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HIGHLIGHTS

® Jonic activities are greatly affected by ion-solvent interactions.

® (Classical “primitive models” cannot capture the effects of the local structure of (molecular correlations in) water.

® We described aqueous solvent via a non-local dielectric response.
® Our predicted ionic activity coefficients well match experimental data

ABSTRACT

We revisit the role of the local solvent structure on the activity coefficients of electrolytes within a nonlocal dielectric function approach. We treat the concentrated
electrolyte as a dielectric medium and suggest an interpolation formula for its nonlocal dielectric response. The water dielectric response is approximated based on
MD simulations and experimental data, that gives strong over-screening and oscillations in the potential, which are absent in the standard “primitive model”

predictions. We obtain mathematically tractable closed-form expressions for the activity coefficients, in reasonable agreement with experimental data.

1. Introduction

The activity coefficients of concentrated aqueous solutions play an
important role in different elerochemical and biological systems [1],
and indeed, many models to describe the ionic activity have been
proposed over the years. In the original Debye and Hiickel (DH) paper
from 1923 [2], the activity coefficient was calculated based on a line-
arized version of the Poisson-Boltzmann (PB) equation. This resulted in
the well-known DH equation, which for symmetric binary electrolytes
reads:
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where y is the activity coefficient, z. are the valencies of the ions,
I= ézi: . c;z? is the ionic strength, c, are the ionic concentrations of
cations and anions and a is an effective distance of closest approach,
roughly equal to the ionic diameter. A and B are constant values that
depend on the temperature (kg T), the dielectric constant of the medium
(¢) and the unit charge (e):
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We note that Gaussian (cgs) units are used. The DH equation works well
for very dilute electrolytes but fails to even qualitatively capture the
activity behavior at higher concentrations. In a following work [3],
Huckel added an important term for the activity: the change in self-
energy due to variations in the dielectric constant. Experiments mea-
suring the static dielectric constant of ionic solutions were not available
at the time, so the proposed model treated the dielectric constant as a
fitting parameter. Assuming the dielectric constant of bulk water, &gy,
is decreased proportionally to the ionic concentration ¢ (¢ & gy — dc),
the correction to the DH equation is a simple linear term in con-
centration. Remarkably, fitting this model to existing activity data ac-
tually estimated the dielectric decrement close to measured values, an
observation first noted by Hasted et al. [4] in their paper on the di-
electric properties of ionic solutions.

A linear correction for the DH equation also emerges when con-
sidering short-range repulsive forces, via a virial expansion. The virial
expansion offers a systematic way to include even higher order terms in
concentration. First suggested by Guggenheim [5], and further
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developed by Pitzer [6,7], accounting for the second and third virial
coefficients leads to a very powerful description of the activity. The
Pitzer formula, which is essentially the regular Debye-Huckel with
corrections to second order in the concentration, is in excellent ex-
perimental agreement for hundreds of compounds [8]. To achieve its
high accuracy, the Pitzer model hence requires several fitting para-
meters: the virial coefficients are not derived from first principles, and
the ionic radii are empirical parameters as well. Closely related models
were subsequently derived by Bromley [9], Meissner [10] and Chen
[11].

In the past half a century many more models have been developed
on the basis of integral equation approach to statistical theory of fluids,
adapted for charged fluids. The Hyper-Netted Chain approximation
(HNC) and the Mean Spherical Approximations (MSA) are examples for
microscopic derivations of the activity coefficient [12-14]. Assuming a
hard-sphere repulsion in addition to the Coulombic attraction, the in-
tegral equation theories give an approximated way to calculate the pair
correlation function between any two ions. Usually, numerical methods
are required to solve the integral equations. The activity is expressed in
terms of the correlation function, without a simple closed-form formula.
Another drawback of the integral equation model is that they too re-
quire some fitting parameters.

Not going into a comparison of these different approaches, we only
stress that they where all derived for the primitive model of the solvent.
Ions interact there via Coulomb law like they would if the solvent was a
dielectric continuum, with a macroscopic dielectric constant. At the
same time we know from molecular simulations that in polar solvents,
water, in particular, the potential of mean-force between the ions ex-
hibit decaying oscillations with the periodicity of the order of the dia-
meter of the solvent molecules, with signatures of overscreening effect,
and only at long distances it would approach the macroscopic Coulomb
interactions, as a limiting law. How this fact would reveal itself in
thermodynamics of electrolytes?

One way to answer this question would be to incorporate the effects
of the molecular structure of the solvent via replacing the Coulomb pair
interaction potential in the above-mentioned approaches with the cor-
respondingly modified ones. Alternatively, one could incorporate the
differences from the primitive Coulomb into the short-range part of the
interaction potential. Such short-range part would then extend few
times farther than the average diameter of ions. In order to justify such
efforts, we will do here something yet simpler: We will combine the
Debye-Hueckel approach with a nonlocal electrostatic description of
the solvent. Although such approach will not take into account complex
correlations in a concentrated electrolyte, it will be a step towards
connecting the correlations of the bound charge density of the solvent
subsystem (molecular correlations) and the ion-ion correlations in the
electrolyte plasma. Such an approach will work as an interpolation.
Following this root, we will result in a closed-form expression which as
we will see will describe the behavior of activity coefficients very well.

Such an approach has been, actually, proposed and tried long ago
[15,16]. We revisit it below, showing that for the updated approx-
imation of the form of the nonlocal dielectric function of a pure solvent
that qualitatively reproduces the simulation results for water [17,18]
we can obtain very reasonable results for the activity coefficients and
explore certain trends in their dependence on electrolyte concentration.

2. Model

Our goal is to build a phenomenological description of the dielectric
function of ionic solutions, that accounts for both the solvent molecules
and the ions and would enable us to calculate the ionic activity coef-
ficient. In a constant dielectric medium (the so-called “primitive”
model), one can derive the dielectric response directly from the
Poisson-Boltzmann equation. However, a constant dielectric medium is
an approximation suitable for large ion-ion separations. At shorter se-
parations, the molecular ordering of the water gives rise to a
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complicated dielectric response. Empirical formulae for the dielectric
function have been suggested in the literature [16,19], in relation with
computer simulation results [17] and experimental data [20]. We will
now show how we extend the pure-water empirical dielectric response
for ionic solutions, by building an interpolation function that satisfies
the limiting behaviors.

Within linear nonlocal electrostatics, electrical induction and elec-
tric field are related by nonlocal constitutive relation:
D, (r) = 25 [ dregs(r — ¥)Ez(r'), where e.5(r — 1) is the nonlocal di-
electric tensor. In the macroscopic electrostatics
Eqp(r — 1) = €0030 (r — r’) which reduces the constitutive relation to the
common D(r) = ¢E(r). All information about the correlations of the
bound charge density in the medium are contained in the form of the
tensor g,3(r — r'). Referring the reader to Ref. [21] for details, we
mention that in homogeneous and isotropic media, electrostatic equa-
tions will be conveniently expressed through the Fourier transform of
this tensor Z,3(k), and more precisely through its longitudinal compo-
nent g (k) = Zaﬁ %’Eﬁﬁ(k), often called simply (k) . Long wave-
length limit (small k) recovers macroscopic behaviour, large k, probes
short range correlations. For instance, speaking about pure solvent
k ~ 27/d , where d is diameter of water molecule, would characterize
the molecular packing effects. For much larger k, € (k) will approach
short range dielectric constant due to electronic polarizability of the
molecules. We denote the corresponding dielectric constant in that limit
Exe

In the long wavelength limit, the Poisson-Boltzmann equation for a
binary monovalent solution reads:

guik V2 (1) = 8mecsinh[efg (r)] — 4mp,,, (1), 3)

where c is the bulk ionic concentration, 8 = 1/kgT is the inverse tem-
perature and p,, is an external charge distribution. In the linear (DH)
regime, the PB equation is a second order differential equation, or an
algebraic equation in Fourier space:

2 ~
Sncek/j ]¢ (k) = 473, (k).
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Comparing Eq. (4) to the Poisson equation, we can immediately write
the dielectric response of ionic solutions in the limit of large wave-
lengths:

€Bulk
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where Ap = (87ce?B/epu)"Y/? is the Debye screening length. The diver-
gence at small wave-numbers corresponds to the screening of the po-
tential at distances larger than the Debye screening length. At smaller
distances the screening effect is negligible, and dielectric response is
only influenced by the water. This will remain true even if we consider
a more complicated expression for the water dielectric response, rather
than eg,x. Hence, we can write a simple interpolation formula for the
dielectric response by replacing eg,x with the full g, (k):

S0 % 1
(k) = sw(k)[l + kle,_%] ©)

This approach is similar to interpolation implemented in Refs. [21,22]
in terms of the limiting cases covered, but its form is slightly different,
reflecting stronger coupling between the solvent structure and the ionic
screening. Note that this interpolated response satisfies both the long
and short wavelength limits. In the long-wavelength &, (k) — &g,k and
we recover Eq. (5). In the short-wavelength, the ionic contribution is
neglected as we recover the pure-water response.

By design, the interpolation formula is expected to work well if
there is a separation of length-scales, and the Debye length is much
larger than the molecular size of the solvent. In this limit, however, the
predicted ionic activity will coincide with classical DH theory.
Interesting physics emerges as we increase the concentration, and enter
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a regime where both ions and water molecules play a major role.

Within the linear approximation, this interpolation formula for the
dielectric constant provides all the necessary information required to
derive the activity coefficient. Let us now, following Ref.17, use the
charging process (first time derived in [15]) to evaluate the activity of
ions, by considering a spherical particle immersed in a dielectric
medium. By slowly turning on the charge, the energy is determined by
the potential at the surface of the ion:

=4 =al
=, q¢"(r a] @

where ¢, (r) is the electrostatic potential around a charged particle with
charge g, and a is the effective radius of the sphere, representing the
distance of closest approach to the ion. A simple way of estimating the
electrostatic potential is by letting water to permeate the ion, and sol-
ving the Poisson equation in k-space:

_ 4k 4ngp (k) 4, 2 peo o sin(kr) go (k)
4n=[ @y Bk ‘nfo ;= w0 ®)

where g (k) is the Fourier transform of the charge distribution, called
also an ionic form-factor:

Flk) = [ drp(ryeivr, )

Note that letting the water permeate the ion may result in a slightly
different effective radius, but within the linear approximation is not
qualitatively different from excluding water from the ions. Following
Ref. [16], we use a smeared charge distribution, defined as follows:

1 { nasinka n®(2coska — e‘“/”)}
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where 7 is the smearing parameter, which describes the width of the
ionic charge shell; for 7 — 0 the form-factor reduces to the Aschcroft
form: g (k) = sin(ka)/ka. Combining Egs. (7) and (8) we obtain:

N ~ .
U= e’ /-oo dkf(k) sm(ak)‘

x Jo t.(k) ak an
The excess chemical potential of moving an ion from bulk water to ionic
solution with concentration c, is given by (in units of thermal energy,
kB T)Z
Iny=Blu(c) — ulc =0)]

g po psint@) [ F0 )
T J(; dk (ak)? I:Ec(k) Ec:O(k)]’
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where Iy = Be? is the vacuum Bjerrum length. Using the interpolation
formula for €. (k) (Eq. (6)), we can write the chemical potential in terms
of the water dielectric constant and relate it to the DH limiting law:

ny _ 2 j‘°° dk sin(ak) epu P (k)
InyP" 7 Yo Ap ak  E,(k) K2+ A7 a3)

where InyPH is the classical activity formula (in the limit of a — 0):

pH_ __ I
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Though we consider symmetric solutions, Eq. (13) describes the single-
ion activity coefficient. The mean activity coefficient, in the asymmetric
case, can be calculated from the individual ionic activities. Finally, we
need to suggest a model for the solvent dielectric function. So far we
have only specified the limits it must hold: it equals bulk values (¢ ~ 80)
at small wave-vectors and some small value ¢, at large ones. It is in-
structive to introduce a weighting function f(k), that equals 1 at the
large wavelength limit, and O for short wavelengths, so we can write a
general dielectric function as:

(k) = [(€)7" + (gui — (€)™ (DI 1s)
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A simple f (k) that satisfies the corrects limits is a Lorentzian shape:

1

70 =1 an 16)

The Lorentzian shape captures some effects of solvent structure at long
wave-length, implying that water molecules are correlated, and their
correlation is exponentially decreasing with a decay length A. How-
ever, it fails to correctly describe the short-range behavior: Molecular
dynamics simulations of water reveal much more complicated struc-
tures, whose k-dependent dielectric response reflects resonance effects
of over-screening [17,23,24]. In the spirit of work [16] we could ac-
count for over-screening by the following formula for f (k):

1+ QH)?
1 + (kA — QA + (kA + QA)Y’ a7

Jk) =

where A describes the correlation length as before, and Q ~ 2x/d,, is
the wavelength for oscillations, which is determined by the molecular
size of water. In this work, however, we propose a more general form to
better describe the permittivity in the intermediate wave-numbers
range:

_ o« -+
fl)= (1 + AZk2)2 + A+ (kA — QA1 + (kA + QA)?) (18)

It mimics the basic features of the response function as found in [17],
approved by experimental data ([20]). Our hybrid model is illustrated
in Fig. 1 by looking at the response function y (k) = 1/e, — 1/%,,(k). The
large peak around k = 3 K is related to overscreening and will lead to
oscillations with a period just below the molecular diameter. The hy-
brid model corrects the longer range behavior of the overscreening
model, where the dielectric function is expected to be slightly reduced,
similar to the Lorentizian model as obtained in Ref. [17].

3. Results

Let us now calculate the activity coefficient for a typical ionic so-
lution, for concentrations ranging from the very dilute to moderately
concentrated, using Eq. (12). The parameters for the water dielectric
response that we adopt here are summarized in Table 1. Most of them
were determined according to previous studies of pure water, however
the hybrid-model weighting parameter a was fitted to experimental
activity data.

To better understand the activity coefficient, we first examine the
potential profile around a spherical ion. Fig. 2 shows the potential for
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Fig. 1. The response function y (k) as a function of wavelength, for three
models of dielectric functions: simple Loretntizan model, over-screening model
and a hybrid model.
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Table 1

Parameters for determining the potential distribution around charged ions,
according to our hybrid model of pure-water dielectric response. Most para-
meters describe the water dielectric response (Eq. (17)), while the smearing
parameter is related to the charge distribution of the central ion (Eq. (10))

Parameter Symbol Value
Short wavelength permittivity £x 1.78
Solvent bulk permittivity EBulk 80
Solvent oscillation wavelength Q 27 g1
22
Solvent correlation length A 5A
Weight parameter a 0.03
Smearing parameter i 05A
25 3
20 1
—~2
<
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Fig. 2. The dimensionless electrostatic potential, eS¢ (r), around a spherical ion,
for ionic concentrations 1 mM, 10 mM, 100 mM, 0.5 M and 2.5 M, based on a the
non-local dielectric function described by Eq. (6). Parameters of the non-local
function are given in Table 1. The ionic diameter used is 3.5 A. Right inset- the
dimensionless electrostatic potential in a constant dielectric medium. Left inset-
the dimensionless electrostatic potential profile near the surface of the sphere.
At larger distances from the ion, as well as at any distances for the case of
constant permittivity, the potential decreases with electrolyte concentration,
but in the vicinity of the ion the effect i.s non-monotonic.

increasing ionic concentrations, compared with standard DH approx-
imation (Fig. 2 inset). The results are based on a distance of closest
approach (ionic diameter, a) of 2 A, and exemplify how the non-local
permittivity completely changes the potential profile and leads to a
non-linear concentration dependence. As we increase the concentra-
tion, the DH screening cloud gets narrower, and the potential is strongly
screened. In contrast, the oscillating structure, predicted by the non-
local dielectric model, persists even in high molalities. In fact, the po-
tential is mostly governed by the local water structure, and the
screening effect of the ions is only a small perturbation, leading the
curves of different concentration to almost coincide. This is true, at
least in this model, in which ion-ion correlations beyond mean-field are
not taken into account.

From the charging process, we know that the activity is related to
the potential at the surface of the charged ion. Two competing effects
determine this potential for non-local dielectrics. For small ionic con-
centrations, the potential is lowered, as a result of the interaction with
the screening cloud. This change allows us to recover the DH limiting
law, as expected. We note, however, that in contrast to a constant-di-
electric picture, the potential itself is negative, and increases in mag-
nitude. As the ionic concentration increases, the amplitude of the os-
cillations is reduced, which leads to an opposite trend: the screening of
the oscillations results in a smaller magnitude potential, i.e., it becomes
less negative.
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Fig. 3. Activity coefficients as a function of ionic concentrations. Left- The
activity coefficient for monovalent binary solutions, based on the non-local
permittivity model, Eq. (12). Three different activity curves are shown, corre-
sponding to three ionic diameters (from bottom to top): 4 A, 3 A and 2 A. The
parameters of the pure water dielectric function are summarized in Table 1, and
the smearing parameter was taken to be 7 = 0.5 A. Left- Experimental data of
activity coefficients for three ionic solutions (from bottom to top): KCl, NaCl
and LiCl. Data is taken from [9].

The resulting activity profiles are shown in Fig. 3, for three ionic
diameters (@ = 2 A, 3 A and 4 A). For comparison, three experimentally
measured curves of activity coefficients are shown as well. The ex-
perimental data were taken from Ref. [9] and corresponds to three
monovalent ionic solutions: KCl, NaCl, and LiCl, representing three
different cation sizes. Qualitatively we see that our model is able to
capture the correct trend, including the increased activity at high
concentrations, as well as some ion size dependence of the activity
coefficient. The bare cation diameters for the lithium, sodium, and
potassium are 1.4 A, 1.94 A and 2.82 A, respectively [25], which are only
slightly lower than the values we consider here. While we are not
claiming this is a complete model, we show that with reasonable
parameters, the water structure alone can explain much of the overall
shape of the activity vs concentration for different ions, without re-
sorting to correlations or concentration-dependent permittivity.

4, Discussion

The match between the experimental activity coefficient and our
model illustrates the importance of the local water structure on ionic
activity. Our theory supports the original argument of Huckel himself,
as well as several recent papers [26,27], that differences in the solva-
tion energy play a central role in determining the activity coefficient. In
fact, it is the main source of increasing activity at moderate salt con-
centrations, reversing the decreasing trend of DH theory for screening
at low concentration, even before ion-ion correlations become im-
portant at high concentrations. Yet, the interplay between solvent
molecules and ions is usually either ignored altogether or artificially
added as an additional contribution, based on a concentration-depen-
dent bulk dielectric constant. Interestingly, while non-local dielectric
functions have been introduced in calculations of activity coefficients,
they were limited to ion-ion correlations or ionic pairing [12,26]. The
solvent-salt interaction was, however, described considering solvent as
a uniform dielectric background. Conversely, our analysis directly in-
corporates the solvent behavior into a non-local permititivy, and we
demonstrate how it dominates the behavior of the activity curves. By
using an independently validated dielectric response of the solvent, we
show the significance of the short-range water behavior, that is only
vaguely captured by an effective reduced dielectric constant.

It is important to note that we have neglected several other im-
portant effects that are known to play a role in determining the activity
coefficient. First, our dielectric function is based on a linearization of
the Poisson-Boltzmann equation and, thus, non-linear effects in the
polarization of the ionic atmosphere are neglected. Moreover, exten-
sions to the PB equation, such as ones that account for finite size ions or
size asymmetry [28-33], are not considered. Size and packing
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constraints will rapidly increase the activity coefficient when the
packing fraction becomes significant. Theories of primitive models in a
constant dielectric medium, supported by Monte-Carlo simulations,
have shown that both size effects and non-linear contribution can be
significant [34].

Another necessary contribution to the activity comes from ion-ion
correlations and is especially pronounced at high concentrations. Such
contributions can naturally fit into a non-local dielectric response fra-
mework. For example, in the dressed ion theory [35-37], an exact non-
local permittivity is derived to include both size effects and ion-ion
interactions. In the context of ionic liquids [38], a correlation length, I.,
describes the lowest order correction to the bulk dielectric constant as
results of ion-ion interactions: (k) ~ egui (1 + [2k?) [38]. Interestingly,
ion-ion correlations have an opposite sign compared with water-related
correlations, as the second-order expansion of the pure water permit-
tivity gives a negative contribution, reducing the permittivity. The
corresponding solvent correlation length interpolates between Q! and
A, and simplifies (for QA > 1) to:

Spulk | 1-8
~ 2N—— .
e \** oar 19)

solvent
le

Last but not least, the effects of the electric field of ions on water
structure have been neglected, as well as disturbance of the structure by
their mere presence, which were both shown to be potentially im-
portant [23,24]. Indeed, the detailed studies of Ref. [24], based on
integral equation approach to the description of molecular correlations
in water and molecular dynamic simulations, reveal a complicated di-
electric response, with a strong non-linear component at high electric
fields and sensitivity to the polarity of the ions. Ignoring these effects,
as well as other non-electrostatic interactions, limit the applicability of
our model. It is therefore expected that with virtually no ion-specific
fitting parameters, apart from the effective ‘diameter’ of the closest
approach, our model would only predict the correct trends, and not
exact values. Our formula for the dielectric response, Eq. (6), is only a
first step in the right direction. It is the simplest form that recovers the
correct behaviors in both the very short and very long wavelength
limits. For dilute to moderate concentrations, the pair potential of ions
can be described with similar approximations and can be embedded
into a rigorous statistical mechanical theory of electrolytic solutions
beyond mean-field, because this pair potential captures the effect of
overscreening as well as Lorentzian correlations in the nonlocal solvent
response. To improve the results, and get a quantitative agreement with
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experiments, more elaborate models are required.
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