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Front Dynamics during Diffusion-Limited Corrosion of Ramified Electrodeposits
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Experiments on the diffusion-limited corrosion of porous copper clusters in thin gap cells containing cupric
chloride are reported. By carefully comparing corrosion front velocities and concentration profiles obtained
by phase-shift interferometry with theoretical predictions, it is demonstrated that this process is well-described
by a one-dimensional mean-field model for the generic reactioh B (static)— C (inert) with only one
diffusing reactant (cupric chloride) and one static reactant (copper) reacting to produce an inert product (cuprous
chloride). The interpretation of the experiments is aided by a mathematical analysis of the model equations,
which allows the reaction order and the transference number of the diffusing species to be inferred. Physical
arguments are given to explain the surprising relevance of the one-dimensional mean-field model in spite of
the complex (fractal) structure of the copper clusters.

. Introduction Ipa 9pa
e - . . T Dat; — Roa:ps) 2)
Diffusion-limited processes are ubiquitous in physichem- d oX
istry,2 and biology? Reaction-diffusion processes have been
. . . . . dpg
the subject of intense and continuous interest since the work of — = —R(pp.Pa) (3)
aT ATB

Smoluchowsk?~¢ A crucial feature of many such processes

controlling pattern formation and reaction efficiency is the

“reaction front”, a dynamic but localized region where reactions WhereDa is the diffusion constant for species A aR(pa,ps)

are most actively occurring and which separates regions rich inis the reaction rate density. The most frequently used initial
the individual reactants. The simplest theoretical model of a conditions assume that the reactants are uniformly distributed
reaction front, introduced more than a decade ago Hfi @~ @nd completely separated at firsia(X,0) = paH(X) and
Racz/ is the “mean-field” model for two initially separated P8(X.0) = pgH(=X), where H(X) is the Heaviside unit step.
species A and B reacting to produce an inert species C. Sincefunction. Such initial conditions are easier to reproduce in
then, the case of two diffusing reactants A and B has been experiments than those |nv9IV|ng unllformly mixed reactgnts.
thoroughly studied analyticaffly’® and numerically}t-2! and There are several assumptions behind eqs 2 and 3: (i) The

some predictions of the mean-field model have been checkedProduct C is generated in small enough quantities that its
in the experimentat-30 presence does not significantly affect the dynamics. (ii) The

e concentrations are dilute enough that the diffusivities are
In cor!trast, the case of .only one d_lffusmg rt_aactant A and constant. (i) The fixed matrix containing reactant B (static) is
one static _reactant B (confined on a f'Xe_d ma_ltrlx) has not yet porous enough that reactant A can freely diffuse through it. (iv)
been studied experimentally. We show in this paper that the The reaction rate is a function of only the local concentrations

co_rrosion of a porous solid (B) immersed_in a chemically active and not any fluctuations or many-body effects (which is the
f!u|d suspension (A) can al?f be descrl_bedatz)y su_ch & mean-«mean-field approximation”). It is common to make the mean-
feld ol Some Ik and urercal St st fleld proximaton Lnder e sSsumpID« ) = 9

’ PICally hut in the interpretation of our experiments we will not assume

gﬂfmp'lex (for a reql por:ous interface) thde}n the case (?f twolanything about the form dR(pa,ps) @ priori since the reaction
iffusing reactants (in a homogeneous medium) an experimentaly e place at a solidiquid interface. Moreover, this interface

test of the model is needed. is highly ramified, and therefore, the underlying microscopic
The mean-field model of a planar reaction front for the dynamics is expected to be more complex than for simple
chemical reaction homogeneous kinetics.
In this paper we carefully test the validity of these assump-
A (diffusing) + B (static)— C (inert) 1) tions with experiments on a particular poretslid corrosion
system: copper clusters corroded by a cupric chloride (guCl
postulates that the concentratiops(X, T) and pg(X, T) of electrolyte. The clusters are obtained by thin gap cell elec-
species A and B, respectively, evolve according to a pair of trodeposition from a CuGlelectrolyte at fixed current. This
coupled partial differential equatiols! process builds a depletion layer of Cy@head of the copper
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34. The interference patterns are recorded through a CCD
camera coupled to the same frame grabbeith a 768 x 512
: pixel resolution. Phase-shift interferometry offers several sig-
i nificant advantages over traditional interferometry in that it
provides an accurate reconstruction of the entire concentration
field, using a set of successive interference pictures recorded
for shifted values of the phase difference between two optical
wavefronts and can also be used as an holographic interferom-
eter3®
B. Preparation of Copper Clusters by Electrodeposition.
) L . " When current flows from the anode to the cathode, charge
Figure 1. Schematic diagram of the thin gap electrodeposition cell . -
containing a ramified, metallic copper deposit. Note that the size of transfer occurs at the cathode, leading to the reduction of copper

the deposit has been enlarged for clarity. cations into copper metal accordingté®3’

deposit. When the current is switched off, the Cu@pletion C#"+2e —Cu
layer relaxes toward the copper cluster, bringing Ceations

that react with copper according to The actual mechanism of deposition is much more complex than

this two-electron transfer process since competitive reactions
. : . involving the solvent species are likely to occur. Nevertheless,
CuCl, (ag)+ Cu (solid, red)—2CuCl (solid, white) (4) in CuCh electrolytes, we have observed that the formation of
cuprous oxide (C4D) in competition with copper by reduction
of Cu2t cations is not favored, contrary to what is observed in
copper sulfate (CuSf solutions3¥-4% which can be partly

where the cuprous chloride (CuCl) is produced in the form of
small (white) crystallites that drop down to the bottom of the

cell . . . explained by the strong adsorption and complexation properties
In section Il we describe the experimental setup and the ot 'choride aniong’ This reduction process on the cathode
method used to prepare the porous clusters to be corroded. "\mplies a local depletion of the copper cations close to the

section Ill we report the experimental evidence that our caihode and also their replenishment by a global transport
corrosion system behaves like a 1D diffusimeaction process  nrqcess, namely diffusion. Although electromigration also
with one static reactant. In section IV, a mathematical analysis ¢,ntripytes to transport, it does not act independently of diffusion

is presented that makes quantitative predictions based on th&, regions where electroneutrality is maintairféavhich means
experimental data of section Il, within the theoretical framework everywhere in the cell outside the 4000 A thick double

of the mean-field model, eqs 2 and 3. Also in section 1V, the layer4243 This often misunderstood fact was given a firm

experiment_al results are revisif[ed to rfefine the com_p_arison With theoretical basis by Newman over 30 years ago in his asymptotic
t_he_ th(_aoretlcal model and to discuss in some detail its physical analysis of the transport equations for a rotating disk electtbde,
limitations. but only recently has it been quantitatively verified in experi-
ments (by our group) for the case of constant boundary flux at
a fixed cathodé*36 In summary, the theoretical and experi-
A. Apparatus. The experiments are performed in a thin gap mental evidences indicate that in the absence of convection the
electrodeposition cell, which is depicted schematically in Figure concentratioma of a dilute, binary electrolyte evolves according
1. The cell consists of an unsupported, aqueous solution of,CuCl to the classical diffusion equation
confined to a narrow region of dimensiolé=5cm x L =
8 cm x 6 = 50 um between two closely spaced, optically flat Ipa
glass platesi{4 over 80 mmx 50 mm). Two parallel, ultrapure ot
copper and silver wires (5@m diameter, Goodfellow 99%
purity) are inserted between the two glass plates to act both aswhere Da is the “ambipolar diffusion coefficient” for the
spacers and as electrodes. During the electrodeposition (priorelectrolyte given by a certain weighted average of the diffusion
to corrosion) the wires are polarized so that the silver wire acts constants of the individual iorf3.
as the cathode and the copper wire as the anode. The solutions When the interfacial concentration of metal cationCu
of CuCh (ACS reagent) are prepared from deionized water, approaches zero, the interface becomes unstable and develops
carefully cleaned of any trace of dissolved oxygen by bubbling into a forest of fine spikes that compete with each other to invade
nitrogen through it for 1 h. The anodic part of the cell (not the cell’54¢ In some cases, a “dense-branched” pattern is
shown in Figure 1) is filled by a dilute solution of CyCb selected®47-50 This morphology is characterized by a dense
postpone the precipitation of the salt due to saturation effectsarray of branches of invariant width advancing at constant
by dissolution of the anode. The copper electrodeposits are allvelocity » through the cell, whose tips delimit a nearly planar
grown at constant current, and the entire experiment is front between the copper salt electrolyte and the deposit zone.
performed at room temperature:Z0 °C). We have shown recently that this growth regime can be modeled
Digitized color pictures of the copper clusters are obtained via a 1D diffusion model through the measurement of the copper
by direct imaging of the cluster through a lens, using a three- salt concentration field ahead of the growing deposit by
CDD camera coupled with an 8-bit frame grabber from Data interferometry2¢:°0The experimental concentration field closely
Translation driven by the public domain software IMAGE, fits the “traveling-wave” solution to eq 5,
which successively captures three RGB frames and from them
reconstructs the color image. paX) = p (1 — exp ) (6)
A phase-shift Mach Zehnder interferometer is used indepen-
dently to resolve the concentration field, averaged over the depthwhereLy = Da/v, andX is the distance to the front edge of the
of the cell. A sketch of the interferometer can be found in ref copper deposit, in the direction normal to the front, oriented

Il. Experimental Methods
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toward the bulk electrolyte. The diffusion lendth is propor- X X
tional to pa/j, where p; is the initial bulk concentration in
copper cations angds the current density. This diffusion length
tends to zero agp, increases, and in that limit the concentra-
tion profile looks like a step function. Note that(X<0) ~ 0

and pa(X>Lg) ~ py; i.e., the metallic copper deposit leaves
behind it a region entirely depleted in copper cations, pushing
in front of it a diffusion layer of constant width extending into
the bulk electrolyte. Due to the conservation of copper during
the deposition process, a linear relation exists between the
velocity v of the growth and the interfacial flux of catiods
namely vog = J, where pg is the mean concentration of
(metallic) copper in the region of the deposit.

Using the relationy = DallLg, the ratio of the copper
concentration in the bulk electrolytef (where it takes the
form of cupric ions) to that in the region of the depogff
(where it mostly takes the metallic form) is easily calculated
from the basic properties of the electrolfé?-50 .
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P2 Figure 2. (a) Photograph of a copper deposit grown from a 0.5 b1dl
q= _i\ =1-—t" @) CuCk solution atj = 40 mA-cm™2 for approximately 15 min. (b)
PB Photograph of the same deposit 0.5 h after the current had been switched

off. (The white zone is CuCl.) (c) The montage shows a sequence of
photographs of a small region of the deposit including the reaction

+ i 3 ion i
wheret" is the transference numiéf?of the copper cation in front taken every 30 min after the interruption of the current.

a CuC} electrolyte. Practicallyt™ is a characteristic of the
electrolyte and thereforg will not be a free parameter in our
experiments (neither” nor g depend on the current densjly
The closert™ is to 1, the greater the concentration of copper
inside the cluster. In Cuglelectrolytest is expected to be
smaller than 0.5, which implies that the copper composition of
the deposited zone will not go beyond twice the original
concentration of CuGlin the electrolyte. Therefore, the copper

in the next section by describing the scaling behavior of the
reaction front and accompanying depletion layer of Gu@i

the following section, a mathematical analysis of the one-
dimensional, mean-field model is presented, which incorporates
the observed scalings and makes quantitative predictions regard-
ing the reaction front speed and the concentration evolution.
. . R ! Finally, these predictions are checked with a more detailed
clusters obtained by thin gap electrodeposition in G in analysis of the experimental data in the last section, and
fact highly porous. arguments are given to explain the relevance of the one-

The large porosity of the deposited copper clusters is of dimensional, mean-field model for our experimental system.
fundamental importance in our subsequent study of the corrosion

of the copper deposits_ once the current has been switched offy,. Preliminary Experimental Results

(and the electrodeposition halted) because, as a consequence,

the cupric ions are able to diffuse freely through the dendrites A, Temporal Evolution of the Corrosion Front. At the

with approximately their bulk diffusivity and then react with a moment when the current is switched off, the region of the
large exposed surface of metallic copper. The low density of copper deposit is entirely depleted of cupric ions, which are
the deposit also suggests that the product of the corrosionthus initially separated from the metallic copper in the deposit.
reaction, cuprous chloride (CuCl) crystal, is produced in small At later times, cupric ions diffuse amidst the copper dendrites
enough quantities that its presence should not significantly affect and react at the metal surfaces, leaving behind cuprous chloride
the dynamics of the reactierdiffusion process. Therefore, by  (CuCl) crystallites. In Figure 2a,b are shown images of a copper
interrupting the current during electrodeposition, we can observe deposit just prior to corrosion and after 30 min of corrosion,
a simple reactiondiffusion system with two initially separated  respectively. Note that in Figure 2b the interfacial region
reactants, copper chloride (A) and metallic copper (B), only between the red copper (the gray color in this picture) and the
one of which is free to diffuse. Since the initial interface between white CuCl is rather flat and thin.

the bulk electrolyte and the ramified electrodeposit is planar  Focusing on the temporal evolution of this red/white interface,
and the deposit is disordered, it is likely that the dynamics of we have observed that, while at first the white layer of CuCl
the corrosion process will be effectively “one-dimensional” (1D), appears at the tips of the copper-deposit branches, it gradually
in the sense that there might be nearly perfect translational becomes flatter and flatter. As a result, the system approaches
symmetry in the two spatial direction¥ &ndZ) perpendicular  translational invariance along thé direction, normal to the

to direction of the front propagation. Moreover, since the growth directionX, thus justifying a one-dimensional model
dynamics occurs in three dimensions (as opposed to two for afor the system involving the single spatial coordingt@gormal
surface or one for a molecular channel), it is also likely that a to the reaction front).

mean-field, continuum model will be valid, although this may By carefully comparing the concentration field of cupric ions
not seem obvious a priori in light of the complex geometry of gptained by phase-shift interferometry and the red/white, Cu/
the electrodeposits, which is known to be fraétaf? CuCl interface observed on the deposit, the location and extent
The rest of the paper is devoted to a careful, experimental of the reaction front, where there is a significant overlap of
validation of these hypotheses, showing that our system is indeedmetallic copper and cupric ions, can be identified. Following a
accurately described by a one-dimensional, mean-field modeltransient regime (which we describe in the last section), it is
for the generic chemical reaction,AB (static)— C. We begin observed that the reaction front approaches a constant width
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Figure 3. log—log plot of the position of the reaction fronk as a
function of timeT for two different experimental runs in Cu{0.5
mol-L~* for deposits grown af = 40 mA-cm2. The solid lines of
slopeY/, represent the predictions of the one-dimensional, mean-field
theory, given by eq 41, witlh = 1075 cn?s™, in the cases| = 0.6
andq = 0.73.

10*

~ T*with a = 0, which is consistent with certain mean-field
models!®11.31Using the theoretical methods pioneered byfiGa
and Ra&Z in the case of two diffusing reactants, this scaling
was first predicted by Jiang and EbHerusing physical
arguments supported by computer simulations and later by
Koza?! using asymptotic analysis.

Recently, Bazant and StoWehave considered the case of
higher-order reactionmA + nB (static) — C represented by
the mean-field reaction raf(pa,os) = ko pg and proved that
the scaling exponent for the front width is given (uniquely) by
the formula

m—1
“Tom+1 ®
which holds for any real numben > 1. (The scaling solution
does not exist fom < 1.) In light of this result, the experimental
observatioro. = 0 is consistent with the usual one-dimensional,
mean-field theory only in the case = 1. If higher-order
reactions were present) > 1, the theory would predict that
the reaction front width increases in time ¢ 0) although
always more slowly than diffusioro( < /5).

The position of the reaction frond(T) during the corrosion
of a copper deposit (grown from a 0.5 M CyGblution atj =
40 mA/cn?) is plotted in Figure 3. Note that, after initial
transients have vanished ¢ 500 s), the reaction front itself
“diffuses” with its position given by the scalings ~ T2 with
o = 1,, which is is also consistent with predictions of the one-
dimensional mean-field modék!3?

B. Temporal Evolution of the Diffusion Layer. At T =0
when the current is interrupted, the reactants Cu and £ar€l
completely separated, since the concentration of €u€l
negligibly small in the immediate vicinity of the metallic Cu
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Figure 4.
around a copper deposit during its dissolution (a) just before the
interruption of the current, (b) 15 min later, ang (ch later. Ap ~
pal10 between adjacent isoconcentration lines.) The deposit grown in
0.5 motL~! CuCk solution atj = 40 mA-cm2 for 20 min. The
concentration of CuGlis negligibly small inside and ahead (to the
left) of the reaction front and approaches the bulk value of 0.51mél

far behind (to the right of) the front.

The temporal evolution of the diffusion layer is revealed by
precise interferometric measurements of the concentration profile
of CuCh. In Figure 4 are shown three contour plots of the
concentration field computed from the integrated index along
the depth of the cell. Since the experiments are performed in
thin gap cells (5Qum) and the depletion layer spreads over
distances larger than this gap, it is safely assumed that the
concentration of CuGldoes not change appreciably along the
Z direction (parallel to the laser bed® In Figure 4, the shadow
of the Cu/CuCl cluster is also clearly seen. A close inspection
of the panels (b) and (c), which correspond to eroded clusters,
reveals that in the zone of the copper cluster where £€h&3
diffused (recognizable where the leftmost isoconcentration
contours have moved through the cluster), the cluster has been

electrodeposit. During the subsequent corrosion process thebroken down into smaller crystallites, which, as indicated by

concentration of CuGlremains very small in the reaction front,
which leads to the modification of the initial depletion layer of
CuCl (produced by the electrodeposition process) into a region
where the concentration smoothly interpolates to the value of
the bulk solution far behind the front. The term “diffusion layer”

their color in Figure 2, are made of CuCl.

Typical experimental concentration profiles of Cy@Giea-
sured at different times (averaged along Yhdirection, normal
to the growth direction) are shown in Figure 5. The shape of
these concentration profiles is discussed in the next two sections,

is used to describe this region because it is characterized bybut here we focus on the scaling of the widtfy(T) of the

the transport of fresh Cugby diffusion from the bulk, relatively
unaffected by chemical reactions due to the negligible (or
vanishing) concentration of metallic Cu remaining behind the
reaction front.

diffusion layer (defined as the region of non-negligible gradi-
ents). Figure 6 shows that at long timeE ¢ 500 s), the

diffusion layer approaches a self-similar structure, with the
diffusive flux entering the reaction front obeying the scaling
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Figure 5. One-dimensional concentration profiles extracted from the
two-dimensional data. The deposit has been growmfaol motL ™
CuCl solution atj = 68 mA-cm™2 over 15 min. The concentration

profiles are shown every 15 min after the current had been switched
off. The different symbols are added on each profile to differentiate
the recording times. These symbols will be used on the next representa-

tions of the concentration profiles in Figures 9 and 10.
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Figure 6. log—log plot of the temporal evolution of the derivative of
a(X,T) at X = 0 as a function off. Same parameters as in Figure 5.
The plain line corresponds to the prediction of eq 45 vilth= 10°°
cn?-standqg = 0.79.

law Jg O (3pa/dX)|x=x, ~ T2, and that, therefore, the width of
the diffusion layer has the familiar scaliff:>31Wy ~ T with

o0 = Y,, which is another robust feature of the mean-field
models!0

J. Phys. Chem. B, Vol. 103, No. 28, 1998845

and analytically for various mean-field models, the reaction rate
is not directly measured in our experiments.

In the general casB(pa,ps) = ko pg mentioned above, it
can be show! thatf is given (uniquely) by

m

ﬂ:m+1

9)

so that once agaim = 1 is suggested by the inferred valde

= 1/,. However, given that the experimental system has a
complex fractal structure and three-dimensional transport in the
reaction front, it is not obvious a priori th&(pa,os) = ko pg

is a reasonable approximation within a spatially averaged one-
dimensional model. Instead, we will make no ad hoc assump-
tions about the functional form of the reaction r&épa,ps)

and then explore consequences of only our direct experimental
observationsgt = 0 andd = ¢ = 1/,, within the framework of

a one-dimensional mean-field model.

IV. Theoretical Predictions of the Mean-Field Model

A. Dimensionless Model EquationsThe model equations
have a dimensionless form involving only the parametes
palpg, defined in eq 7,

da_ oa
5 ol r(a,b) (20)
ob_
5= —ar@b) (12)
with boundary and initial conditions
a(—oo,t) =0, a(eot)=1 (12)
b(—oo,t) =1, b(co,t) =0 (13)
a(x,0) = H(x), b(x,0) = H(—x) (14)
where
a= p—ﬁ, b= p—E (15)
Pa PB
R(ap3.bpg)
r(a,b) = T ov 16
(@) R(pa.08) (16)
R 0, o T R 0’ o
= (oA 0PB) , x = X (oA :‘:B) (17)
Pa (Darr)

These initial conditions are closest to the actual ones used in
the experiments when the copper deposit is grown at large
current, which corresponds to sméal in eq 6. The initial-
boundary-value problem of egs 4Q@4 involves an idealized,

A physical argument based on mass conservation betweeninfinite system possessing no natural length or time scale, and

the diffusion layer and reaction frorit! can be used to predict
the scaling of the reaction rate (per unit volume) in the fient

therefore, it is expected that asymptotic similarity solutions exist
in which distance and time appear coupled by power-law

~ T-F from the preceding experimental observations. The total scalings>® The experimental system, on the other hand, pos-

reaction rate in the front (per unit area) scalesvés~ T% 5,

sesses several relevant length scales, but they turn out not to

and this flux of cupric ions due to reactions must balance the affect the evolution of the reaction front, at least for some range

diffusive flux entering the frontly ~ T~9, which yields the
scaling relation = o + 6 = 0 + Y, = Y,. It is important to
point out, however, that while = 0 andd = 1/, are the results
of direct experimental observations, the scaling expofient

of times. For example, the spatial scales of the copper deposit,

such as the typical dendrite spacing and dendrite width, surely

affect the dynamics at early times since these length scales are
of the same order as the diffusion lendt}*® but it is observed

1/, is only inferred by a physical argument, based on the that during corrosion the system quickly approaches planar
assumption that chemical reactions are negligible in the diffusion symmetry, averaged across scales much larger than individual
layer. Although this assumption has been checked numerically dendrites. Likewise, the length scale of the gap spacing is not
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expected to greatly influence the corrosion dynamics because 1 —
vertical (buoyancy-driven) convection, which has been observed L
during the growth pha8gis suppressed in 50m depth cells*57 08 [
However, the settling of the reaction product, CuCl crystallites, i
could have some effect on the front dynamics at this scale. 06|
Finally, the largest length scales, namely the distances from the
outer edge of the deposit to the two electrodes, also should not =
affect corrosion dynamics until the reaction front gets close to 4 r
the cathode and/or the diffusion layer approaches the anode. [
Therefore, during intermediate times, after three-dimensional 0.2 ¢
transient effects have subsided but before the system size begins
to matter, the corrosion dynamics should be well described by 0
a self-similar solution to the one-dimensional mean-field equa- 0 1 2 3 4
tions. &

B. The Diffusion Layer. Motivated by these arguments, we
consider the transformation

Figure 7. Asymptotic similarity functiona(x,t) ~ A(§), where¢ =
(x/2+/1) + v, shown forA, = 0 andv = 0, 0.5, 1, 1.5, 2, 2.5 from left
to right.

axyn =AEH,  bxh=BEH, L= Wy(0) (18) but Bazant and Stone have shown that these limits are actually
necessary consequences of the assumed quasistatidRarity.
With these arguments we are led to an ordinary differential

for the concentration of Cugin the diffusion layer (defined equation forA(Z) by taking the limitt — e with fixed ¢ > 0 in

by ¢ > 0) with power-law expressions fog(t) and Wy(t). In

light of the experimental results from the previous section we eq 2L:
make the definition&Vy(t) = 2Vt and A'+2C—-v)A=0 (25)
— The solution of this equation subject to the boundary condition
t) = —2vvt 19
X ot (19) A() = 1 can be written in terms of error functioffs,
X
{=—"+v (20) erf(¢ — v) + erf(v)
2V AG)=A+(1— 26
©=A+1-A) o (26)

wherev(qg)? is an effective diffusion constant for the reaction whereA, = A(0) is a constant to be determined by asymptotic

front to be determined during the analysis. Substituting these matching with the reaction front @s— 0. The functionA(¢) is

expressions into eq 10, we have shown in Figure 7 for different values of The slope ofA(%)
at ¢ = 0 given by

oA | (v — g) oA (1)82A s &
a L L Y 21 )
ot \ 2t Jor \atfye (AB) (21) 2(1-A)e "
A'(O) = f— (27)
which simply amounts to a change of variables froxt) (to (1 + erf(v))

(€. _ _ o _ is the (dimensionless) diffusive flux into the reaction front.
The starting point for our analysis is the experimental  On the length scaleVy(t) O tY2 appropriate for the diffusion
observation (see below) that the concentration of Gk layer, the limiting concentration fields just derived appear not

proaches a single, continuous profile in theoordinate to be differentiable at = 0,
lim ACH=AC (>0 (22) a(x,t) ~ A(E) H(), b(xt) ~H(=0)  (28)

ast — o with ¢ = 0 fixed, but as we have already observed
which has been called the “quasistationary approximation” in experimentally, that is only because in the reaction front
the physics literatur@153158This is not really an “approxima-  (at{ = 0) the concentrations are smoothly interpolated across
tion” but is rather an exact asymptotic property of a certain class these apparent discontinuities on a much smaller length scale
of solutions to egs 1613, which happens to fit the experimental w 0 t* = o(Wg) sincea < 6. In mathematical terms, the
data. To find such solutions from eq 21, we must asst(a# asymptotic approximations in eq 28 are not uniformly valid for
dt) — 0, IA/BE — A'(E), andd?A/ag2 — A'(C) for fixed & > 0. all (x.t) ast — oo, but rather are valid only fof = 0, i.e.vt =
At this point it is customar$t to further assume ad hoc that the o(x + 2vvA)).

reaction term in eq 21 vanishes relative to the diffusion term = The Reaction Front. We now explore the consequences

) - of the experimental resulis = 0 andd = ¢ = 1/, within the

!L"; t-r(AB)=0 €>0) (23) present mathematical model. Although the physical arguments
made above for the lack of a natural length scale are much more

and that the concentration of the nondiffusing species also tenuous in the rgaction front because the observeq fron.t width
vanishes in the diffusion layer, i.e., where the reaction front (&P0out0.2mm)is comparable to the average dendrite thickness
has already passed, (0.2 mm) and spacing (0.4 mm) as well as the_gap (0.05 mm),
the nearly perfect planar symmetry of the corrosion process leads

PR _ us to nevertheless seek another asymptotic similarity solution

1[?0 B(&H =0 €=0 (24) to the one-dimensional, mean-field equations in the vicinity of
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the reaction frontx — x¢(t) = O(1). The predictions of the model
will be carefully tested against the experimental data in the next
section.
Sinceo. = 0 ando = /5, we consider the transformation
a(xt) =t A@.b),

bxt) =B  (29)

wherey is a new similarity variable for the reaction front defined
by

n=x+ 2t =2Y%¢ (30)
The exponeny = 0 is introduced to allow for the possibility
thata(x,t) — 0 in the reaction front, which is suggested by the
result r(a,b) ~ t=# with 8 = 1/, inferred earlier from the
experimental data. In contrast, no such prefactor multiplies
B(n.t) in the reaction front sincé(x,t) must remain finite
there in order to interpolate between the limiting values of 0
and 1, respectively, behind and ahead of the front.

Making these transformations in eq 10 yields

“1pd A
n

A= EA A — oA B) (31)
As before, we explore the possibility of self-similar quasi-
stationarity in the reaction frontA(n,t) ~ A(y) andB(#,t) ~
B(n) ast — o with || < o fixed. The consequence of the
guasistationarity assumption in eq 31 is
A =1lim Er " Am).Bm) (] <o) (32)
Since A"'(y) = 0 cannot satisfy the boundary condition
A(—) = 0 (except in the trivial casé\(r) = 0), the limit on
the right-hand side of eq 32 must be nonzero (and finite), which
is possible only ifr(a,b) is linear ina, i.e.

r(a,b) = a-f(b) (33)

for some functionf(b). Therefore, the experimental facigt)

~ 19 andx(t) ~ t¥2 are consistent with the one-dimensional,
mean-field model only if the reaction rate is first order in the
diffusing species.
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Figure 8. Exact asymptotic dependence igfthe square root of the
dimensionless diffusion constant of the reaction front, on the asymmetry
parametenq, predicted by eq 39.

0.2 1

boundary condition is needed, which comes from asymptotic
matching with the diffusion layer.

D. Asymptotic Matching. In mathematical terms, our equa-
tions possess an “internal boundary lay&The reaction front,
defined by|x + 20t = 0O(1), acts as the “inner region”,
while the diffusion layer, defined byt = O(|x + 2vv/t]), acts
as the “outer region”. For consistency, the “inner limit’

0) of the outer approximation, eq 18, must match the “outer
limit” (7 — o) of the inner approximation, eq 29. We have
shown thaty > 0 is required to describe the experimental data,
which means that(xt) approaches zero uniformly in the
reaction front. Therefore, by matching at zeroth order, we obtain
A(0) = A, = 0, but this does not provide the missing boundary
condition for the reaction front. At the next (linear) order we
have, ag — o,

AI
maz A 0t -w
da_ L X 2/t (38)
x LA Al
S X g

and by matching, we conclud@ '(«) = A, where A (v) =

Next we make the same transformation in eq 11 and replaceA'(0)/2 can be expressed in termsugfy) using eq 27. In light

the reaction term with eq 33 to obtain

B
8t+t

—12 3B

Y
i AH(B)

(34)

By inspection, quasistationarity is possible only #= 1/,, which
would implyr(a,b) ~ t=12A(y) f(B(1)). Therefore, we conclude
15} /, once again, and the physical argument given in the

previous section is found to have sound mathematical justifica-

tion.

With these results we arrive at a third-order system of
nonlinear ordinary differential equations for the concentration
fields in the reaction front,

A" —AfB)=0
vB' + gA-(B) =

(35)
(36)

These equations may be combined to eliminate the reaction term
and integrated once using the boundary conditions ahead of the

front, A(—») = 0 andB(—) = 1 to obtain
gA'=v(1-B) (37)

Before proceeding with another integration, however, a third

of eq 24, the matching condition fda(x,t) is B(e) = 0.

The matching conditions allow us to derive an exact expres-
sion for v(g) and hence the asymptotic front positigift) =
2v+/t. Taking the limity — oo in eq 37 usingA () = A; and
B(«) = 0, we obtaingAi(v) = v. By substitutingAi(v) from
eq 27, we obtain the desired expressionsf(m),

Jaxé®[1 + erf®)] (39)

v=FXq)  where
which has also been derived by KoZalhe relationg = F(v)
is plotted in Figure 8 and will be used in the next section to
estimateq from the experimentally measured valuerof

With these results, we are led to a second-order, nonlinear-
boundary-value problem for the reaction front concentration of
the diffusing species:

F(X) =

A"=AM1L-AIA), A(-x)=0, A'(w)=

(40)

Note that eq 40 is invariant to translatign— » + 7., where

1o iS an undetermined constant depending on the initial
conditions that precisely defines the location of the reaction front
(e.g., as the point of maximal reaction rate).
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Since it is difficult to accurately measure the reaction-front Sincea(0,T) depends only om, a value ofgq can be deduced
concentration fields in our experiments, we stop here and refer from Figure 5, which shows the concentration profiles during
the reader to the article of Bazant and St8ifier the integration the corrosion of a copper deposit obtained by electrodeposition
of this boundary-value problem and other analytical results in from a 1.0 molL ! CuCk solution. We finda(X=0,T) = 0.25

the casd(b) = b™ m > 1.

V. Experimental Test of the Theoretical Model

A. Check of the Exact Asymptotic Predictions.In section
Il we showed that as corrosion proceeds, the reaction front
moves with the time a¥{(T) ~ T¥2 and does not spread/(T)
~ T* with o = 0) and the widthwWy of the depletion layer
increases with the time &(T) ~ TY2. In section IV we showed

that these observations are consistent with the predictions of a;

one-dimensional A+ B (static)— C (inert) mean-field model
with a reaction rate that is first order in the diffusing species
A. By solving the mean-field equations, we derived not only
the scaling exponents fo%(T) andW(T) but also the prefactors

and the exact asymptotic shape of the concentration profile of

the diffusing reactant as a function of the reduced coordibate
= [X — X(T)]/2v/DT. In this section, we quantitatively test

these theoretical predictions against the experimental results.

1. Movement of the Frontin dimensional units eq 19 reads

—X; = 2v(q)vDT (41)
Therefore, from a loglog plot of X; as a function ofT one
gets the value of, andq can then be deduced from eq 39. In
our experimental system,is linearly related to a characteristic

property of the electrolyte, namely the transference number of

the cation, througly = 1 — t. To derive the values af and
t. from eq 41, we need an accurate value of the diffusion
coefficient of the electrolyteD is likely to depend on the
concentration of CuGJ but to our knowledge, has not been
tabulated for CuGl Hereafter, we use the vali2 = (1.0 &+
0.1) x 1075 cm?-s71, determined independently by our inter-
ferometric technique.

The two sets of experimental data in of Figure 3 giwa/ﬁ
= (1.74 0.1) x 1073 cmrs~2, thereforev = 0.27+ 0.02 and
ty = 0.33+ 0.05 from eq 39¢g = F(v). Note that; ~ 0.3 (for
a 0.5 molL~! electrolyte) is quite consistent with the corre-
sponding value at infinite dilutioti, = 0.4, sincety is likely to
be a decreasing function of the concentratidAlthough we
have not directly measured the transference nurtiberf the
CU?* cation, its reasonable value just inferred from the observed

front speed via eq 39 constitutes a successful prediction of the

one-dimensional mean-field model.

2. Width of the Depletion Zone and Whole Concentration
Profile. In this section, we analyze the experiments performed
with a higher electrolyte concentration, namely 1.0 thot
CuCb. The concentration profile in the laboratory frame can
be written in dimensional units using eq 26 and the definition
of &:

__erf(x/2y/DT) + erf(v)
B 1+ erf(v)

a(xT) (42)

Note thata(X,T) is used in the experimental parts to denote
pa(X,T)/pa. A characteristic feature of these profiles (and the
experimental data in Figure 5) is that they exhibit a fixed point
with ordinate

erf(y)

aX=0N =1 o)

(43)

=+ 0.01, which impliesr = 0.30+ 0.01. From eq 39 the mean-
field model would predicy = 0.79+ 0.06. As expected, the
inferred value of the transference number=1 — q= 0.21
4+ 0.06, for this 1.0 moL~1 CuCl solution is lower than the
value of 0.33+ 0.05 at 0.5 moL ~* computed above. This value
is somewhat smaller than expected on the basis of concentration
effects (see below). Note that we have not directly measured
the ratio g = pa/pg or the transference numbeér in the
experiments described in this paper, but the valug ©f0.79
just obtained from eq 43 is necessary for comparison with the
mean-field model (without any other adjustable parameters).
Therefore, we will usey = 0.79 in the following analysis of
the experimental runs in 1 mal~! CuCh electrolyte.

From eq 26 the widthWwy of the diffusion layer (with
dimensions) is given by

exp(+?) !
44
VaDT(1+ erf(v))) 49

From an experimental point of view, it is simpler to measure
a(X,T) at X = 0 rather than aX = X(T), so we consider the
temporal evolution of the gradient afX,T) at X = 0. From eq

42 we obtain

Wy(T) = (3xa(X'T)|><:xf)_l = (

aa(X,T)
X

1
VaDT(1 + erf(v))

X=0

(45)

andWy(T) = exp@d/oxa(X,T)|x=o. Figure 6 shows the quantita-
tive agreement between the experimental valuexalfik—o and
the function of eq 45 plotted fob = 1075 cn?-s™1 andq =
0.79. Note thaD and q are deduced from previous analysis
and are not adjustable parameters.

Continuing our quantitative analysis of the experimental
concentration field, we plot in Figure 9 the asymptotic shape
of the concentration profile. To determira€Z) from a(X,T),
we compute’ usingé = (X/2v/DT) + »(q), with g = 0.79 and
D = 107° cn?-s™1 and adjust the origin of the abscissa to the
initial front of copper position, to ensure tha¢&=0,T) = 0 for
all T. For comparison we also show in the same plot the
theoretically predicted\(&) function computed from eqgs 26 and
39 withq = 0.79.

To focus on the region of the reaction front, the experimental
data are plotted in Figure 10 according to the linearized version
of eq 26

26" X=X
2

_xf_
2

X
VDT =A(0
? © V(L + erf())

(46)

Since K — X)/2 is proportional to the reaction-front similarity
variable 7 in eq 30, the mean-field model would predict a
collapse of this data to a single curve given by the solution of
eq 40.

Unfortunately, the noise in the experimental data washes out
the exact concentration profiles in the reaction front on this scale,
but it is clear that the width of the reaction front has the
asymptotic scalingv ~ t* with . = 0. Moreover, the asymptotic
shape of the concentration distribution is quite consistent with
the solutions to eq 40 given in ref 10. Note that the decay of
slope of the reaction-front concentratio '() toward its
limiting value in the diffusion laye/A; in Figure 10 appears to
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mental and theoretical concentration profiles of the diffusing
reactant independent of the length scale strongly support our
modeling of this corrosion experiment with a one-dimensional
A + B (static)— C(inert) mean-field model.
B. The Transient. The A+ B — C mean-field model with
two diffusing reactants exhibits many surprising and nontrivial
behaviors at short times (see refs 30 and references therein, 26,
and 61). In this case, some microscopic parameters like the
reaction constant(s) can be determined from these short time
behaviors. In particular, at a time inversely proportional to the
microscopic reaction constant, the global reaction rate switches
from an initial t2 increase to a subsequent’2 decreasé?
Moreover, in the reversible A~ B == C system, a crossover
between irreversible and reversible regimes can be observed at
long time$?! and the value of the backward reaction constant
can be inferred from the crossover tife.
I | In the present case of one static reactant, it is also possible
O oaend™ 00 s e to express the transient decay to the asymptotic solution in terms
0 05 1 15 2 of the reaction ordersi andn for the one-dimensional mean-
field model? In our experiment, however, the transient behavior
(X—Xf(T))/(Z\/DT) is determined by a superposition of different mechanisms since

Figure 9. Collapse of the experimental concentration data in the CUr System is not really one-dimensional or homogeneous. We
diffusion layer plotted versus the similarity variablé ¢ X:)/2+/DT now shovy that _the transient ‘?eha"'or appears to be goyerned
compared with the theoretically predicted asymptotic experimental Py two-dimensional geometric effects that hide the kinetic
similarity function A(Z) (the solid line). The profiles are the same as features by analyzing the detail of the experimental runs.
those plotted in Figure 5, but only one point out of 20 is shown onthis | goking at Figure 4a, note that the concentration field is not
plot for clarity. one-dimensional at the early stages of the corrosion experi-
ment: the isoconcentration lines closely follow the jagged
outline of the deposit in the region near the tips. The amplitude
G of the modulation of the leftmost isoconcentration line (the
closest to the copper cluster) is about 0.4 mm. This system
clearly cannot be viewed as one-dimensional until the front has
traveled at least a distance on the orde6Gofn Figure 3, note
that the time of the transient regime (before the asympt#fic
behavior sets in) closely corresponds to the time needed for
the front to move across a distanGe~ 0.4 mm. (This two-
dimensional geometric effect also may explain why the initial
movement of the front is slower than the asymptotic behavior,
as shown in Figure 3.)

To further support this hypothesis, we now study the
relaxation dynamics of the concentration field. In Figure 11a,
is plotted the isoconcentration line correspondingte pJ/ps
= 0.1, just after the current has been switched off. This line is
not continuous, because the concentration field cannot be

T extracted by interferometry in the zones containing the deposit.
-0.1 0 0.1 0.2 0.3 This line defines a functioX(Y), roughly periodic, of amplitude
(X—X((T))/2 (mm) G(T) and periodl ~ 1 mm. It is reasonable to expect that the

. . . . characteristic time for the relaxation of this modulation of the
Figure 10. Collapse of the experimental concentration data in the . . . . o
reaction front plotted versus the similarity variabké € X)/2. The qoncentrat'on field toward a flat two-dimensional pr_OfIIG IS t_he
solid line shows the linearized extension of the similarity functg) time 7t needed for the front of copper to move from its starting
from the diffusion layer (see Figure 9) extended into the reaction front. position (T = 0)) on the length scal&(T = 0) = 0.3 mm=
These profiles are the same as those plotted in Figure 5, but only OneZV\/D_rf, which yields the estimates = G(0)%4v2D ~ 250 s.
point out of 4 is shown on this plot for clarity. The negative noreover, in light of the analysis of Kr@gdescribed below, it

concentration values are artifacts of the interferometric technique and . .
have no physical meaning. |s.also reasonablgz to expect that the functional form of the decay
will be exponential.

be quite fast. If this decay were exponential rather than a (much In Figure 11b, we plot logg(T)/G(0)) as a function of the
slower) power law, then according to the mean-field m#del ~dimensionless timé/z;. The relaxation is well fitted by an
the reaction rate would have to be first order in the static reactantexponential function, with a characteristic time closestavhich
m=1, i.e.,f(b) = b or r(ab) = ab, but it is impossible to supports our hypothesis. Therefore in our experiments, the
reach this conclusion definitively from our data. transient behavior is directly linked to the relaxation of the initial
As shown in Figures 9 and 10, all of the measured concentra- two-dimensional concentration field toward a Y-invariant profile
tion profiles collapse to the single asymptotic curve predicted and cannot provide information on the kinetics independently.
for g = 0.79 over the whole length scales investigated in the  C. Physical Relevance of the One-Dimensional Mean-Field
experiment. This quantitative agreement between the experi-Model. In the previous sections, we have demonstrated the
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Figure 11. Relaxation of the two-dimensional initial concentration field
at the beginning of the dissolution. (a) Isoconcentration éirve 0.1,
for T = 27 s. The deposit has been grownnfra 1 motL~* CuCk
solution, atj = 68 mA-cm~2 over 15 min. (b) log-linear plot of the
evolution of the amplitud& of the modulation ofA concentration, as
shown in (a), versus the reduced tifie; = 4v°DT/G(0)?.

guantitative agreement between the behavior of our thin gap
corrosion system and various predictions of a one-dimensional
mean-field model. This agreement is not obvious a priori, and
therefore we close in this section by giving physical arguments
to explain this surprising fact.

1. No Inhibition of Diffusion or Reaction by CuQh Figure

Léger et al.

to reach a stable flat front asymptotically. Kdghowed that
periodic perturbations of a flat front of wavelengthin the
direction perpendicular to the direction of motion of the interface
would decay with a characteristic time= A/v. The stability of
the corrosion front can therefore be qualitatively understood with
the following argument: the electrolyte most easily reaches the
most exposed or least screened parts of the copper deposit. These
bulges are dissolved first, and the interface is smoothed.

3. Releance of 1D Approximation of the Concentration Field
In the long-time asymptotic regime, the modulation of the initial
concentration of reactant A (Cuf) relaxes toward a flat
concentration profile along the directidfivhose shape is given
by eq 26. However, the concentration of the static reactant B
(Cu), as well as the concentration of the product C (CuCl) keep
a periodic shape along thédirection, which somehow does
not alter the one-dimensional asymptotic solution. The largest
characteristic length of the deposit in the direction parallel to
the front (Y) is the mean distancé between the trees. This
puzzling observation can be understood by comparing the
relaxation time of the perturbations pA(X,Y) along, 4 ~
A2ID, with the time needed by the front of copper to move on
the same lengthg; ~ X = INTIv/D. Since 7 increases
with time T, in the asymptotic regime it will be much greater
thanzy. Therefore, wheregss is highly correlated along thg
direction due to the structure of the solid deposit, there are
eventually no fluctuations ipa along this direction.

4. Departure from Pure Diffusion in the Reaction Zofid&e
fact that the transference numhgrdeduced frontt =1 — g
and the inferred value off = F(v) from eq 39 decreases
significantly from 0.33 to 0.21 when the concentration of GuCl
is increased from 0.5 to 1 mal~t is unlikely to be caused solely
by a pure salt-concentration effect. It is also possible that
convection produced by the sedimentation of CuCl crystallites
toward the bottom of the cell could artificially increase the
effective diffusion coefficient close to the reaction front by
convective mixing. This would cause an increase/(@j) (the
prefactor for the speed of the reaction front), which could at
least partly explain the difference in the inferrgdalues, and
therefore also in the effective values.

VI. Conclusion

4 we see that the product of the reaction does not seem to disturb  We have shown that after long times the corrosion of highly

the concentration field of the diffusing reactant A. To understand
this fact, we consider the volume occupied by the product CuCl
in the cell. We know from eq 7 that the mean concentration of
copper before the dissolution #2pz. We deduce from eq 4
that if CuCl does not diffuse (which is verified in our
experiments), the mean concentration of CuCl is twice the initial
concentration of copper, which is approximately 4 times the
initial concentration of CuGlin the bulk, i.e., 2 moL 1. Since

the density and molecular weight of CuCl are 3.38ng 3 and

99 gmol~1, respectively, the volume occupied by the solid CuCl
after the dissolution is roughly 5% of the total local volume.
Therefore, the small crystals of CuCl do not significantly alter
the volume free for the diffusion of CuglMoreover, because

porous copper clusters can be understood as a one-dimensional,
homogeneous, mean-field A~ B — C reaction-diffusion
process with one diffusing and one static reactant. This is the
first experimental analysis of such a situation where only one
reactant is free to diffuse through the other one. Whereas one
would expect highly complex dynamics and a possible break-
down of the mean-field approximation when the reaction is
confined to a porous (fractal) interface, we show that in this
particular corrosion system, the dynamics are equivalent to those
expected for a homogeneous system. The strength of our
demonstration is built on precise measurements of the concen-
tration field of the diffusing species by interferometry, which
are compared quantitatively with analytical predictions of the

the CuCl crystallites do not adhere to the copper metal branchesone-dimensional mean-field model.

and fall to the bottom of the thin gap cell, the surface of the
copper cluster is constantly renewed and “ready” for corrosion
by CuCb.

2. Stable Front, Asymptotically One-Dimension@he fact
that the dissolution process builds a stable (flat) interface can
be understood by considering that diffusion-limited corrosion
is the “time-reversed” process of diffusion-limited aggregation
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