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Experiments on the diffusion-limited corrosion of porous copper clusters in thin gap cells containing cupric
chloride are reported. By carefully comparing corrosion front velocities and concentration profiles obtained
by phase-shift interferometry with theoretical predictions, it is demonstrated that this process is well-described
by a one-dimensional mean-field model for the generic reaction A+ B (static)f C (inert) with only one
diffusing reactant (cupric chloride) and one static reactant (copper) reacting to produce an inert product (cuprous
chloride). The interpretation of the experiments is aided by a mathematical analysis of the model equations,
which allows the reaction order and the transference number of the diffusing species to be inferred. Physical
arguments are given to explain the surprising relevance of the one-dimensional mean-field model in spite of
the complex (fractal) structure of the copper clusters.

I. Introduction

Diffusion-limited processes are ubiquitous in physics,1 chem-
istry,2 and biology.3 Reaction-diffusion processes have been
the subject of intense and continuous interest since the work of
Smoluchowski.4-6 A crucial feature of many such processes
controlling pattern formation and reaction efficiency is the
“reaction front”, a dynamic but localized region where reactions
are most actively occurring and which separates regions rich in
the individual reactants. The simplest theoretical model of a
reaction front, introduced more than a decade ago by Ga´lfi and
Rácz,7 is the “mean-field” model for two initially separated
species A and B reacting to produce an inert species C. Since
then, the case of two diffusing reactants A and B has been
thoroughly studied analytically7-10 and numerically,11-21 and
some predictions of the mean-field model have been checked
in the experiments.21-30

In contrast, the case of only one diffusing reactant A and
one static reactant B (confined on a fixed matrix) has not yet
been studied experimentally. We show in this paper that the
corrosion of a porous solid (B) immersed in a chemically active
fluid suspension (A) can also be described by such a mean-
field model. Some analytical10,31and numerical11,32studies exist
for this case as well, but since it is more microscopically
complex (for a real porous interface) than the case of two
diffusing reactants (in a homogeneous medium) an experimental
test of the model is needed.

The mean-field model of a planar reaction front for the
chemical reaction

postulates that the concentrationsFA(X, T) and FB(X, T) of
species A and B, respectively, evolve according to a pair of
coupled partial differential equations10,31

whereDA is the diffusion constant for species A andR(FA,FB)
is the reaction rate density. The most frequently used initial
conditions assume that the reactants are uniformly distributed
and completely separated at first,FA(X,0) ) F°AH(X) and
F°B(X,0) ) F°BH(-X), whereH(X) is the Heaviside unit step
function. Such initial conditions are easier to reproduce in
experiments than those involving uniformly mixed reactants.
There are several assumptions behind eqs 2 and 3: (i) The
product C is generated in small enough quantities that its
presence does not significantly affect the dynamics. (ii) The
concentrations are dilute enough that the diffusivities are
constant. (iii) The fixed matrix containing reactant B (static) is
porous enough that reactant A can freely diffuse through it. (iv)
The reaction rate is a function of only the local concentrations
and not any fluctuations or many-body effects (which is the
“mean-field approximation”). It is common to make the mean-
field approximation under the assumptionR(FA,FB) ) kFA

m FB
n,

but in the interpretation of our experiments we will not assume
anything about the form ofR(FA,FB) a priori since the reaction
takes place at a solid-liquid interface. Moreover, this interface
is highly ramified, and therefore, the underlying microscopic
dynamics is expected to be more complex than for simple
homogeneous kinetics.

In this paper we carefully test the validity of these assump-
tions with experiments on a particular porous-solid corrosion
system: copper clusters corroded by a cupric chloride (CuCl2)
electrolyte. The clusters are obtained by thin gap cell elec-
trodeposition from a CuCl2 electrolyte at fixed current. This
process builds a depletion layer of CuCl2 ahead of the copper

A (diffusing) + B (static)f C (inert) (1)

∂FA
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) DA

∂
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∂X2
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∂FB
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) -R(FA,FB) (3)
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deposit. When the current is switched off, the CuCl2 depletion
layer relaxes toward the copper cluster, bringing Cu2+ cations
that react with copper according to

where the cuprous chloride (CuCl) is produced in the form of
small (white) crystallites that drop down to the bottom of the
cell.

In section II we describe the experimental setup and the
method used to prepare the porous clusters to be corroded. In
section III we report the experimental evidence that our
corrosion system behaves like a 1D diffusion-reaction process
with one static reactant. In section IV, a mathematical analysis
is presented that makes quantitative predictions based on the
experimental data of section II, within the theoretical framework
of the mean-field model, eqs 2 and 3. Also in section IV, the
experimental results are revisited to refine the comparison with
the theoretical model and to discuss in some detail its physical
limitations.

II. Experimental Methods

A. Apparatus. The experiments are performed in a thin gap
electrodeposition cell, which is depicted schematically in Figure
1. The cell consists of an unsupported, aqueous solution of CuCl2

confined to a narrow region of dimensionsW ) 5 cm × L )
8 cm× δ ) 50 µm between two closely spaced, optically flat
glass plates (λ/4 over 80 mm× 50 mm). Two parallel, ultrapure
copper and silver wires (50µm diameter, Goodfellow 99%
purity) are inserted between the two glass plates to act both as
spacers and as electrodes. During the electrodeposition (prior
to corrosion) the wires are polarized so that the silver wire acts
as the cathode and the copper wire as the anode. The solutions
of CuCl2 (ACS reagent) are prepared from deionized water,
carefully cleaned of any trace of dissolved oxygen by bubbling
nitrogen through it for 1 h. The anodic part of the cell (not
shown in Figure 1) is filled by a dilute solution of CuCl2 to
postpone the precipitation of the salt due to saturation effects
by dissolution of the anode. The copper electrodeposits are all
grown at constant current, and the entire experiment is
performed at room temperature (≈20 °C).

Digitized color pictures of the copper clusters are obtained
by direct imaging of the cluster through a lens, using a three-
CDD camera coupled with an 8-bit frame grabber from Data
Translation driven by the public domain software IMAGE,33

which successively captures three RGB frames and from them
reconstructs the color image.

A phase-shift Mach Zehnder interferometer is used indepen-
dently to resolve the concentration field, averaged over the depth
of the cell. A sketch of the interferometer can be found in ref

34. The interference patterns are recorded through a CCD
camera coupled to the same frame grabber33 with a 768× 512
pixel resolution. Phase-shift interferometry offers several sig-
nificant advantages over traditional interferometry in that it
provides an accurate reconstruction of the entire concentration
field, using a set of successive interference pictures recorded
for shifted values of the phase difference between two optical
wavefronts and can also be used as an holographic interferom-
eter.35

B. Preparation of Copper Clusters by Electrodeposition.
When current flows from the anode to the cathode, charge
transfer occurs at the cathode, leading to the reduction of copper
cations into copper metal according to34,36,37

The actual mechanism of deposition is much more complex than
this two-electron transfer process since competitive reactions
involving the solvent species are likely to occur. Nevertheless,
in CuCl2 electrolytes, we have observed that the formation of
cuprous oxide (Cu2O) in competition with copper by reduction
of Cu2+ cations is not favored, contrary to what is observed in
copper sulfate (CuSO4) solutions,38-40 which can be partly
explained by the strong adsorption and complexation properties
of chloride anions.37 This reduction process on the cathode
implies a local depletion of the copper cations close to the
cathode and also their replenishment by a global transport
process, namely diffusion. Although electromigration also
contributes to transport, it does not act independently of diffusion
in regions where electroneutrality is maintained,41 which means
everywhere in the cell outside the 10-100 Å thick double
layer.42,43 This often misunderstood fact was given a firm
theoretical basis by Newman over 30 years ago in his asymptotic
analysis of the transport equations for a rotating disk electrode,44

but only recently has it been quantitatively verified in experi-
ments (by our group) for the case of constant boundary flux at
a fixed cathode.34,36 In summary, the theoretical and experi-
mental evidences indicate that in the absence of convection the
concentrationFA of a dilute, binary electrolyte evolves according
to the classical diffusion equation

where DA is the “ambipolar diffusion coefficient” for the
electrolyte given by a certain weighted average of the diffusion
constants of the individual ions.41

When the interfacial concentration of metal cation Cu2+

approaches zero, the interface becomes unstable and develops
into a forest of fine spikes that compete with each other to invade
the cell.45,46 In some cases, a “dense-branched” pattern is
selected.36,47-50 This morphology is characterized by a dense
array of branches of invariant width advancing at constant
velocity V through the cell, whose tips delimit a nearly planar
front between the copper salt electrolyte and the deposit zone.
We have shown recently that this growth regime can be modeled
via a 1D diffusion model through the measurement of the copper
salt concentration field ahead of the growing deposit by
interferometry.36,50The experimental concentration field closely
fits the “traveling-wave” solution to eq 5,

whereLd ) DA/V, andX is the distance to the front edge of the
copper deposit, in the direction normal to the front, oriented

Figure 1. Schematic diagram of the thin gap electrodeposition cell
containing a ramified, metallic copper deposit. Note that the size of
the deposit has been enlarged for clarity.

CuCl2 (aq)+ Cu (solid, red)f 2CuCl (solid, white) (4)

Cu2+ + 2e- f Cu

∂FA

∂t
) DA∇2FA (5)

FA(X) ) F°A (1 - exp-X/Ld) (6)
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toward the bulk electrolyte. The diffusion lengthLd is propor-
tional to F°A/j, where F°A is the initial bulk concentration in
copper cations andj is the current density. This diffusion length
tends to zero asj/F°A increases, and in that limit the concentra-
tion profile looks like a step function. Note thatFA(Xe0) ≈ 0
and FA(X.Ld) ≈ F°A; i.e., the metallic copper deposit leaves
behind it a region entirely depleted in copper cations, pushing
in front of it a diffusion layer of constant width extending into
the bulk electrolyte. Due to the conservation of copper during
the deposition process, a linear relation exists between the
velocity V of the growth and the interfacial flux of cationsJ,
namely VFB ) J, where FB is the mean concentration of
(metallic) copper in the region of the deposit.

Using the relationV ) DA/Ld, the ratio of the copper
concentration in the bulk electrolyteF°A (where it takes the
form of cupric ions) to that in the region of the depositF°B
(where it mostly takes the metallic form) is easily calculated
from the basic properties of the electrolyte36,48-50

wheret+ is the transference number41,43of the copper cation in
a CuCl2 electrolyte. Practically,t+ is a characteristic of the
electrolyte and thereforeq will not be a free parameter in our
experiments (neithert+ nor q depend on the current densityj).
The closert+ is to 1, the greater the concentration of copper
inside the cluster. In CuCl2 electrolytes,t+ is expected to be
smaller than 0.5, which implies that the copper composition of
the deposited zone will not go beyond twice the original
concentration of CuCl2 in the electrolyte. Therefore, the copper
clusters obtained by thin gap electrodeposition in CuCl2 are in
fact highly porous.

The large porosity of the deposited copper clusters is of
fundamental importance in our subsequent study of the corrosion
of the copper deposits once the current has been switched off
(and the electrodeposition halted) because, as a consequence,
the cupric ions are able to diffuse freely through the dendrites
with approximately their bulk diffusivity and then react with a
large exposed surface of metallic copper. The low density of
the deposit also suggests that the product of the corrosion
reaction, cuprous chloride (CuCl) crystal, is produced in small
enough quantities that its presence should not significantly affect
the dynamics of the reaction-diffusion process. Therefore, by
interrupting the current during electrodeposition, we can observe
a simple reaction-diffusion system with two initially separated
reactants, copper chloride (A) and metallic copper (B), only
one of which is free to diffuse. Since the initial interface between
the bulk electrolyte and the ramified electrodeposit is planar
and the deposit is disordered, it is likely that the dynamics of
the corrosion process will be effectively “one-dimensional” (1D),
in the sense that there might be nearly perfect translational
symmetry in the two spatial directions (Y andZ) perpendicular
to direction of the front propagation. Moreover, since the
dynamics occurs in three dimensions (as opposed to two for a
surface or one for a molecular channel), it is also likely that a
mean-field, continuum model will be valid, although this may
not seem obvious a priori in light of the complex geometry of
the electrodeposits, which is known to be fractal.51-54

The rest of the paper is devoted to a careful, experimental
validation of these hypotheses, showing that our system is indeed
accurately described by a one-dimensional, mean-field model
for the generic chemical reaction, A+ B (static)f C. We begin

in the next section by describing the scaling behavior of the
reaction front and accompanying depletion layer of CuCl2. In
the following section, a mathematical analysis of the one-
dimensional, mean-field model is presented, which incorporates
the observed scalings and makes quantitative predictions regard-
ing the reaction front speed and the concentration evolution.
Finally, these predictions are checked with a more detailed
analysis of the experimental data in the last section, and
arguments are given to explain the relevance of the one-
dimensional, mean-field model for our experimental system.

III. Preliminary Experimental Results

A. Temporal Evolution of the Corrosion Front. At the
moment when the current is switched off, the region of the
copper deposit is entirely depleted of cupric ions, which are
thus initially separated from the metallic copper in the deposit.
At later times, cupric ions diffuse amidst the copper dendrites
and react at the metal surfaces, leaving behind cuprous chloride
(CuCl) crystallites. In Figure 2a,b are shown images of a copper
deposit just prior to corrosion and after 30 min of corrosion,
respectively. Note that in Figure 2b the interfacial region
between the red copper (the gray color in this picture) and the
white CuCl is rather flat and thin.

Focusing on the temporal evolution of this red/white interface,
we have observed that, while at first the white layer of CuCl
appears at the tips of the copper-deposit branches, it gradually
becomes flatter and flatter. As a result, the system approaches
translational invariance along theY direction, normal to the
growth directionX, thus justifying a one-dimensional model
for the system involving the single spatial coordinateX (normal
to the reaction front).

By carefully comparing the concentration field of cupric ions
obtained by phase-shift interferometry and the red/white, Cu/
CuCl interface observed on the deposit, the location and extent
of the reaction front, where there is a significant overlap of
metallic copper and cupric ions, can be identified. Following a
transient regime (which we describe in the last section), it is
observed that the reaction front approaches a constant widthw

q ≡ F°A
F°B

) 1 - t+ (7)
Figure 2. (a) Photograph of a copper deposit grown from a 0.5 mol‚L-1

CuCl2 solution at j ) 40 mA‚cm-2 for approximately 15 min. (b)
Photograph of the same deposit 0.5 h after the current had been switched
off. (The white zone is CuCl.) (c) The montage shows a sequence of
photographs of a small region of the deposit including the reaction
front taken every 30 min after the interruption of the current.
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∼ TR with R ) 0, which is consistent with certain mean-field
models.10,11,31Using the theoretical methods pioneered by Ga´lfi
and Rácz7 in the case of two diffusing reactants, this scaling
was first predicted by Jiang and Ebner11 using physical
arguments supported by computer simulations and later by
Koza31 using asymptotic analysis.

Recently, Bazant and Stone10 have considered the case of
higher-order reactionsmA + nB (static) f C represented by
the mean-field reaction rateR(FA,FB) ) kFA

m FB
n and proved that

the scaling exponent for the front width is given (uniquely) by
the formula

which holds for any real numberm g 1. (The scaling solution
does not exist form< 1.) In light of this result, the experimental
observationR ) 0 is consistent with the usual one-dimensional,
mean-field theory only in the casem ) 1. If higher-order
reactions were present,m > 1, the theory would predict that
the reaction front width increases in time (R > 0) although
always more slowly than diffusion (R < 1/2).

The position of the reaction frontXf(T) during the corrosion
of a copper deposit (grown from a 0.5 M CuCl2 solution atj )
40 mA/cm2) is plotted in Figure 3. Note that, after initial
transients have vanished (T > 500 s), the reaction front itself
“diffuses” with its position given by the scaling,Xf ∼ Tσ with
σ ) 1/2, which is is also consistent with predictions of the one-
dimensional mean-field model.7,11,31

B. Temporal Evolution of the Diffusion Layer. At T ) 0
when the current is interrupted, the reactants Cu and CuCl2 are
completely separated, since the concentration of CuCl2 is
negligibly small in the immediate vicinity of the metallic Cu
electrodeposit. During the subsequent corrosion process the
concentration of CuCl2 remains very small in the reaction front,
which leads to the modification of the initial depletion layer of
CuCl2 (produced by the electrodeposition process) into a region
where the concentration smoothly interpolates to the value of
the bulk solution far behind the front. The term “diffusion layer”
is used to describe this region because it is characterized by
the transport of fresh CuCl2 by diffusion from the bulk, relatively
unaffected by chemical reactions due to the negligible (or
vanishing) concentration of metallic Cu remaining behind the
reaction front.

The temporal evolution of the diffusion layer is revealed by
precise interferometric measurements of the concentration profile
of CuCl2. In Figure 4 are shown three contour plots of the
concentration field computed from the integrated index along
the depth of the cell. Since the experiments are performed in
thin gap cells (50µm) and the depletion layer spreads over
distances larger than this gap, it is safely assumed that the
concentration of CuCl2 does not change appreciably along the
Z direction (parallel to the laser beam36). In Figure 4, the shadow
of the Cu/CuCl cluster is also clearly seen. A close inspection
of the panels (b) and (c), which correspond to eroded clusters,
reveals that in the zone of the copper cluster where CuCl2 has
diffused (recognizable where the leftmost isoconcentration
contours have moved through the cluster), the cluster has been
broken down into smaller crystallites, which, as indicated by
their color in Figure 2, are made of CuCl.

Typical experimental concentration profiles of CuCl2 mea-
sured at different times (averaged along theYdirection, normal
to the growth direction) are shown in Figure 5. The shape of
these concentration profiles is discussed in the next two sections,
but here we focus on the scaling of the widthWd(T) of the
diffusion layer (defined as the region of non-negligible gradi-
ents). Figure 6 shows that at long times (T > 500 s), the
diffusion layer approaches a self-similar structure, with the
diffusive flux entering the reaction front obeying the scaling

Figure 3. log-log plot of the position of the reaction frontXf as a
function of timeT for two different experimental runs in CuCl2 0.5
mol‚L-1 for deposits grown atj ) 40 mA‚cm-2. The solid lines of
slope1/2 represent the predictions of the one-dimensional, mean-field
theory, given by eq 41, withD ) 10-5 cm2‚s-1, in the casesq ) 0.6
andq ) 0.73.

R ) m - 1
2(m + 1)

(8)
Figure 4. Interferometric characterization of the concentration field
around a copper deposit during its dissolution (a) just before the
interruption of the current, (b) 15 min later, and (c) 1 h later. (∆F ≈
F°A/10 between adjacent isoconcentration lines.) The deposit grown in
0.5 mol‚L-1 CuCl2 solution at j ) 40 mA‚cm-2 for 20 min. The
concentration of CuCl2 is negligibly small inside and ahead (to the
left) of the reaction front and approaches the bulk value of 0.5 mol‚L-1

far behind (to the right of) the front.
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law Jd ∝ (∂FA/∂X)|X)Xf ∼ T-δ, and that, therefore, the width of
the diffusion layer has the familiar scaling7,9,11,31Wd ∼ Tδ with
δ ) 1/2, which is another robust feature of the mean-field
models.10

A physical argument based on mass conservation between
the diffusion layer and reaction front7,11 can be used to predict
the scaling of the reaction rate (per unit volume) in the frontR
∼ T-â from the preceding experimental observations. The total
reaction rate in the front (per unit area) scales aswR ∼ TR-â,
and this flux of cupric ions due to reactions must balance the
diffusive flux entering the frontJd ∼ T-δ, which yields the
scaling relation,â ) R + δ ) 0 + 1/2 ) 1/2. It is important to
point out, however, that whileR ) 0 andδ ) 1/2 are the results
of direct experimental observations, the scaling exponentâ )
1/2 is only inferred by a physical argument, based on the
assumption that chemical reactions are negligible in the diffusion
layer. Although this assumption has been checked numerically

and analytically for various mean-field models, the reaction rate
is not directly measured in our experiments.

In the general caseR(FA,FB) ) kFA
m FB

n mentioned above, it
can be shown10 that â is given (uniquely) by

so that once againm ) 1 is suggested by the inferred valueâ
) 1/2. However, given that the experimental system has a
complex fractal structure and three-dimensional transport in the
reaction front, it is not obvious a priori thatR(FA,FB) ) kFA

m FB
n

is a reasonable approximation within a spatially averaged one-
dimensional model. Instead, we will make no ad hoc assump-
tions about the functional form of the reaction rateR(FA,FB)
and then explore consequences of only our direct experimental
observations,R ) 0 andδ ) σ ) 1/2, within the framework of
a one-dimensional mean-field model.

IV. Theoretical Predictions of the Mean-Field Model

A. Dimensionless Model Equations.The model equations
have a dimensionless form involving only the parameter,q ≡
F°A/F°B, defined in eq 7,

with boundary and initial conditions

where

These initial conditions are closest to the actual ones used in
the experiments when the copper deposit is grown at large
current, which corresponds to smallLd in eq 6. The initial-
boundary-value problem of eqs 10-14 involves an idealized,
infinite system possessing no natural length or time scale, and
therefore, it is expected that asymptotic similarity solutions exist
in which distance and time appear coupled by power-law
scalings.55 The experimental system, on the other hand, pos-
sesses several relevant length scales, but they turn out not to
affect the evolution of the reaction front, at least for some range
of times. For example, the spatial scales of the copper deposit,
such as the typical dendrite spacing and dendrite width, surely
affect the dynamics at early times since these length scales are
of the same order as the diffusion lengthLd,36 but it is observed
that during corrosion the system quickly approaches planar
symmetry, averaged across scales much larger than individual
dendrites. Likewise, the length scale of the gap spacing is not

Figure 5. One-dimensional concentration profiles extracted from the
two-dimensional data. The deposit has been grown from a 1 mol‚L-1

CuCl2 solution atj ) 68 mA‚cm-2 over 15 min. The concentration
profiles are shown every 15 min after the current had been switched
off. The different symbols are added on each profile to differentiate
the recording times. These symbols will be used on the next representa-
tions of the concentration profiles in Figures 9 and 10.

Figure 6. log-log plot of the temporal evolution of the derivative of
a(X,T) at X ) 0 as a function ofT. Same parameters as in Figure 5.
The plain line corresponds to the prediction of eq 45 withD ) 10-5

cm2‚s-1 andq ) 0.79.

â ) m
m + 1

(9)

∂a
∂t

) ∂
2a

∂x2
- r(a,b) (10)

∂b
∂t

) -qr(a,b) (11)

a(-∞,t) ) 0, a(∞,t) ) 1 (12)

b(-∞,t) ) 1, b(∞,t) ) 0 (13)

a(x,0) ) H(x), b(x,0) ) H(-x) (14)

a ≡ FA

F°A
, b ≡ FB

F°B
(15)

r(a, b) ≡ R(aF°A,bF°B)

R(F°A,F°B)
(16)

t ≡ R(F°A,F°B)T

F°A
, x ≡ XxR(F°A,F°B)

(DAF°A)
(17)
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expected to greatly influence the corrosion dynamics because
vertical (buoyancy-driven) convection, which has been observed
during the growth phase56 is suppressed in 50µm depth cells.34,57

However, the settling of the reaction product, CuCl crystallites,
could have some effect on the front dynamics at this scale.
Finally, the largest length scales, namely the distances from the
outer edge of the deposit to the two electrodes, also should not
affect corrosion dynamics until the reaction front gets close to
the cathode and/or the diffusion layer approaches the anode.
Therefore, during intermediate times, after three-dimensional
transient effects have subsided but before the system size begins
to matter, the corrosion dynamics should be well described by
a self-similar solution to the one-dimensional mean-field equa-
tions.

B. The Diffusion Layer. Motivated by these arguments, we
consider the transformation

for the concentration of CuCl2 in the diffusion layer (defined
by ú > 0) with power-law expressions forxf(t) and Wd(t). In
light of the experimental results from the previous section we
make the definitionsWd(t) ) 2xt and

whereν(q)2 is an effective diffusion constant for the reaction
front to be determined during the analysis. Substituting these
expressions into eq 10, we have

which simply amounts to a change of variables from (x,t) to
(ú,t).

The starting point for our analysis is the experimental
observation (see below) that the concentration of CuCl2 ap-
proaches a single, continuous profile in theú coordinate

which has been called the “quasistationary approximation” in
the physics literature.9,15,31,58This is not really an “approxima-
tion” but is rather an exact asymptotic property of a certain class
of solutions to eqs 10-13, which happens to fit the experimental
data. To find such solutions from eq 21, we must assumet(∂Ã/
∂t) f 0, ∂Ã/∂ú f A′(ú), and∂2Ã/∂ú2 f A′′(ú) for fixed ú > 0.
At this point it is customary31 to further assume ad hoc that the
reaction term in eq 21 vanishes relative to the diffusion term

and that the concentration of the nondiffusing species also
vanishes in the diffusion layer, i.e., where the reaction front
has already passed,

but Bazant and Stone have shown that these limits are actually
necessary consequences of the assumed quasistationarity.10

With these arguments we are led to an ordinary differential
equation forA(ú) by taking the limitt f ∞ with fixed ú > 0 in
eq 21:

The solution of this equation subject to the boundary condition
A(∞) ) 1 can be written in terms of error functions,59

whereAo ≡ A(0) is a constant to be determined by asymptotic
matching with the reaction front asú f 0. The functionA(ú) is
shown in Figure 7 for different values ofν. The slope ofA(ú)
at ú ) 0 given by

is the (dimensionless) diffusive flux into the reaction front.
On the length scaleWd(t) ∝ t1/2 appropriate for the diffusion

layer, the limiting concentration fields just derived appear not
to be differentiable atú ) 0,

as t f ∞ with ú * 0 fixed, but as we have already observed
experimentally, that is only because in the reaction front
(at ú ) 0) the concentrations are smoothly interpolated across
these apparent discontinuities on a much smaller length scale
w ∝ tR ) o(Wd) since R < δ. In mathematical terms, the
asymptotic approximations in eq 28 are not uniformly valid for
all (x,t) ast f ∞, but rather are valid only forú * 0, i.e.xt )
O(|x + 2νxt|).

C. The Reaction Front.We now explore the consequences
of the experimental resultsR ) 0 andδ ) σ ) 1/2 within the
present mathematical model. Although the physical arguments
made above for the lack of a natural length scale are much more
tenuous in the reaction front because the observed front width
(about 0.2 mm) is comparable to the average dendrite thickness
(0.1 mm) and spacing (0.4 mm) as well as the gap (0.05 mm),
the nearly perfect planar symmetry of the corrosion process leads
us to nevertheless seek another asymptotic similarity solution
to the one-dimensional, mean-field equations in the vicinity of

a(x,t) ) Ã(ú,t), b(x,t) ) B̃(ú,t), ú )
x - xf(t)

Wd(t)
(18)

xf(t) ) -2νxt (19)

ú ) x

2xt
+ ν (20)

∂Ã
∂t

+ (ν - ú
2t ) ∂Ã

∂ú
) ( 1

4t)
∂

2Ã

∂ú2
- r(Ã,B̃) (21)

lim
tf∞

Ã(ú,t) ) A(ú) (ú > 0) (22)

lim
tf∞

t‚r(Ã,B̃) ) 0 (ú > 0) (23)

lim
tf∞

B̃(ú,t) ) 0 (ú > 0) (24)

Figure 7. Asymptotic similarity functiona(x,t) ∼ A(ú), whereú )
(x/2xt) + ν, shown forAo ) 0 andν ) 0, 0.5, 1, 1.5, 2, 2.5 from left
to right.

A′′ + 2(ú - ν)A′ ) 0 (25)

A(ú) ) Ao + (1 - Ao)
erf(ú - ν) + erf(ν)

1 + erf(ν)
(26)

A′(0) )
2(1 - Ao)e

-ν2

xπ(1 + erf(ν))
(27)

a(x,t) ∼ A(ú) H(ú), b(x,t) ∼ H(-ú) (28)
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the reaction front,x - xf(t) ) O(1). The predictions of the model
will be carefully tested against the experimental data in the next
section.

SinceR ) 0 andσ ) 1/2, we consider the transformation

whereη is a new similarity variable for the reaction front defined
by

The exponentγ g 0 is introduced to allow for the possibility
thata(x,t) f 0 in the reaction front, which is suggested by the
result r(a,b) ∼ t-â with â ) 1/2 inferred earlier from the
experimental data. In contrast, no such prefactor multiplies
B̃(η,t) in the reaction front sinceb(x,t) must remain finite
there in order to interpolate between the limiting values of 0
and 1, respectively, behind and ahead of the front.

Making these transformations in eq 10 yields

As before, we explore the possibility of self-similar quasi-
stationarity in the reaction front:Ã(η,t) ∼ A(η) andB̃(η,t) ∼
B(η) as t f ∞ with |η| < ∞ fixed. The consequence of the
quasistationarity assumption in eq 31 is

Since A ′′(η) ) 0 cannot satisfy the boundary condition
A(-∞) ) 0 (except in the trivial caseA(η) ) 0), the limit on
the right-hand side of eq 32 must be nonzero (and finite), which
is possible only ifr(a,b) is linear ina, i.e.

for some functionf(b). Therefore, the experimental factsw(t)
∼ t0 and xf(t) ∼ t1/2 are consistent with the one-dimensional,
mean-field model only if the reaction rate is first order in the
diffusing species.

Next we make the same transformation in eq 11 and replace
the reaction term with eq 33 to obtain

By inspection, quasistationarity is possible only ifγ ) 1/2, which
would imply r(a,b) ∼ t-1/2A(η) f(B(η)). Therefore, we conclude
â ) 1/2 once again, and the physical argument given in the
previous section is found to have sound mathematical justifica-
tion.

With these results we arrive at a third-order system of
nonlinear ordinary differential equations for the concentration
fields in the reaction front,

These equations may be combined to eliminate the reaction term
and integrated once using the boundary conditions ahead of the
front, A(-∞) ) 0 andB(-∞) ) 1 to obtain

Before proceeding with another integration, however, a third

boundary condition is needed, which comes from asymptotic
matching with the diffusion layer.

D. Asymptotic Matching. In mathematical terms, our equa-
tions possess an “internal boundary layer”.60 The reaction front,
defined by |x + 2νxt| ) O(1), acts as the “inner region”,
while the diffusion layer, defined byxt ) O(|x + 2νxt|), acts
as the “outer region”. For consistency, the “inner limit” (ú f
0) of the outer approximation, eq 18, must match the “outer
limit” ( η f ∞) of the inner approximation, eq 29. We have
shown thatγ > 0 is required to describe the experimental data,
which means thata(x,t) approaches zero uniformly in the
reaction front. Therefore, by matching at zeroth order, we obtain
A(0) ) Ao ) 0, but this does not provide the missing boundary
condition for the reaction front. At the next (linear) order we
have, ast f ∞,

and by matching, we concludeA ′(∞) ) A1, whereA1(ν) ≡
A′(0)/2 can be expressed in terms ofν(q) using eq 27. In light
of eq 24, the matching condition forb(x,t) is B(∞) ) 0.

The matching conditions allow us to derive an exact expres-
sion for ν(q) and hence the asymptotic front positionxf(t) )
2νxt. Taking the limitη f ∞ in eq 37 usingA ′(∞) ) A1 and
B(∞) ) 0, we obtainqA1(ν) ) ν. By substitutingA1(ν) from
eq 27, we obtain the desired expression forν(q),

which has also been derived by Koza.31 The relationq ) F(ν)
is plotted in Figure 8 and will be used in the next section to
estimateq from the experimentally measured value ofν.

With these results, we are led to a second-order, nonlinear-
boundary-value problem for the reaction front concentration of
the diffusing species:

Note that eq 40 is invariant to translationη f η + ηo, where
ηo is an undetermined constant depending on the initial
conditions that precisely defines the location of the reaction front
(e.g., as the point of maximal reaction rate).

a(x,t) ) t-γ Ã(η,t), b(x,t) ) B̃(η,t) (29)

η ) x + 2νt1/2 ) 2t1/2ú (30)

∂ Ã
∂t

+ νt-1/2 ∂ Ã
∂η

- γt-1 Ã ) ∂
2 Ã

∂η2
- tγr(t-γÃ ,B̃) (31)

A ′′(η) ) lim
tf∞

tγr(t-γA(η),B(η)) (|η| < ∞) (32)

r(a,b) ) a‚f(b) (33)

∂B̃
∂t

+ νt-1/2 ∂B̃
∂η

) -qt-γÃf(B̃) (34)

A ′′ - A‚f(B) ) 0 (35)

νB ′ + qA‚f(B) ) 0 (36)

qA ′ ) ν(1 - B) (37)

Figure 8. Exact asymptotic dependence ofν, the square root of the
dimensionless diffusion constant of the reaction front, on the asymmetry
parameterq, predicted by eq 39.

∂a
∂x

) {∂A
∂ú

∂ú
∂x

∼ A′(ú)

2xt
0 < ú < ∞

1

xt

∂A
∂η

∂η
∂x

∼ A ′(η)

xt
|η| < ∞

(38)

ν ) F-1(q) where F(x) ≡ xπxex2
[1 + erf(x)] (39)

A ′′ ) A‚f(1 - A ′/A1), A(-∞) ) 0, A ′(∞) ) A1

(40)
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Since it is difficult to accurately measure the reaction-front
concentration fields in our experiments, we stop here and refer
the reader to the article of Bazant and Stone10 for the integration
of this boundary-value problem and other analytical results in
the casef(b) ) bm, m g 1.

V. Experimental Test of the Theoretical Model

A. Check of the Exact Asymptotic Predictions.In section
III we showed that as corrosion proceeds, the reaction front
moves with the time asXf(T) ∼ T1/2 and does not spread (w(T)
∼ TR with R ) 0) and the widthWd of the depletion layer
increases with the time asWd(T) ∼ T1/2. In section IV we showed
that these observations are consistent with the predictions of a
one-dimensional A+ B (static)f C (inert) mean-field model
with a reaction rate that is first order in the diffusing species
A. By solving the mean-field equations, we derived not only
the scaling exponents forXf(T) andW(T) but also the prefactors
and the exact asymptotic shape of the concentration profile of
the diffusing reactant as a function of the reduced coordinateú
) [X - Xf(T)]/2xDT. In this section, we quantitatively test
these theoretical predictions against the experimental results.

1. MoVement of the Front. In dimensional units eq 19 reads

Therefore, from a log-log plot of Xf as a function ofT one
gets the value ofν, andq can then be deduced from eq 39. In
our experimental system,q is linearly related to a characteristic
property of the electrolyte, namely the transference number of
the cation, throughq ) 1 - t+. To derive the values ofq and
t+ from eq 41, we need an accurate value of the diffusion
coefficient of the electrolyte.D is likely to depend on the
concentration of CuCl2, but to our knowledge, has not been
tabulated for CuCl2. Hereafter, we use the valueD ) (1.0 (
0.1) × 10-5 cm2‚s-1, determined independently by our inter-
ferometric technique.

The two sets of experimental data in of Figure 3 give 2νxD
) (1.7 ( 0.1)× 10-3 cm‚s-1/2, thereforeν ) 0.27( 0.02 and
t+ ) 0.33( 0.05 from eq 39,q ) F(ν). Note thatt+ ≈ 0.3 (for
a 0.5 mol‚L-1 electrolyte) is quite consistent with the corre-
sponding value at infinite dilutiont+

∞ ) 0.4, sincet+ is likely to
be a decreasing function of the concentration.49 Although we
have not directly measured the transference numbert+ of the
Cu2+ cation, its reasonable value just inferred from the observed
front speed via eq 39 constitutes a successful prediction of the
one-dimensional mean-field model.

2. Width of the Depletion Zone and Whole Concentration
Profile. In this section, we analyze the experiments performed
with a higher electrolyte concentration, namely 1.0 mol‚L-1

CuCl2. The concentration profile in the laboratory frame can
be written in dimensional units using eq 26 and the definition
of ú:

Note thata(X,T) is used in the experimental parts to denote
FA(X,T)/F°A. A characteristic feature of these profiles (and the
experimental data in Figure 5) is that they exhibit a fixed point
with ordinate

Sincea(0,T) depends only onq, a value ofq can be deduced
from Figure 5, which shows the concentration profiles during
the corrosion of a copper deposit obtained by electrodeposition
from a 1.0 mol‚L-1 CuCl2 solution. We finda(X)0,T) ) 0.25
( 0.01, which impliesν ) 0.30( 0.01. From eq 39 the mean-
field model would predictq ) 0.79 ( 0.06. As expected, the
inferred value of the transference number,t+ ) 1 - q ) 0.21
( 0.06, for this 1.0 mol‚L-1 CuCl2 solution is lower than the
value of 0.33( 0.05 at 0.5 mol‚L-1 computed above. This value
is somewhat smaller than expected on the basis of concentration
effects (see below). Note that we have not directly measured
the ratio q ) F°A/F°B or the transference numbert+ in the
experiments described in this paper, but the value ofq ) 0.79
just obtained from eq 43 is necessary for comparison with the
mean-field model (without any other adjustable parameters).
Therefore, we will useq ) 0.79 in the following analysis of
the experimental runs in 1 mol‚L-1 CuCl2 electrolyte.

From eq 26 the widthWd of the diffusion layer (with
dimensions) is given by

From an experimental point of view, it is simpler to measure
a(X,T) at X ) 0 rather than atX ) Xf(T), so we consider the
temporal evolution of the gradient ofa(X,T) at X ) 0. From eq
42 we obtain

andWd(T) ) exp(ν2)/∂Xa(X,T)|X)0. Figure 6 shows the quantita-
tive agreement between the experimental values of∂Xa|X)0 and
the function of eq 45 plotted forD ) 10-5 cm2‚s-1 and q )
0.79. Note thatD and q are deduced from previous analysis
and are not adjustable parameters.

Continuing our quantitative analysis of the experimental
concentration field, we plot in Figure 9 the asymptotic shape
of the concentration profile. To determinea(ú) from a(X,T),
we computeú usingú ) (X/2xDT) + ν(q), with q ) 0.79 and
D ) 10-5 cm2‚s-1 and adjust the origin of the abscissa to the
initial front of copper position, to ensure thatÃ(ú)0,T) ) 0 for
all T. For comparison we also show in the same plot the
theoretically predictedA(ú) function computed from eqs 26 and
39 with q ) 0.79.

To focus on the region of the reaction front, the experimental
data are plotted in Figure 10 according to the linearized version
of eq 26

Since (X - Xf)/2 is proportional to the reaction-front similarity
variable η in eq 30, the mean-field model would predict a
collapse of this data to a single curve given by the solution of
eq 40.

Unfortunately, the noise in the experimental data washes out
the exact concentration profiles in the reaction front on this scale,
but it is clear that the width of the reaction front has the
asymptotic scalingw ∼ tR with R ) 0. Moreover, the asymptotic
shape of the concentration distribution is quite consistent with
the solutions to eq 40 given in ref 10. Note that the decay of
slope of the reaction-front concentrationA ′(η) toward its
limiting value in the diffusion layerA1 in Figure 10 appears to

-Xf ) 2ν(q)xDT (41)

a(X,T) )
erf(X/2xDT) + erf(ν)

1 + erf(ν)
(42)

a(X)0,T) )
erf(ν)

1 + erf(ν)
(43)

Wd(T) ) (∂Xa(X,T)|X)Xf
)-1 ) ( exp(-ν2)

xπDT(1 + erf(ν)))
-1

(44)

∂a(X,T)
∂X |

X)0
) 1

xπDT(1 + erf(ν))
(45)

axDT ) A′(0)
X - Xf

2
) 2e-ν2

xπ(1 + erf(ν))

X - Xf

2
(46)
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be quite fast. If this decay were exponential rather than a (much
slower) power law, then according to the mean-field model10

the reaction rate would have to be first order in the static reactant
m ) 1, i.e., f(b) ) b or r(a,b) ) ab, but it is impossible to
reach this conclusion definitively from our data.

As shown in Figures 9 and 10, all of the measured concentra-
tion profiles collapse to the single asymptotic curve predicted
for q ) 0.79 over the whole length scales investigated in the
experiment. This quantitative agreement between the experi-

mental and theoretical concentration profiles of the diffusing
reactant independent of the length scale strongly support our
modeling of this corrosion experiment with a one-dimensional
A + B (static)f C(inert) mean-field model.

B. The Transient. The A + B f C mean-field model with
two diffusing reactants exhibits many surprising and nontrivial
behaviors at short times (see refs 30 and references therein, 26,
and 61). In this case, some microscopic parameters like the
reaction constant(s) can be determined from these short time
behaviors. In particular, at a time inversely proportional to the
microscopic reaction constant, the global reaction rate switches
from an initial t1/2 increase to a subsequentt-1/2 decrease.30

Moreover, in the reversible A+ B h C system, a crossover
between irreversible and reversible regimes can be observed at
long times61 and the value of the backward reaction constant
can be inferred from the crossover time.26

In the present case of one static reactant, it is also possible
to express the transient decay to the asymptotic solution in terms
of the reaction ordersm andn for the one-dimensional mean-
field model.10 In our experiment, however, the transient behavior
is determined by a superposition of different mechanisms since
our system is not really one-dimensional or homogeneous. We
now show that the transient behavior appears to be governed
by two-dimensional geometric effects that hide the kinetic
features by analyzing the detail of the experimental runs.

Looking at Figure 4a, note that the concentration field is not
one-dimensional at the early stages of the corrosion experi-
ment: the isoconcentration lines closely follow the jagged
outline of the deposit in the region near the tips. The amplitude
G of the modulation of the leftmost isoconcentration line (the
closest to the copper cluster) is about 0.4 mm. This system
clearly cannot be viewed as one-dimensional until the front has
traveled at least a distance on the order ofG. In Figure 3, note
that the time of the transient regime (before the asymptotict1/2

behavior sets in) closely corresponds to the time needed for
the front to move across a distanceG ∼ 0.4 mm. (This two-
dimensional geometric effect also may explain why the initial
movement of the front is slower than the asymptotic behavior,
as shown in Figure 3.)

To further support this hypothesis, we now study the
relaxation dynamics of the concentration field. In Figure 11a,
is plotted the isoconcentration line corresponding toa ) Fa/F°a
) 0.1, just after the current has been switched off. This line is
not continuous, because the concentration field cannot be
extracted by interferometry in the zones containing the deposit.
This line defines a functionX(Y), roughly periodic, of amplitude
G(T) and periodλ ∼ 1 mm. It is reasonable to expect that the
characteristic time for the relaxation of this modulation of the
concentration field toward a flat two-dimensional profile is the
time τf needed for the front of copper to move from its starting
position (Xf(T ) 0)) on the length scaleG(T ) 0) ) 0.3 mm)
2νxDτf, which yields the estimateτf ) G(0)2/4ν2D ∼ 250 s.
Moreover, in light of the analysis of Krug62 described below, it
is also reasonable to expect that the functional form of the decay
will be exponential.

In Figure 11b, we plot log(G(T)/G(0)) as a function of the
dimensionless timeT/τf. The relaxation is well fitted by an
exponential function, with a characteristic time close toτf, which
supports our hypothesis. Therefore in our experiments, the
transient behavior is directly linked to the relaxation of the initial
two-dimensional concentration field toward a Y-invariant profile
and cannot provide information on the kinetics independently.

C. Physical Relevance of the One-Dimensional Mean-Field
Model. In the previous sections, we have demonstrated the

Figure 9. Collapse of the experimental concentration data in the
diffusion layer plotted versus the similarity variable (X - Xf)/2xDT
compared with the theoretically predicted asymptotic experimental
similarity functionA(ú) (the solid line). The profiles are the same as
those plotted in Figure 5, but only one point out of 20 is shown on this
plot for clarity.

Figure 10. Collapse of the experimental concentration data in the
reaction front plotted versus the similarity variable (X - Xf)/2. The
solid line shows the linearized extension of the similarity functionA(ú)
from the diffusion layer (see Figure 9) extended into the reaction front.
These profiles are the same as those plotted in Figure 5, but only one
point out of 4 is shown on this plot for clarity. The negative
concentration values are artifacts of the interferometric technique and
have no physical meaning.

Diffusion-Limited Corrosion of Electrodeposits J. Phys. Chem. B, Vol. 103, No. 28, 19995849



quantitative agreement between the behavior of our thin gap
corrosion system and various predictions of a one-dimensional
mean-field model. This agreement is not obvious a priori, and
therefore we close in this section by giving physical arguments
to explain this surprising fact.

1. No Inhibition of Diffusion or Reaction by CuCl. In Figure
4 we see that the product of the reaction does not seem to disturb
the concentration field of the diffusing reactant A. To understand
this fact, we consider the volume occupied by the product CuCl
in the cell. We know from eq 7 that the mean concentration of
copper before the dissolution is≈2F°A. We deduce from eq 4
that if CuCl does not diffuse (which is verified in our
experiments), the mean concentration of CuCl is twice the initial
concentration of copper, which is approximately 4 times the
initial concentration of CuCl2 in the bulk, i.e., 2 mol‚L-1. Since
the density and molecular weight of CuCl are 3.38 g‚cm-3 and
99 g‚mol-1, respectively, the volume occupied by the solid CuCl
after the dissolution is roughly 5% of the total local volume.
Therefore, the small crystals of CuCl do not significantly alter
the volume free for the diffusion of CuCl2. Moreover, because
the CuCl crystallites do not adhere to the copper metal branches
and fall to the bottom of the thin gap cell, the surface of the
copper cluster is constantly renewed and “ready” for corrosion
by CuCl2.

2. Stable Front, Asymptotically One-Dimensional. The fact
that the dissolution process builds a stable (flat) interface can
be understood by considering that diffusion-limited corrosion
is the “time-reversed” process of diffusion-limited aggregation
and that the fluctuations of the interface decay rather than grow

to reach a stable flat front asymptotically. Krug62 showed that
periodic perturbations of a flat front of wavelengthλ in the
direction perpendicular to the direction of motion of the interface
would decay with a characteristic timeτ ) λ/V. The stability of
the corrosion front can therefore be qualitatively understood with
the following argument: the electrolyte most easily reaches the
most exposed or least screened parts of the copper deposit. These
bulges are dissolved first, and the interface is smoothed.

3. ReleVance of 1D Approximation of the Concentration Field.
In the long-time asymptotic regime, the modulation of the initial
concentration of reactant A (CuCl2 ) relaxes toward a flat
concentration profile along the directionYwhose shape is given
by eq 26. However, the concentration of the static reactant B
(Cu), as well as the concentration of the product C (CuCl) keep
a periodic shape along theY direction, which somehow does
not alter the one-dimensional asymptotic solution. The largest
characteristic length of the deposit in the direction parallel to
the front (Y) is the mean distanceλ between the trees. This
puzzling observation can be understood by comparing the
relaxation time of the perturbations ofFA(X,Y) along Y, τd ∼
λ2/D, with the time needed by the front of copper to move on
the same length,τf ∼ λ/Ẋf ) λxT/νxD. Since τf increases
with time T, in the asymptotic regime it will be much greater
thanτd. Therefore, whereasFB is highly correlated along theY
direction due to the structure of the solid deposit, there are
eventually no fluctuations inFA along this direction.

4. Departure from Pure Diffusion in the Reaction Zone. The
fact that the transference numbert+ deduced fromt+ ) 1 - q
and the inferred value ofq ) F(ν) from eq 39 decreases
significantly from 0.33 to 0.21 when the concentration of CuCl2

is increased from 0.5 to 1 mol‚L-1 is unlikely to be caused solely
by a pure salt-concentration effect. It is also possible that
convection produced by the sedimentation of CuCl crystallites
toward the bottom of the cell could artificially increase the
effective diffusion coefficient close to the reaction front by
convective mixing. This would cause an increase ofν(q) (the
prefactor for the speed of the reaction front), which could at
least partly explain the difference in the inferredq values, and
therefore also in the effectivet+ values.

VI. Conclusion

We have shown that after long times the corrosion of highly
porous copper clusters can be understood as a one-dimensional,
homogeneous, mean-field A+ B f C reaction-diffusion
process with one diffusing and one static reactant. This is the
first experimental analysis of such a situation where only one
reactant is free to diffuse through the other one. Whereas one
would expect highly complex dynamics and a possible break-
down of the mean-field approximation when the reaction is
confined to a porous (fractal) interface, we show that in this
particular corrosion system, the dynamics are equivalent to those
expected for a homogeneous system. The strength of our
demonstration is built on precise measurements of the concen-
tration field of the diffusing species by interferometry, which
are compared quantitatively with analytical predictions of the
one-dimensional mean-field model.
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Figure 11. Relaxation of the two-dimensional initial concentration field
at the beginning of the dissolution. (a) Isoconcentration linea ) 0.1,
for T ) 27 s. The deposit has been grown from a 1 mol‚L-1 CuCl2
solution, atj ) 68 mA‚cm-2 over 15 min. (b) log-linear plot of the
evolution of the amplitudeG of the modulation ofA concentration, as
shown in (a), versus the reduced timeT/τf ) 4ν2DT/G(0)2.
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(34) Léger, C.; Elezgaray, J.; Argoul, F.Phys. ReV. Lett.1997, 78, 5010.
(35) Crennell, K.; Gasvik, K.; Yatagai, T.; Creath, K.; Kujawinska, M.;

Robinson, D.; Halliwell, N.; Pickering, C.; Hariharan, P. InInterferogram

analysis; Robinson, D., Reid, G., Eds.; Institute of Physics Publishing:
Techno House, Redcliffe Way, Bristol, BS1 6NX, England, 1993.
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