric matrix [34,11,22-24].
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Fig. 2. Electroneutrality breakdown for a nanopore in equilibrium with an external
reservoir. The surface charge is not fully screened by the confined electrolyte, as
electric fields extend into the solid matrix (assumed here to have the same
dielectric constant as the pore). (a) Simulation box in COMSOL, as well as
electrostatic potential in a 2D cross section of the pore and membrane domain.
(b) The electric field intensity for different concentrations. As the concentration
increases, the electric fields are screened from the outer region and are concen-
trated in a narrow region near the surface of the cylinder. (¢) The accumulated
charge inside the cylinder, relative to the total surface charge, as a function of the
ratio of the radius to the Debye length.
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We solve Eq. (1) using the COMSOL Multiphysics simulation
package. Fig. 2 shows an example of such numerical simulation
for a nanopore configuration and the resulting electrostatic poten-
tial in a cross section of the cylinder. The simulation box is com-
posed of a membrane dielectric embedding a charged pore that
is between two reservoirs. The reservoirs have a thickness of
20/p and each side of the box is 5L. Here, 4p is the Debye length
given by:

1 einkgT
KD 2e2¢cy’

Ip = 3)

At the top and the bottom of the box, Dirichlet boundary condi-
tions are imposed, to signify a return to bulk reservoir conditions
with ¢ = 0 and ¢; = ¢o. At the lateral surfaces, symmetry conditions
are imposed. For simplicity, we analyze the limit of small but finite
surface charge density, q,, on the pore walls. We consider the case
of &in = &oue = 80¢&p, with length L = 100 nm, radius R = 5 nm, and
temperature of T = 300 K, as shown in Fig. 2a for ¢, = 1 mM. Note
that there is a significant ‘leakage’ of the electric field into the
dielectric matrix, demonstrating the invalidity of the local elec-
troneutrality assumption, as illustrated in Fig. 2b. In Fig. 2c, we
quantify the extent of electroneutrality breakdown by calculating
the ratio of ionic charges within the cylinder, Q;,, to the number
of charges on the pore walls, Q. For |Q;,/Qex| — 1, the pore walls
and the pore are electroneutral, while for |Q;,/Qex| — O, the pore
walls and the pore domain experience electroneutrality
breakdown.

Note that the continuum simulation as a whole (pore walls,
pore, and reservoirs) satisfies global electroneutrality. In fact, one
way to check that the reservoir domains are sufficiently large is
to ensure that the overall system satisfies the global electroneu-
trality constraint. When electroneutrality breakdown occurs
within the pore domain, the excess screening charge exists at the
membrane-reservoir interfaces. Even so, the breakdown in elec-
troneutrality within the pore domain remains an unexpected phe-
nomenon, especially as the pore length goes to macroscopic scales
many times longer than the bulk Debye length. Through a series of
analytical approximations, we will show that electroneutrality
breakdown arises especially strongly in 1d confinement, where
the screening length becomes exponentially long.

3. Uniform Embedded Pore model

The numerical solution of Eq. (1) in a long and narrow cylinder
showed that overlapping double layers are accompanied by a net
charge of the pore. With this result in mind, let us now introduce
an analytical model of a uniformly charged pore embedded in a
constant dielectric medium. Our goal in this section is to develop
a simple equation that relates the physical properties of the pore,
and the average accumulated charge.

This “Uniform Embedded Pore” (UEP) model is closely related to
the widely used “Uniform Potential” (UP) model [56-60,9,11], also
known as Teorell-Meyers-Sievers theory [61-63], which takes
advantage of the narrow pore geometry to approximate a constant
charge distribution in the radial direction. This approximation is
further adapted in the “Leaky membrane model”, which describes
the concentration polarization in porous media, based on similar
microscopic assumptions [10,64,65]. While we make the same
assumption about the charge distribution within the pore, we rec-
ognize that the surrounding dielectric matrix cannot be neglected.

To keep matters simple, we only consider a similar dielectric
constant in all regions: the reservoir, the pore and the membrane.
There are two important simplifying assumptions. First, we ignore
the mismatch between the pore and the membrane, which changes
the boundary condition of the generalized PB equation (Eq. (2)).

The mismatch between the pore and the reservoir, however, will
be associated with an energy barrier for entering the pore. While
we do not account for this mismatch directly through a modified
boundary condition, we extend our analysis to include a possible
energy barrier.

3.1. Derivation
The free energy functional of M ionic species immersed in a

dielectric continuum with permittivity &, assuming ideal mixing
entropy, with thermal de Broglie wavelength /i, reads:

Fl{ci(r)}] zfvdarfvcf foete)

+keT [, d rZQ log ATCI( )) - 1]

Zez, ci(r

+pEXt7

where c;(r) and z; are the concentration and valency of the i-th ionic
species, respectively, and p,,, is an external charge distribution. For
a uniform ionic density we write the free energy as a function of the
mean ionic concentrations:

% kmg

M
3
Z iZjCiCj fvd erd 47'5&\1‘ |

f d3ldpext )Pext ()

4melr-r|
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3 ~ 13 P,
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e
2

M
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The “mean-interaction” integrals in the above equation describe
the electrostatic energy associated with uniformly distributed
charge inside a volume, V. They depend only on the external charge
and geometry, so it is convenient to define the following integrals:

V= eV vd3r[vd3r/\r e (6)

5 3 31 Pext(
Pext = e}v Jyd'r [, dr \:tr/w

where Iy = e /AnkgTe¢ is the Bjerrum length. The free energy density
is now simplified:

M
o —$ a0 )
=1

+ci(log(47ci) — 1)),

where we neglect constant contributions to the free energy. The
chemical potential is the derivative of the free energy density with
respect to concentration:

M
Bu; = yzi (Zezjcj + foext) +log (73ci). (8)
=1

The first term in the LHS of Eq. (8) describes the excess free
energy due to electrostatic interactions, while the second term is
the ideal gas entropy. If our system is in chemical equilibrium with
a bulk reservoir, the chemical potential will only have the second
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term (fu? = log (/3¢?)), with the bulk values of ionic concentra-
tions. Equating the chemical potential in Eq. (8) to the bulk value,
we find the following equation for the average ionic density, c;:

M
log ( TCO) = vz <Z€Zj€j + pext) +log (i?ci)

=

M
ci= cdexp {—yz,- <Zezjcj + pext)} )
j=1

The average charge density, p = 3 ezic;, therefore, satisfies the
following equation:

M
= ezic] exp [~z (Pext + P)), (10)
i=1

We can incorporate non-idealities to the system by adding an
excess chemical potential to Eq. (8). If this were the case, the c?
would be replaced by the ionic activities, rather than the
concentrations.

The equation for the mean charge in the UEP model, Eq. (10), is
written in terms of the average charge density, p, which makes it
easier to solve. To see its relation with the set of PB/Laplace equa-
tions discussed in Section 2, we write Eq. (10) in terms of the elec-
trostatic potential. Note that the term in the exponent is the
electrostatic potential, averaged over the volume of the electrolyte,
and multiplied by z;ep. Furthermore, the Poisson equation relates
charge density and electrostatic potential, p = —&V?¢, and thus
Eq. (10) becomes a partial differential equation:

eV2( Zez,c exp[ ziefp(r )] (11)

Hence, the uniform embedded pore model is an approximation of
the standard PB equation, where we replace the electrostatic poten-
tial with its volume average. The complete set of equations for the
potential in the UEP model includes in addition the Laplace equa-
tion in the outer dielectric medium, and the boundary conditions
of Eq. (2). This set of equations is mathematically equivalent to
Eq. (10), as long as the permittivity is everywhere the same.

Under electroneutrality the charge density, p, exactly cancels
out the external charge distribution, pey. A criterion for elec-
troneutrality to be satisfied, for weakly charged systems, is
obtained by linearzing Eq. (10):

b= #1. (12)
1+ (eyZzch’)

Hence, the condition for electroneutrality is ey>_V,z2c? > 1. Using
the definition of y (Eq. (6)), we can write this condition in terms

of the bulk Debye length- /7, = 47ty (Z, lzch’)

/d3 /v)D|r r’\ (13)

In typical 2 and 3 dimensional systems, this condition is satis-
fied if the characteristic size of the system is larger than the Debye
length, but in 1d we find a very different result.

3.2. Cylindrical nanopore geometry: a phase diagram
Our numerical solution suggests that electroneutrality breaks

down for cylindrical nanopores if the Debye length is greater than
the pore radius. We can now see that this is a property of the cylin-

drical mean-interaction integral. Let us consider a cylinder with
radius R, length L, and a surface charge density g
(Pext = q;0(r — R)). The mean-interaction integrals, y, and p,,, can
be approximated to a good precision by considering a test charge
located at the center of the pore:

3 301
dpprx __ /
Y = ydr [, d’r o
_ Iy (R (L2 2prdrdz _ 27nR%lg L
= oo S 2 =T og () (14
0.apprx __ ! - @r 43 <
Pext - eyap% fv e jvd r'qsb(r - R)'
_ 2mRLgs _ 2qg
- Vv T R

Interestingly, this approximation deviates by only a few per-
cents from an accurate numerical evaluation of the mean-
interaction integrals. Based on this approximation, the electroneu-
trality condition (ey®P™ Y~ z2c? > 1) in nanopores can be expressed
in terms of the natural system length scales:

L> (2R)exp (21: ) (15)

which will be derived via scaling arguments in Section 4. To extend
the electroneutrality condition beyond weakly charged systems, the
full solution of Eq. (10) is required. For a monovalent binary elec-
trolyte, Eq. (10) reads:
p = €Coexp[—)(Pext + P)] — €Co€XP [}(Pext + P)]

= —2ecysinh [Y(Pext + P)]- (16)
—2eco sinh {yapp“‘ (pg-;;f’m + p)] .

Q

We note that y?PP™ has dimensions of inverse charge density, so
it is instructive to study the dimensionless charge density,
p = y*PPXp_ According to Eq. (14), a dimensionless charge density
with a value of 1 describes a system where the distance between
ions is proportional to the Bjerrum length. Hence, we expect strong
ion-ion interaction when the dimensionless charge density is large,
while for weak charge densities (p < 1), we expect weak electro-
static interactions, that would result in the breakdown of
electroneutrality.

In terms of the dimensionless charge density we obtain the fol-
lowing algebraic equation:

p = —¢&sinh(Pext + p), (17)
where the two parameters, ¢ and pe, are related to two important
length-scales of the system, the Debye-length and the Gouy-
Chapman length:

Pe = 7ol = 2 log ()

Ge

(18)
&= 2ecoyPP™ =1 (%) log (&)

The Gouy-Chapman length (iqc = e/2mq,ls) characterizes the
distance from a charged surface at which its electrostatic and ther-
mal energies are equal. If this distance is much smaller than the
pore radius, the system is effectively three-dimensional, and elec-
troneutrality holds. As pore charge decreases, Aqc becomes compa-
rable with the pore radius and the one-dimensional geometry is
recovered. Our parameter space is therefore described by three
length-scales: the Debye screening length, Gouy-Chapman length,
and the pore diameter. The breakdown of electroneutrality into a
disordered phase is further augmented by the aspect ratio of the
system, which effectively re-scales the pore diameter.
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The solution to Eq. (17) can be written as p = —Pext -|—fg1 (Pext)s
where f.(x) = x + ¢sinh(x). Approximated solutions can be found
for highly and weakly charged pores:

- pexfl ) pext < 1~

1+¢

P =F"(Pext) — Pext = (19)

log (%) — pexe- P> 1.

This solution is illustrated in Fig. 3 as a function of igc and Ap,
for a pore with dimensions R = 1 nm and L = 100 nm. We identify
four different regimes, as shown in the four panels of Fig. 3. At low
surface charge (large Jqc) and short screening lengths (thin double
layer), the system can be described by the standard DH approxima-
tion, and the electroneutrality assumption is valid. This theory also
covers the beginning thick double layer regime, where the double
layers begin to overlap. For high surface charges the linearized
Poisson-Boltzmann equation is no longer valid. In this strong cou-
pling regime the full non-linear equation is required, but interest-
ingly, it also ensures the ions will completely screen any surface
charge. Our solution, however, predicts a fourth regime, of low sur-
face charge and small concentration. Under these conditions, elec-
troneutrality is broken, and external fields must be accounted for.

Two theoretical curves mark the boundaries of the electroneu-
tral phase. The vertical line is derived from the weak charge
approximation, as the Debye length at half screening:

p =Ry/2 log%. (20)

The second curve mark the transition to electroneutrality due to
high surface charge, and is obtained by requiring half screening in
the strong coupling limit of Eq. (19):

[\ R/2c
AD:\/;VGCR<ﬁ) , (21)
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O 10
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0.2 0.4 0.6 0.8
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which asymptotes to a horizontal line at A¢c =~ R as the concentra-
tion decreases. Note that the transition to electroneutrality is slow,
and spans roughly an order of magnitude change in the parameters.
Electroneutrality breakdown can thus play a major role in the phy-
sics of nanopores.

The total ionic concentration inside the nanopore, depicted in
Fig. 4, is related to the pore charge by Donnan equilibrium:

(2c0)” + (p/e)*. (22)

In electroneutral systems the concentration reaches a plateau in
the dilute limit, where the only ions inside the channel balance the
surface charge. Accounting for electroneutrality breakdown, how-
ever, significantly alters the behavior in the dilute limit.

Crot =

3.3. Sub-nanometer nanopores: dehydration and images forces

Ton specific effects have important consequences on the behav-
ior of nanopores, especially in the sub-nanometer scale. Despite
the reduced dielectric response of water in extreme confinement
[66], the electroneutrality breakdown should still be present. Fur-
thermore, in extremely narrow pores ions have to remove their
hydration shell, which creates a large energy barrier for entering
the pore [67,68]. Denoting this energetic cost for the ith specie
by E;, we generalize the self-consistent equation for the mean
charge distribution:

N
p=> ezc)exp[—pEi —z)(p + Pext)]. (23)
i1
In the monovalent case the pore-charge equation takes a similar
form to Eq. (17), with re-scaled coupling parameter ¢ and external
charge pes:

Pex = 72 log () + 557

s

e= 2(2) tog () exp (~555).

(24)

3d PB(thick Electroneutrality
doublelayer) breakdown

3d PB (thin
doublelayer)

Fig. 3. Left: Phase diagram for electroneutrality in a cylindrical pore (R =1 nm, L = 100 nm), as a function of the Gouy-Chapman length (4c) which is related to the surface
charge, and Debye screening length (/p), which is related to the bulk ionic concentration. The color intensity indicates the ratio of total accumulated charge inside a
nanochannel to the surface charge and is obtained by solving Eq. (17). In electroneutral systems, this ratio is 1. The dashed mark the transition to electroneutrality Eqs. (20—
21). Right: illustration of the 4 regimes of the phase diagram. The blue circles mark the Debye screening length. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 4. The total ionic concentration in a nanotube (R=1 nm, L = 100 nm), as a
function of concentration for different surface charges. Dashed lines show concen-
tration calculated for electroneutral pores.

Hence, the phase diagram (Fig. 3) remains similar, but skewed: the
X-axis is rescaled by the average Boltzmann weight, while the y-axis
is shifted by dimensionless energy difference. Any asymmetry in
the dehydration energy will result in an excess charge within the
pore since the dehydration energy plays a similar role to that of
the surface charge.

Even though we incorporate in our model an energy barrier, it is
important to emphasize again that we are considering a model
with a constant permittivity everywhere. The differences in self-
energies are only one aspect of a dielectric mismatch, that can
change ion-ion and ion-wall interactions as well [69-73].

3.4. Towards a general theory: the electric leakage boundary
conditions and validation the UEP model

We examined in this section a quantitative model for elec-
troneutrality breakdown, and obtained a simple algebraic equation
that determines the net charge inside a nanopore. In agreement
with the numerical analysis of Section 2, we find that breakdown
occurs only in the thick doubly layer limit. Yet, our model does
not allow us to resolve the spatial distribution of ions inside the
channel. As we show in Section 2, the full charge density can be
found by solving the combination of Laplace and PB equations
(Eq. (1)) with the BC of Eq. (2).

For narrow and long pores (L > R) it is tempting to simply take
L — oo and solve a 1d ordinary differential equation. However, as
we have shown here, even in very long channels the lengths plays
an important role. Hence, solving a cumbersome set of two coupled
nonlinear 2d PDEs to get the full charge density is required. For
weakly charged surfaces (DH regime) an exact analytical solution
is available in the form of an infinite series (see Appendix A),
but it is difficult to gain any insight from this complicated
expression.

It turns out, however, that for long and narrow channels we can
go one step beyond the UEP model, and obtain approximated
boundary conditions for PB equation. With this approximated BC,
we can again solve a simple 1d ODE, but a one that inherently cap-
tures electroneutrality breakdown.

In cylindrical coordinates, the boundary conditions (Eq. (2)) are:

& 8¢in(r7z) _ 8¢out(rv Z)
in or = Cout or

+4s (25)

In Appendix B we show that the electric field and electrostatic
potential in the outer region are related by a simple expression:

R
(R 2) LoD, (26)

where My is defined as:

2L
M’-/R = lOg <ﬁ> — VEulers (27)

and Y. ~ 0.577 is Euler’s constant. Using the electrostatic poten-
tial continuity condition, the new Robin type “electric leakage”
boundary condition is:

ds Eout
Ordpin(R) = re m¢in(R)7 (28)

In Fig. 5 we compare a numerical simulation to the exact analyt-
ical solution (Eq. (A6)) for the total charge in a weakly charged
nanopore, as well as to the UEP model and the new BC. All approx-
imated models are compared with the numerical COMSOL simula-
tions as well. To satisfy the weak potential assumption (ef¢ < 1)
of the Debye-Hiickel approximation, we focused only on the limit
where the charge density approaches 0. As expected, in the dilute
limit the UEP model, as well as the approximated boundary condi-
tion, perfectly match the exact analytical result. As concentration
increases, the uniform approximation assumption is no longer
valid.

The excellent match of the tractable UEP model to more elabo-
rate schemes allows us to use it when we are interested in fitting
experimental measurements. In Section 7 we will explore some
available data, and show the importance of electroneutrality
breakdown to transport properties. First, however, we would like
to take a small detour and discuss why electroneutrality was
obtained. As we mentioned in the introduction, we claim that this
is a unique feature of the 1d geometry. In the next two sections we
discuss how the basic physics of 3d electrostatic interactions
between particles confined to a 1d narrow channel, and show that
the UEP model is best understood as an example of 1d theory. The
impatient reader, however, can skip directly to Section 6.
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Fig. 5. Charge accumulated in a weakly charged pore as a function of inverse Debye
length, evaluated based on exact analytical solution (solid line), numerical solution
of the PB equation with the Robin boundary condition of Eq. (28) (dashed line), and
the UEP model (dash-dotted line, Eq. (17). Results are compared with COMSOL
simulation (circles). The pore dimensions are: R=5nm and L =1 pm.
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4. Screening length for ions confined to lower dimensions

In the previous section we provided a simple expression for
electroneutrality breakdown in long and thin pores (Eq. (10)), that
was illustrated using numerical simulations in Section 2. In this
section we try to take a step back, and offer an intuitive physical
interpretation for this result, by looking at the interplay between
entropy and energy in this particular geometry.

A central ion in an aqueous solution is surrounded by a
screening cloud meaning that ions in its vicinity tend to be of
opposite charge. In three dimensions, we can find an analytical
expression for the shape of the screening cloud, achieved by solv-
ing the linearized Poisson-Boltzmann equation. The density pro-
file of screening ions decays exponentially with a characteristic
length, the “Debye length” (ip). When ions are restricted to dif-
ferent dimensionality, still interacting with a 1/r pair-wise
potential, there is no similarly tractable equation to determine
the shape and size of the screening cloud. We will show in the
following sections, that an equivalent screening length exists
and plays an important role in the physics of lower dimension
electrolytes, but it formally requires a cumbersome derivation.
Before we delve into a more rigorous formalism, we first present
a simple scaling argument for the screening length that holds in
any dimension.

The screening length, in essence, is the distance at which entro-
pic and electrostatic forces balance each other. The electrostatic
force pulls the screening cloud closer to the central ion, while
entropy favors uniform charge distributions and pushes the
screening cloud away. If we consider a screening cloud of radius
Js with N ions around a negatively charged univalent ion, the
probability of each ion to have charge +e equals
p{ =1/2 + 1/2N,. Maximal entropy is achieved if there is an equal
probability for an ion to be positive or negative. By forcing the ions
to screen the central charge, the probability of positively charged
ions slightly increases, and the entropy is reduced. Note that the
ions outside the screening cloud have equal probabilities to have
positive/negative charge. The entropy associated with this screen-
ing cloud equals (assuming N; — oo, which corresponds to the
dilute limit):

S= _kBXN:[P? logp;” + p; logp; |
i=1
= N (%) log (*57) (29)
+ (Agﬁsl) log (”;Nl)} + (N = Ny)ks log 2
ks <N10g2 - ZLNS)

%

where N is the total number of ions in the system, both inside and
outside the screening cloud. The first term is constant (does not
depend on N;) and can be ignored. Note that this is only the entropy
associated with the possibility of each ion to be positive or negative,
and positional entropy is neglected. Relating the entropy to the d-
dimensional sphere volume [74], V = Ad/lsd/d, where A, is the sur-
face area of a unit sphere, and average ionic pair concentration
(2c = Ns/V), we find that the entropy of ions inside the sphere is
reduced by:

dkg

AS=———0.
4AdC/lS

(30)

The electrostatic energy of a uniformly distributed screening
cloud equals:

U= —2h [ pd2dr
L (4 de1 (31)
T aE ) Joghs, d=1

ga7 - 5

where a is the ion size, assumed to be much smaller than /;. Here,
we make the critical assumption of a 3d Coulomb potential decay-
ing as 1/r, which effectively spills out of the confining geometry,
and neglect for now any dielectric response of the surrounding
matrix, which modifies the result but does not alter the basic scal-
ing arguments (as shown below).

Minimizing the free energy (F = U — TAS) with respect to i ,
and ignoring the numerical prefactors, yields the following scaling
behavior for the screening length:

(clg)™, d>1
aexp(gg—,B), d=1,

In three dimensions, we recover the standard Debye screening:
Js o Ap = (87cly) /2. In a nanoslit geometry of two dimensions, the

screening length is proportional to (clB)’l. Forcing ions to reside on
a two-dimensional plane reduces electrostatic interactions, and
slightly increases the size of the screening clouds. A much more
dramatic effect is observed for one-dimensional confinement in a
long, thin nanopore, where the screening length is exponentially
large, as shown in Fig. 6.

If we consider our one-dimensional system to be a cylinder with
radius R, length L, and a 3d concentration (per volume) of co, the
corresponding 1d concentration (per length) in the axial direction
is ¢'Y = mR%c,. In terms of these bulk properties, we find that the

dimensionless factor, c'dly = TR?colp, is related to the ratio of
Debye length to pore radius, which enters the exponential scaling

s X

(32)

of the screening length in one dimension: /s oc a exp {(AD/R)Z]. For

narrow pores in dilute electrolytes, the Debye length can easily be
greater than the pore radius, which is the traditional limit of “thick
double layers” (ip > R), but in contrast to classical continuum
models, we predict that this results in an extremely large screening
length, easily exceeding all geometrical scales in the problem. In
particular, when the screening length exceeds the total length of
the channel(/; > L), the central ion is no longer screened, and elec-
troneutrality breaks down.

5. Mean-field theory on a one-dimensional lattice

So far we have introduced three models that show how elec-
troneutrality breakdown in nanopores: a numerical simulation of
PB and Laplace equations (Section 2), an approximated scheme of
a Uniform Embedded Pore (UEP model of Section 3), and an intu-
itive picture based on the qualitative behavior of the screening
length in low dimensions. In the next section we compare the
UEP model with experimental data, and show it can be used to

(@) As o (clg) ™2 (b)
° / Ag o el/cle
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Fig. 6. [llustration of the standard Debye screening in 3d(a), and the extended
screening length of 1d(b), according to Eq. (32).
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interpret conductance curves. Before doing so, we would first like
to show quantitatively how electroneutrality breakdown is a fun-
damental property of 1d confinement, by considering a system of
ions restricted to reside along a line. This will also allow us to
explore ionic ordering along the pore axis, and observe a transition
from order to disorder.

We study a lattice-gas model, and not a continuum model, for
two reasons. First, it will enable us to discuss packing constraints
at the high concentration limit. A more fundamental reason was
hinted in the previous section: there is no equivalent continuum
PB model in 1d. The scaling argument showed that the screening
length depends on the minimal distance between ions (a), and this
will remain valid in the analysis here as well. As a result, we cannot
find a corresponding differential equation that describes the sys-
tem in the continuum limit. Note that in contrast to many previous
1d models of electrolytes [75-77], the electrostatic interaction is
three dimensional (1/r): we study point-like ions along a line,
and not parallel charged sheets.

For mathematical convenience, we consider the free energy
functional of a 1d periodic lattice model (a ring), with lattice spac-
ing equal to the ionic size, a (see Fig. 7). The i site can be occupied
by a positive ion, negative ion or a vacancy, with probabilities
p/.p; and 1—p;p/, respectively. The electrostatic energy, U, is
given by:

>
i#j
+ > el —pi)e,

1

e(p;-p;) (pj* —p;)

azli—j|

U=

oo|__|

us

(33)

where ¢ is an external electrostatic potential. We denote the

dimensionless average charge vector q; = (p;” — p;’) and the dimen-

sionless interaction matrix ®; = |i — jI™%, so the electrostatic energy
reads:

e2

_ % <qu)q> + eqT¢ext_

To calculate the free energy, we add the entropy of mixing:

S= —ks)_[pflogp/ +p; logp; +
i

(34)
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If connected to a particle reservoir, the chemical potential is set
externally and is calculated by the functional derivative of the free
energy density f= (U-TS)/a with respect to concentration

(c; = pi/a):
>

Rearranging the terms, we obtain the 1d analog of the Bikerman
model [78-82]:

e2dq
4Tae

P,

:l:e EXt.
1-p,. - ¢

u, = kgTlog ( (36)

2Asinh [’g oq + eﬁq&e’“]

37)

1+ 2Acosh [’g oq + eﬁqbe"‘] 7

where the fugacity A = e’ is proportional to the bulk reservoir ion
activity.

The general form of the 1d ring equation is not very illuminat-
ing, and specific examples are required to show how ionic ordering
plays an essential role in this model. We study two systems: a
charged homogeneous nanopore and the charge distribution
around a central ion. In the dilute limit, we recover the behavior
described in the previous section. As ionic concentration increases,
the model naturally predicts a transition to an ordered structure,
including the short-range over-screening phenomenon in interme-
diate concentrations.

5.1. A uniformly charged 1-d nanopore

Let us assume we have a homogeneous charge density in our
system: q; = q, ¢ = ¢ For periodic boundary conditions, a uni-
form charge distribution is an eigenvector of the interaction matrix
®, where the eigenvalue is twice the harmonic number Hy,. For a
long chain (L >> a) the harmonic number can be expanded:

L a
Hu ~ 108 (1) + T+ 5+ -+ 38)
If the external potential is due to a uniform charge distribution

on the pore walls (Q per site), Eq. (37) becomes the following alge-
braic equation:

2Asinh [214Hy(q + Q)]
Hiq+Q)]

= M (39)

- 1+ 2Acosh [2

10°

Fig. 7. Solution of the 1D-ring equation with uniform surface charge (Eq. (40)). The solution, q; = q, + q, (—1)‘, has an average part (q,, left figure) that screens the external
charge (Q) and an oscillatory part (q,, right figure). Solutions are presented as a function of the bulk Debye length (/) and the Gouy-Chapman length (/cc). The dashed vertical

line is the critical Debye length, calculated by Eq. (42).
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In the dilute limit, this equation has a similar form to Eq. (17).
As the external charge increases, a maximal charge density of
one charge per lattice site prevents an unphysical accumulation
of charges inside the pore.

Limiting the 1d-ring equation to only uniform distributions
explicitly neglects any ion-ion correlations. When ion-ion interac-
tions are strong enough, the system will form a crystal structure. In
contrast to the 3-dimensional case, where the PB equation cannot
predict ordered structures, our 1d model can be easily extended to
include the expected phase transition. To account for patterns of
alternating signs, we generalize our argument and replace the con-
stant charge density with the form: g; = q, + g, (—1)". Both uniform
charge density and an alternating pattern are eigenvectors of the
interaction matrix ®, where the eigenvalue of (—1)' equals
—2log2. With this functional form we obtain a set of coupled
non-linear algebraic equations, for the average charge at even/
odd locations:

2Asinh [—2q1lglog(2)+2%H%(%+Q)]

QGo—Gh = — . .
142A cosh {2q1%log(2)+2gHL(qg+Q)]
a

2Asinh [2q]’glog(2)+2’gyé(qg+Q)]

4o + 4,

)

1+2A cosh {—qulglog(ZHZI%HL(qoﬂl)]
a

Exploring the space of solutions of Eq. (40) is shown as a phase
diagram in Fig. 7, for a = 5 Aand L = 100 A. As long as the ion-ion
correlations are weak, we recover the same behavior found in the
continuum model, including electroneutrality breakdown in the
dilute limit. However, we find another breakdown of electroneu-
trality in the high concentration limit. This is the oscillatory regime
(g; > 0). Since g, + q, < 1, an increase of oscillating term, g, has to
come at the expense of the average term, q,, and electroneutrality
is broken. With an increase of external charge, oscillations are sup-
pressed and electroneutrality is again favored. As shown in Fig. 7,
the order-disorder phase boundary only weakly depends on the
surface charge and can be evaluated analytically based on the
Q = 0 limit. In this limit the average charge is g, = 0, and the num-
ber of solutions is determined by a single algebraic equation:

2Asinh (Zq] ki Jog 2)
a4 =
1+ 2Acosh (2q1 b Jog 2)

(41)

The RHS of Eq. (41) is monotonically increasing, starting from 0,
and has a monotonically decreasing slope. Hence, a second solution
is available only if the slope at g, = O is greater than 1, which leads
to a critical fugacity of:

_ a
" 4lglog2 —2a’

The results in Fig. 7 are displayed in terms of the standard 3d
system parameters. With a pore radius a, the surface charge den-
sity equals g, = Q/(2ma?). The bulk ionic concentration is related
to the fugacity ¢*® = A/ma®. The Gouy-Chapman length and the
Debye length are defined as usual.

At the dilute limit, Fig. 7 looks similar to the phase diagram
shown earlier in Fig. 3. At this limit size effects are small, and a
continuum approach is suitable. However, as ionic strength
increases, packing constraints, which are absent from the contin-
uum model, becomes important. This leads to both oscillatory
structures and a second type of electroneutrality breakdown that
are missing in Fig. 3. However, the lattice model we presented here
is limited. It fails to account, for example, ion-ion correlations, ion-

Acr (42)

solvent interactions or different size ions, which might be impor-
tant in high salinity.

5.2. Charge distribution around a central ion

Bulk oscillations are maintained only for concentrations beyond
a critical concentration, with persisting long-range order. Slightly
below the critical density, we expect temporary short ranged
decaying oscillations, that will eventually be replaced by mono-
tonic decaying fluctuations in the dilute limit. We show how this
behavior emerges with a standard Debye-Hiickel approach, by
solving for the charge distribution around a central ion.

We take advantage of the periodic boundary conditions, and
constrain the i =0 site to have a charge Qe by adding a term
oe?/ag(qy — Q) to the free energy functional (Eq. (34)), where
oe?/ae is a Lagrange multiplier. The resulting mean-field equation
reads:

2Asinh {’g ((i)q + océ,;o)]

= - ; (43)
1+ 2Acosh [’5 ((I)q + occi,“o)}
which we solve in the linear Debye-Hiickel regime:
~ -1
6= -a(®+77") oo (44)
ij

where the coupling parameter y = # is defined as the ratio of ionic

spacing (a/2A) and the Bjerrum length. By the translation symme-
try of the matrix ®; = ®;_;;, we find a closed-form expression in the
discrete Fourier space:

o
QiZ*n/ana)

where the normalization constant « is set such that g, = Q. Note
that the solution is only valid in the disordered phase, where
%' > 2log2, which coincides with the critical fugacity (Eq. (42))
in uniformly charged nanopores if size effects are neglected
(a < Ig). Fig. 8 shows charge density profiles for different concentra-
tion, illustrating how Eq. (45) is able to capture both the dilute Cou-
lomb gas limit and the onset of long-range ordering, and predict the
transition from screening, to over screening and oscillations.

So far we assumed an infinitely long chain, that allowed us to
get a closed-form solution in Fourier space (Eq. (45)). As a conse-
quence, the electronutrality is guaranteed, and the total charge
along the pore accumulates to O:

= i 1
Zqi ~ %2 Tog |2sing| — ! -

cos(wi)

2log[2sing — 7 )

0. (46)

However, the decay rate is very slow, and the screening cloud
extends many lattice sites. If we look at g(w) , the Fourier trans-
form of g;, we find a steep increase near w = 0, on its way to its
maximal value at « = 7. We evaluate its width by finding the fre-
quency at which g(w) reaches half of its maximal height:

1 12
2log|Aw| — 1 2log2 — y!

— Aw = 4e T, (47)

Invoking the uncertainty principle, we conclude that the width

of the screening cloud scales as €™, in agreement with our scaling
analysis (Eq. (32)) and the electroneutrality condition (Eq. (13)).

Finally, we use our explicit solution of the screening cloud to
evaluate the activity coefficient. For this purpose, the electroneu-
trality breakdown plays only a minor role. Ignoring the finite
length of the system, the Debye-Hiickel activity coefficient can
be written as an integral expression:
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Fig. 8. Charge distribution around a central ion and the resulting activity
coefficient, for different concentrations. (a-f) Charge distribution around a central
ion for six different coupling strengths (). For weak coupling, the central ion is
screened only by oppositely charged ions (e and f). As the coupling increases, over
screening and oscillations are observed. (g) Ionic activity in a nanopore, based on
the exact 1D solution for the mean field equation (Eq. (48), solid blue line) and the
dilute limit approximation (Eq. (49), dashed red line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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where p®* is the excess chemical potential. In dilute systems we can
expand the activity coefficient to lowest order in the coupling
parameter y, and get:

o 2T I

b ~ == 5 A (49)
The activity coefficient in confinement is much smaller than the

bulk value. As ions cross over to the nanopore, they effectively shed

off their ionic screening cloud. For a nanopore of radius a, with bulk

ionic concentration (¢ = A/ma?), the 1d activity is only a fraction of

the bulk one:

Ko _ma
130 24 Jp’ G0

where we used the standard Debye-Hiickel activity coefficient,
ﬁ,u3D = 13/2)[)

As shown in Fig. 8, this approximation is only valid in the dilute
limit. As concentration increases, screening and over-screening
dominates the electrostatic interactions, and reduce the activity
coefficient further.

6. Comparison with experiments
6.1. Single Digit Nanopores

Our model predicts a non-trivial charge accumulation within
the nanopore, due to the breakdown of electroneutrality, which
has a direct implication on the measured conductivity of the pore.
Assuming equal mobilities for all ions ([,), the conductance of the
pore is given by [34]:

2
G=elp, e (51)

where the concentration, c, is related to the accumulated charge by
Eq. (22). We compare our results with conductance measurements
in carbon nanotubes (CNT), taken from Ref. [33]. It is important to
note that the conductance behavior can be explained by different
models. The CNT data was originally assumed to have a
concentration-dependent surface charge and was later fitted by
predicting the adsorption of hydroxyl ions to CNT pore walls [34].
Our goal is not to underestimate the importance of a charge regula-
tion mechanism, that can lead to concentration-dependent surface
charge by affecting the adsorption rate [83], but to suggest a plau-
sible alternative with a constant surface charge. We show that the
1d geometry by itself can lead to the variety of conductance curves
observed in experiments.

Fig. 9 shows the conductance curves for CNTs with varying pore
size and surface charge, as a function of KCl concentration. The
experimental data were fitted according to Eq. (24), with three fit-
ting parameters- the ionic mobility, surface charge, and energy
barrier. We used MATLAB fminsearch algorithm to find parameters
that minimize the mean square error of the predicted fit and the
experimental value.

For the larger pore sizes, shown in Fig. 9(b-d), the energy bar-
rier for entering the pore (E.) was neglected, and the fitted ionic
mobilities were on the order of the bulk mobility of KCI, and varied
from 5-10x10®m2/Vs, compared to the bulk value of

7.62 x 1078 m?/V s (see Fig. 11, bulk value of ionic mobility was
taken from [84]). The fitted mobilities do not seem to follow any
trend, and they change with both pore radius and surface charge.
This effectively only leaves one fitting parameter to determine
the shape of the curves- the surface charge. As surface charge
increases, electroneutrality is maintained especially for the larger
pore radii. The curve approaches a constant in the dilute limit
(see top curves in Fig. 9c and d). However, for smaller surface
charge, and especially in narrow pores (9a) the conductance con-
tinues to decrease even in the dilute limit. As shown in Fig. 4, if
electroneutarlity is enforced, the overall ionic concentrations, and
hence conductance, should remain constant.

In the narrow nanopore (Fig. 9a) the behavior is more compli-
cated. First, a small energy barrier of ~ 2kyT is needed to obtain
the correct trend. This small energy barrier is expected due to a
lower dielectric constant inside the nanopores, related to the con-
finement of water. More importantly, the fitted mobility, in this
case, is significantly higher: 12 times higher than bulk value for
the lower two surface charges, and more than a 100 times greater
for the high surface charge (Fig. 11). The large mobility in the high
surface charge limit can be due to ion-ion correlations, where the
positive charges push each other to move faster. It can also be
related to enhanced water flow, due to an increased slip length
[85,86].

6.2. Sub-nanometer channels

We conclude by applying our model to sub-nanometer chan-
nels, which is the relevant limit for ion channels in nature. The
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Fig. 9. Conductance of a KCl solution as a function of concentration, inside CNT with varying surface charge and radii, fitted according to our model (dashed lines). The
experimental data (circles) was adapted from [33], where the surface charge was controlled by changing the pH. (a) - A 3.5 nm wide pore, fitted barrier energy of 4.6k T and 4
different surface charges, from bottom to top: —3 mC/m? (black), —1.6 mC/m? (red), 3.4 mC/m? (green), 5.2 mC/m? (blue). (b) - A 10 nm wide pore, with only one surface
charge: 12 mC/m?. (c) - A 14 nm wide pore, with 3 different surface charge, fitted to: 63 mC/m? (black), 213 mC/m? (red) and 417 mC/m? (blue). (d) - A 34 nm wide pore,
with fitted surface charge of: —7 mC/m? (black), 55 mC/m? (red) and 110 mC/m? (blue). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

most prominent example of a biological nanochannel is the
Gramicidin-A channel. With a pore diameter of about 4 A, it is truly
a one-dimensional system. It is often described using Michaelis-
Menten type conductance: ions which travel through a channel
that connects reservoirs A and B are transitioning between three
possible states (“A”, “B” and “in channel”). This framework is suc-
cessful since it naturally ignores any charge neutrality constraints.
It predicts a linear dependence in dilute solutions and a saturation
at high concentrations, limited by the maximal occupancy of the
pore. Despite its good agreement with experimental data, it can
only describe systems with a handful of ions. Continuum models,
on the other hand, which are much better suited to handle numer-
ous ions (inside the pore), cannot predict the dilute limit linear
behavior as long as electroneutrality is assumed.

We consider two experimental datasets: a conductance mea-
surement Gramicidin-A channel (taken from [87]), and more
recent conductance measurement in a CNT porin experiment
(taken from [35]). We fit the data according to Eq. (51) as before,
with one important modification. As water molecules are excluded
from these channels, the dielectric constant is now much smaller
and was chosen to be & = 5. Note that this creates a mismatch
between the reservoir permitivity and the pore, which we do not
take explicitly into account. However, the energy barrier we con-
sider captures some of the effects of the dielectric mismatch. At
the mean-field level, we expect the effect of the distant reservoir
to be small, like other edge effects that were not accounted for.

As shown in Fig. 10, our model is able to capture both neutral
(linear conductance) and charged (Michaelis-Menten conductance)
sub-nanometer nanopore behavior. The plateau at high concentra-
tions is not predicted, as our model fails in the concentrated
regime. For higher concentrations, a more detailed picture of the
(coupled) fluxes has to be accounted for and is beyond the scope
of this paper. As shown by the lattice model (see Fig. 7), ion-ion
correlations can lead to a decrease in the total charge with
increased concentration and eventually to an overall reduction in
conductance.

The predicted energy barriers for both experiments were simi-
lar (5kgT). This energy is much smaller than the Born solvation
energy in the vacuum, which might imply that dehydration is
not complete, and is compensated by the interactions of ions with
the pore walls. It is also smaller compared with energy barriers
estimated by Michaelis-Menten type theories, which are of the
order of 10kgT [1]. We note, however, that in order to keep the
model simple, we assumed a constant energy difference between
the pore and its surrounding. Entrance effects were smeared
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Fig. 10. Conductance of sub-nanometer pores as a function of ionic concentration.
Main figure: Conductance of a 3.5 Awide CNT porin as a function of KCI
concentration (filled squares), adapted from [35] and fitted according to our model
(dashed lines). The bottom curve (blue) has pH 3.5, which corresponds to zero
charge, while the upper (black) curve has pH 7.5, and is fitted to a surface charge of
6 mC/m?. Inset: conductance in Gramicidin-A channel as a function of NaCl
concentration (filled squares, adapted from [87]) and its fit (dashed lines). The fitted
surface charge is 13 mC/m?. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

throughout the system, so a smaller energy barrier is expected. A
more careful derivation is required to accurately separate the pore
mouth contribution to transport.

Another interesting result is that the ionic mobility in GA is
much lower compared to bulk water, while the CNT porins have
higher mobility. The biological channel has fitted mobility of
5.7 x 107 m?/V s which is an order of magnitude less than the
bulk ionic mobility (see Fig. 11). The CNTP fitted mobility is closer
to bulk KCI and equals 11 x 10° m?/V s and 50 x 10~ m2/V s for
the neutral and charged pores, respectively. The reduced mobility
compared to isolated ions in a solvent (water) can be understood
from the strong attraction of ions and the opposite fixed wall
charge and hence larger friction for relative motion. Our expression



174 A. Levy et al./Journal of Colloid and Interface Science 579 (2020) 162-176

[ |

3 10

Mobility [m?/Vs]

Ll

GA CNTP  35nm  10nm 14nm  35nm Bulk
CNT CNT  CNT CNT Water

10710

Fig. 11. Fitted mobilities. The mobilities of 6 datasets, Gramicidin-A, CNT Porin, and
4 different CNT experiments, were fitted according to Eq. (51). Experimental data
and fits are shown if Figs. 7 and 8. Each pH was fitted separately, and within each
experiment the bins are ordered from low pH to high. The bulk value for KCl
mobility (last column) was taken from [84].

for conductance is derived based on a normal Nernst-Einstein rela-
tion with uncoupled fluxes of each ion. This is only valid for
“pseudo binary” transport where each specie only interacts with
an abundant solvent. Generally, the Stefan-Maxwell picture has a
diffusion tensor with coupled fluxes between each pair of species
[88,89], and can be extended to a “dusty gas model,” if wall mole-
cules are treated as a fixed specie [90,91].

7. Conclusions

We have analyzed ions in a 1d electrolyte interacting with 3d
electrostatic interactions, which is the appropriate limit for
single-digit nanopores. In 3d systems the fluctuations around elec-
troneutrality are limited only to the microscopic length-scale. The
strong Coloumbic cost of large-scale deviations is much greater
than the thermal energy. In contrast, when ions are forced to reside
along a line, even macroscopically-long charged chains can sponta-
neously form.

We first showed directly, using numerical simulations, that a
net charge inside long and narrow nanopores is easily achieved
when the radius of the pore is small compared to Debye length.
We then developed an analytical mean-field model and predicted
a phase diagram for the accumulated charge inside the pore. We
found that the pore behavior depends on two length-scales: the
Debye screening length and the Gouy-Chapman length. If both
length-scales are larger than the pore diameter, the ions do not
know about the 3d nature of the system, and electroneutrality is
broken. This behavior is best understood by examining how the
competition between electrostatic forces and entropy determines
the screening length. In three dimensions we recover the classical
short-range Debye screening length, but in 1d we find an exponen-
tially large screening length.

In our efforts to provide analytical results with a clear physical
meaning, we neglected several important aspects of the problem.
Most notably, our models fail to account for the polarization charge
induced by a discontinuity of the dielectric constant. A large mis-
match in the dielectric constant can alter ion-ion interactions
inside the pore [72,73], and can lead, for example, to a 1d Coulomb
interactions in short nanopores [70]. Molecular dynamics studies
have shown that the interactions with images forces are especially
relevant for selectivity in ion channels [43,92,93]. Selectivity is also

sensitive to the size of the ions, and a proper theory of confined
electrolytes must include finite size effects.

Within the uniform embedded pore model, we derived approx-
imated but accurate closed-form expressions for the expected
charge and ionic concentration inside a charged pore, and the
resulting ionic conductance. With three fitting parameters, the sur-
face charge, ionic mobility and energy barrier, we were able to fit a
wide range of conductance curves in narrow nanopores. We inter-
pret the unusual scaling behavior observed as a consequence of the
breakdown of electroneutrality.

While transport measurements are an extremely useful tool for
studying nanopores, inferring the ionic concentrations is a difficult
task. lon-ion, ion-water and water-pore interactions all play a role
in the complicated transport phenomena. A more complete
description that explicitly accounts for water flow is required to
correctly predict the conductance. Moreover, the mobility of the
ions may vary under confinement and composition [94,95], and
the linear relation with concentration is only appropriate in infinite
dilution.

Another important aspect of ionic transport, especially relevant
to short nanopores, are entrance effects and access resistance. The
transition from a microchannel to a nano-channel adds additional
resistance to the system, and the access resistance decreases with
increasing concentration, which is an alternative explanation for
the scaling observed in the conductance, as argued in recent papers
[96,97]. The entrance effects are of even greater importance if
charges are added to the pore mouth, for example, to increase
selectivity [98-100].

With current available data, we cannot rule out alternative
explanations to describe the scaling and shape of the conductance
curves. However, as concentration decreases, our predictions devi-
ate substantially from other models. For example, we predict a lin-
ear conductivity in the very dilute limit, and not a plateau.
Experiments with a wider range of dilute concentrations are there-
fore needed to correctly identify the key mechanism.

Added complexities are surely required to adequately describe
the transport of ions through nanopores. Yet, as extremely long
and narrow nanopores become technologically accessible, deter-
mining their net charge is a crucial first step. In our quest to under-
stand the physics of single-digit nanopores, we highlight a simple
but consequential observation on the nature of geometrical con-
finement: it breaks charge neutrality.
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Appendix A. Exact solution of a charged cylinder in the Debye-
Hiickel regime

In Section 2.1 we found an analytical solution for a weakly
charged sphere in the DH regime. We show here the solution for
a weakly charged cylinder, in the form of an infinite sum. We con-
sider a cylinder of length L, radius R filled with an electrolyte with
permittivity &, and immersed in a dielectric medium dielectric
constant &, The set of Debye-Hiickel and Laplace equations,
derived by linearizing Eq. (1), are:

{vzqsm(r) =5’ ¢un(®) T<R (A1)
Vhou(r) =0 r>R.

The boundary conditions (Eq. (2)) in a cylindrical geometry
read:

[¢out(R7z) - ¢in( ’ )] =0
[80ut8r¢out(R>Z) - Sinar(,bin( ) )] —qg(O <zZ< L)
Pou@®_ry = 0 (A2)
$in(R,z2=0) = ¢(R,z=0)= 0
d)in(RvZ = L) = ¢0Ut(R7Z = L) =0

Following [101], we also imposed that the potential vanishes at
the ends of the cylinder. Taking advantage of the azimuthal sym-
metry, we can write the inner and outer solutions as an infinite

sum:
din(r,2) ZA sin(w,z)], (\/mr)
(A3)
Gout(T,2) ZB sin(mnz)Ko(wnr),

n=1

where I(x) and Ko (x) are the 0™ order modified Bessel function of
first and second kind, respectively, and w, = wn/L. Note that we
wrote the solution in a manner that satisfies the last three boundary
conditions. To find A, and B,, we plug in the expansion to the first
two boundary conditions, where the second boundary condition is
expanded in a similar way:

4sin(w,z)

[Soutard)out(Ryz) - Sinarql’in(Rﬂ Z)] = _QSZ wnL

nodd

(Ad)

Clearly, for even n we have A, = B,, = 0. For odd n, we obtain the
following equations for the expansion coefficients:

Anlo (/% + 13R) =
sm\/w + K3l (\/wz + KZR)

B.Ko(wnR),

—Baout @K1 (0aR) + 2% .

Finally, we get:

b (1,2) = 2, 1 Ko(onR) sin(@n2)lo (/@2 +K2r)
in\"> L dmn Eout\/ W% +K2 Ko (0nR)y (‘/wﬁﬂcéR)ﬁo..[w,,lg(\/w%—rch)m (wnR) "

nodi

o (T Z) _ 2 1 Kg(w,.r)sin(w,.z)lg( }+K3R)
out\'>4) — 7T P D goue\/ % +K2 Ko (0nR)y (\/10,21+K12]R)+£0..tw,.lg(\/(uﬁ—rclz)R)m (wnR) "
(A6)

Appendix B. Approximated boundary conditions for long and
narrow nanopores

In the limit of small aspect ratios (L > R) we find an approxi-
mated Robin type boundary condition for the Poisson-Boltzmann
equation, that obviates the need for outer fields solution. We do
so by relating the electrostatic potential on the cylinder walls
(¢in(R,2) = ¢ou (R, 2)) to the outer electric field, &utOr oy (R, 2). This
will allow us to express the jump in the electric field as a function
of inner electric field and inner electrostatic potential, instead of
solving the outer region as well.

Since the outer region satisfies the Laplace equation, and as long
as we have azimuthal symmetry, the electrostatic potential at the
surface can be written as the following sum:

R
Gout(R,2) ZB sin (nrc L)Ko <n7t L) (B1)
Note that we are not limited to the linearized DH region as in

Appendix A. In the limit L > R, the modified Bessel function is
approximated to lowest order:

ZB,, sin (n7?
+ O((z) log (§)),

d’out R Z lOg (%) + yEuler)

(B2)

where g, =~ 0.577 is Euler’s constant. We note that to lowest
order in log(L/R) we find:

lo g< ;LR> log <25> + log(n) ~ log (;;) (B3)

which leads to the following approximation for the electrostatic
potential:

Do (R) ~ Mye> By sin(c,2), (B4)

n=1

where M,z is defined as:

2L
Myg = log (ﬁ) -7 (BS)

Our next step is to relate the derivative of the potential to the
potential itself, which will allow us to mask the solution as a
boundary condition. Taking the first derivative of the electrostatic
potential we obtain:

Ordou(R,2) anwnm (wnR) sin(wyz). (B6)
n=1

Luckily, we find that to lowest order (K;(x) ~ 1/x) it is indeed
proportional to the electrostatic potential:

ZBn SlIl Wp Z

Finally, assuming a surface charge on the pore walls (g, ), we get
a new boundary condition for nanopores:

¢0ut(R7 Z) . (B7)

6r¢out R Z ML/RR

QS Eout ¢in (R) (BS)

Orin(R) = &n  &n RMpg’
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