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We study the linear stability of transient electrodeposition in a charged random porous medium, whose pore surface charges can be of
any sign, flanked by a pair of planar metal electrodes. Discretization of the linear stability problem results in a generalized eigenvalue
problem for the dispersion relation that is solved numerically, which agrees well with the analytical approximation obtained from
a boundary layer analysis valid at high wavenumbers. Under galvanostatic conditions in which an overlimiting current is applied,
in the classical case of zero surface charges, the electric field at the cathode diverges at Sand’s time due to electrolyte depletion.
The same phenomenon happens for positive charges but earlier than Sand’s time. However, negative charges allow the system to
sustain an overlimiting current via surface conduction past Sand’s time, keeping the electric field bounded. Therefore, at Sand’s time,
negative charges greatly reduce surface instabilities and suppress dendritic growth, while zero and positive charges magnify them.
We compare theoretical predictions for overall surface stabilization with published experimental data for copper electrodeposition in
cellulose nitrate membranes and demonstrate good agreement between theory and experiment. We also apply the stability analysis
to how crystal grain size varies with duty cycle during pulse electroplating.
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Linear stability analysis is routinely applied to nonlinear systems
to study how the onset of instability is related to system parame-
ters and to provide physical insights on the conditions and early dy-
namics of pattern formation.1–3 Some examples in hydrodynamics
include the Orr-Sommerfeld equation that predicts the dependence
on Reynolds number of the transition from laminar flow to turbulent
flow4–7 and the electroconvective instability that causes the transition
of a quasiequilibrium electric double layer to an nonequilibrium one
that contains an additional extended space charge region.8 Here, we
focus on morphological stability analysis in which linear stability anal-
ysis is used to analyze morphological instabilities of interfaces formed
between different phases observed in various diverse phenomena such
as electrodeposition,2,9–15 solidification1–3,9 and morphogenesis.3,16

Some particular examples of morphological stability analysis include
the Saffman-Taylor instability (viscous fingering),17–20 viscous finger-
ing coupled with electrokinetic effects,21 the Mullins-Sekerka insta-
bility of a spherical particle during diffusion-controlled or thermally
controlled growth22 and of a planar interface during solidification of a
dilute binary alloy,23,24 and control of phase separation using electro-
autocatalysis or electro-autoinhibition in driven open electrochemical
systems.25,26

Stability of metal electrodeposition.—We focus on electrodepo-
sition as a specific example of an electrochemical system for which
morphological stability has been widely researched both theoretically
and experimentally. The fundamental aspect of electrodeposition con-
cerns the inherent instability of the governing physics while the prac-
tical aspect is about applications such as electroplating of metals and
charging of metal batteries. To elucidate the physics behind electrode-
position, in liquid electrolytes, the morphologies of electrodeposits
formed and their transitions for metals such as copper, zinc and silver
are particularly well studied.9–13,15,27 Depending on conditions such
as applied current, applied voltage and electrolyte concentration, a
variety of morphological patterns such as diffusion-limited aggrega-
tion (DLA) patterns,28–38 dense branching morphologies (DBM)34–46

and dendritic structures34–37,40,42,47–49 have been observed. Ion concen-
tration fields,50–55 electroconvection,56–60 gravity-induced convection
(buoyancy)59–61 and the presence of impurities44,62–65 have also been
examined to determine their significant effects on morphology. While
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the range of possible morphologies of electrodeposits is diverse, for
electroplating of metals, it is desirable to electrodeposit layers that are
as uniform and homogeneous as possible.

Electrodeposition is also a critical process in the development
of rechargeable/secondary lithium metal batteries (LMBs) that use
lithium metal for the negative electrode. For negative electrodes that
use lithium chemistry, because lithium metal has the lowest stan-
dard reduction potential (−3.04 V vs. the standard hydrogen elec-
trode), highest theoretical specific (3860 mAh/g) and volumetric
(2061 mAh/cm3) capacities, and lowest mass density (0.53 g/cm3)
out of all possible candidates, it is the most promising choice for
achieving high energy densities in LMBs.66–84 However, the charg-
ing of LMBs is equivalent to lithium electrodeposition at the negative
electrode, which is an inherently unstable process that can cause the
formation of dendrites that penetrate the separator and result in in-
ternal short circuits and thermal runaway during charging.66–84 This
process has been especially well investigated in lithium polymer bat-
teries that use a polymer electrolyte.85–92 Detailed studies of various
growth modes of lithium in liquid electrolytes during charging have
been recently performed,93–95 which will aid in the development of
better models for lithium electrodeposition. Modern lithium-ion bat-
teries (LIBs)66–73,75,79,84,96–99 partially mitigate this problem of dendrite
formation and propagation by employing lithium intercalating mate-
rials such as graphite for the negative electrode where only lithium
ions and not reduced lithium atoms are involved in the intercalation
reactions, which is also known as the “rocking chair technology”.67

Nonetheless, lithium plating still occurs in LIBs when they are charged
at high rates or low temperatures.75,98–101 Although the root causes of
the widely publicized LIB failures in two Boeing 787 Dreamliners
in January 2013 were not conclusively identified,102 there is no doubt
that safety is of paramount importance in both LMBs and LIBs, which
requires a thorough understanding of dendrite formation.

For both electroplating of metals and charging of high energy den-
sity LMBs, it would be advantageous to perform them at as large a
current or voltage as possible without causing dendrite formation. It
is therefore important to understand the possible mechanisms for the
electrochemical system to sustain a high current or voltage and how
these mechanisms interact with the metal electrodeposition and LMB
charging processes. In a neutral channel or porous medium contain-
ing an electrolyte, when ion transport is governed by diffusion and
electromigration, which is collectively termed electrodiffusion, the
maximum current that can be attained by the electrochemical system
is called the diffusion-limited current.103,104 In practice, overlimiting
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current (OLC) beyond the electrodiffusion limit has been observed
experimentally in ion-exchange membranes105–116 and microchannels
and nanochannels.117–124 Depending on the length scale of the pores or
channel, some possible physical mechanisms for OLC125 are surface
conduction,119–121,126–128 electroosmotic flow129,130 and electroosmotic
instability.8,131 Some chemical mechanisms for OLC include water
splitting114,115 and current-induced membrane discharge.132 In this pa-
per, we focus on porous media consisting of pores with a nanometer
length scale, therefore the dominant OLC mechanism is expected to
be surface conduction.125 When a sufficiently large current or voltage
is applied across a porous medium whose pore surfaces are charged,
the bulk electrolyte eventually gets depleted at an ion-selective in-
terface such as an electrode. In order to sustain the current beyond
the electrodiffusion limit, the counterions in the electric double layers
(EDLs) next to the charged pore surfaces migrate under the large elec-
tric field generated in the depletion region. This phenomenon is termed
surface conduction and results in the formation and propagation of
deionization shocks away from the ion-selective interface in porous
media127,128,133 and microchannels and nanochannels.119–121,125,126,134

The deionization shock separates the “front” electrolyte-rich region,
in which bulk electrodiffusion dominates, from the “back” electrolyte-
poor region, in which electromigration in the EDLs dominates.

Theories of pattern formation.—Morphological stability analysis
of electrodeposition is typically performed in the style of the pio-
neering Mullins-Sekerka stability analysis.22,23 The destabilizing ef-
fect arises from the amplification of surface protrusions by diffusive
fluxes while the main stabilizing effect arises from the surface energy
penalty incurred in creating additional surface area. The balance be-
tween these two effects, which is influenced by system parameters, sets
a characteristic length scale or wavenumber for the surface instabil-
ity. In 1963, by applying an infinitesimally small spherical harmonic
perturbation to the surface of a spherical particle undergoing growth
by solute diffusion or heat diffusion, Mullins and Sekerka derived a
dispersion relation that related growth rates of the eigenmodes to parti-
cle radius and degree of supersaturation.22 Similarly, in 1964, Mullins
and Sekerka imposed a infinitesimally small sinusoidal perturbation
on a planar liquid-solid interface during the solidification of a dilute
binary alloy and obtained a dispersion relation relating the surface per-
turbation growth rate to system parameters such as temperature and
concentration gradients.23 In the spirit of the Mullins-Sekerka stability
analysis, about 16 years later in 1980, Aogaki, Kitazawa, Kose and
Fueki applied linear stability analysis to study electrodeposition with
a steady-state base state in the presence of a supporting electrolyte,
i.e., electromigration of the minor species can be ignored, and without
explicitly accounting for electrochemical reaction kinetics.135 Follow-
ing up on this work, from 1981 to 1982, Aogaki and Makino changed
the steady-state base state to a time-dependent base state under gal-
vanostatic conditions while keeping other assumptions intact.136–138 In
1984, Aogaki and Makino extended their previous work to account for
surface diffusion of adsorbed metal atoms under galvanostatic139,140

and potentiostatic conditions.141,142 In the same year, Makino, Aogaki
and Niki also used such a linear stability analysis to extract surface pa-
rameters of metals under galvanostatic and potentiostatic conditions143

and applied it to study how hydrogen adsorption affects these extracted
parameters under galvanostatic conditions.144 Later work by Barkey,
Muller and Tobias in 1989,145,146 and Chen and Jorne in 1991147 ad-
ditionally assumed the presence of a diffusion boundary layer next to
the electrode.

Subsequent developments in linear stability analysis of electrode-
position relaxed some assumptions made in the past literature and
added more physics and electrochemistry. Butler-Volmer reaction ki-
netics was first explicitly considered by Pritzker and Fahidy in 1992
for a steady-state base state with a diffusion boundary layer next to the
electrode.148 Also considering Butler-Volmer reaction kinetics with a
steady-state base state, in 1995, Sundström and Bark used the Nernst-
Planck equations for ion transport without assuming the existence of
a diffusion boundary layer, numerically solved for the dispersion rela-
tion and performed extensive parameter sweeps over key parameters

of interest such as surface energy and exchange current density.149 Ex-
tending these two papers in 1998, Elezgaray, Léger and Argoul used a
time-dependent base state under galvanostatic conditions, numerically
solved for both the time-dependent base state and perturbed state to ob-
tain the dispersion relation and demonstrated good agreement between
their theory and experiments on copper electrodeposition in a thin gap
cell.150 The role of electrolyte additives in stabilizing electrodeposition
was examined in the linear stability analysis performed by Haataja,
Srolovitz and Bocarsly in 2002 and 2003,151–153 and McFadden et al. in
2003.154 By demonstrating that the effects of the anode can be ignored
under certain conditions when deriving the dispersion relation, BuAli,
Johns and Narayanan in 2006 simplified Sundström and Bark’s anal-
ysis to obtain an analytical expression for the dispersion relation.155

In 2004 and 2005, Monroe and Newman included additional mechan-
ical effects such as pressure, viscous stress and deformational stress
to the linear stability analysis of electrodeposition, which provided
more stabilization beyond that provided by surface energy.156,157 For
a steady-state base state, in 2014, Tikekar, Archer and Koch studied
how tethered immobilized anions provide additional stabilization to
electrodeposition by reducing the electric field at the cathode and,
after making some approximations, derived analytical expressions
for the dispersion relation for small and large current densities.158

Tikekar, Archer and Koch then extended this work in 2016 by ac-
counting for elastic deformations that provide further stabilization.159

Subsequently in 2018, Tikekar, Li, Archer and Koch looked at using
polymer electrolyte viscosity to suppress morphological instabilities
driven by electroconvection.160 Building on Monroe and Newman’s
2004 and 2005 work on interfacial deformation effects,156,157 Ahmad
and Viswanathan identified a new mechanism for stabilization driven
by the difference of the metal density in the metal electrode and solid
electrolyte in 2017,161 and further generalized this work in the same
year to account for anisotropy.162 Natsiavas, Weinberg, Rosato and
Ortiz in 2016 also investigated the stabilizing effect of prestress and
showed good agreement between theory and experiment.163 Relaxing
the usual assumption of electroneutrality, in 2015, Nielsen and Bruus
performed linear stability analysis for a steady-state base state that
accounts for the extended space charge region that is formed when
the electric double layer becomes nonequilibrium at an overlimiting
current.164

Without performing a linear stability analysis, some models focus
on describing the initiation and subsequent propagation of dendrites.
The classic work in this class of models is by Chazalviel in 1990 in
which they used the Poisson’s equation for electrostatics, i.e., elec-
troneutrality is not assumed, and showed that the initiation of rami-
fied electrodeposits is caused by the creation of a space charge layer
upon anion depletion at the cathode, the induction time for initia-
tion is the time needed for building up this space charge layer, and
the velocity of the ramified growth is equal to the electromigration
velocity of the anions;165 some experimental results were also ob-
tained by Fleury, Chazalviel, Rosso and Sapoval in support of this
model,166 and some of the numerical results of the original analysis
were subsequently improved by Rosso, Chazalviel and Chassaing.167

Via an asymptotic analysis of the Poisson-Nernst-Planck equations
for ion transport, Bazant also showed that the velocity of the ramified
growth is approximately equal to the anion electromigration velocity
and estimated the induction time for the onset of ramified growth.168

Building on past theoretical and experimental work done on silver
electrodeposition by Barton and Bockris,169 and zinc electrodeposi-
tion by Despic, Diggle and Bockris,170,171 Monroe and Newman in-
vestigated the propagation velocity and length of a dendrite tip that
grows via Butler-Volmer kinetics.172 By examining the thermodynam-
ics and kinetics of heterogeneous nucleation and growth, which is as-
sumed to proceed via the linearized Butler-Volmer equation valid for
small overpotentials, Ely and García identified five different regimes of
nucleus behavior.173 Assuming a concentration-dependent electrolyte
diffusivity and the existence of a hemispherical dendrite “precur-
sor” that grows with Tafel kinetics, Akolkar studied the subsequent
propagation velocity and length of the dendrite174 and how they are
affected by temperature.175
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Contributions of this work.—In this paper, we perform linear sta-
bility analysis of electrodeposition inside a charged random porous
medium, whose pore surface charges can generally be of any sign,
that is filled with a liquid electrolyte and flanked on its sides by a
pair of planar metal electrodes. The linear stability analysis is car-
ried out with respect to a time-dependent base state and focuses on
overlimiting current carried by surface conduction. By doing so, we
combine and generalize previous work done in Refs. 149,150,158. For
simplicity, we ignore bulk convection, electroosmotic flow, surface
adsorption, surface diffusion of adsorbed species139–142 and additional
mechanical effects such as pressure, viscous stress and deformational
stress.156,157,159,161–163 We expect surface diffusion of adsorbed species,
which alleviates electrodiffusion limitations, and interfacial deforma-
tion effects to stabilize electrodeposition, hence our work here can be
considered a worst-case analysis. The only electrochemical reaction
considered here is metal electrodeposition, therefore in the context
of LMBs and LIBs, electrochemical and chemical reactions between
lithium and the electrolyte that cause the formation of the solid elec-
trolyte interphase (SEI) layer176–179 are not included. We first derive
governing equations for the full model that consists of coupling ion
transport with electrochemical reaction kinetics, followed by applying
linear stability analysis on the full model via the imposition of sinu-
soidal spatial perturbations around the time-dependent base state. For
the dispersion relation, we perform a boundary layer analysis on the
perturbed state to derive an accurate approximation for it and a con-
vergence analysis of its full numerical solution. To better understand
the physics of the dispersion relation, we carry out parameter sweeps
over the pore surface charge density, Damköhler number and applied
current density under galvanostatic conditions. We also compare the
numerical and approximate solutions of the maximum wavenumber,
maximum growth rate and critical wavenumber in order to verify the
accuracy of these approximations. Subsequently, we apply the linear
stability analysis to compare theoretical predictions and experimental
data for copper electrodeposition in cellulose nitrate membranes,180

and also use the stability analysis as a tool for investigating the depen-
dence of crystal grain size on duty cycle during pulse electroplating.

Full Model

Transport.—The starting point for modeling ion transport is the
leaky membrane model that is able to predict overlimiting current car-
ried by surface conduction, which we have previously coupled with
Butler-Volmer reaction kinetics for analyzing steady state current-
voltage relations and linear sweep voltammetry.181 The system under
consideration is a binary asymmetric liquid electrolyte in a finite 3D
charged random nanoporous medium where x ∈ [0, Lx], y ∈ [

0, Ly

]
and z ∈ [0, Lz], whose 2D projection is illustrated in Figure 1. We as-
sume that the nanoporous medium is random with well connected
pores such as cellulose nitrate membranes so that we can investi-
gate macroscopic electrode-scale morphological instabilities.180 The
cations are electroactive and the anions are inert. Initially, at t = 0,
the anode surface is located at x = 0 while the cathode surface
is located at x = Lx . As is typical for linear stability analysis of
electrodeposition,149,150,164 we pick a moving reference frame with
a velocity u(t ) = ux (t )ex that is equal to the velocity of the elec-
trode/electrolyte interface so that the average positions of the dis-
solving anode and growing cathode remain stationary. For the porous
medium, we denote its porosity, tortuosity, internal pore surface area
per unit volume and pore surface charge per unit area as εp, τ, ap

and σs respectively. We assume that there are no homogeneous reac-
tions and all material properties such as εp, τ, ap and σs are constant
and uniform. We also assume that dilute solution theory holds true,
hence all activity coefficients are 1 and the cation and anion macro-
scopic diffusivities D±0, where the 0 subscript indicates dilute limit,
are constant, uniform and independent of concentrations. Account-
ing for corrections due to the tortuosity of the porous medium, the
macroscopic diffusivity D±0 is related to the molecular (free solution)

diffusivity Dm
±0 by D±0 = Dm

±0
τ

.182 The assumption of dilute solution
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Figure 1. 2D projection of 3D system considered: charged random
nanoporous medium filled with binary asymmetric liquid electrolyte where
anode is on the left at x = 0 and cathode is on the right at x = Lx along the
x axis, which is the direction of the inter-electrode spacing, and y axis is the
direction of the sinusoidal perturbation. λ = 2π

ky
is the perturbation wavelength

where ky is the wavenumber in the y direction. The linear stability analysis is
actually performed in 3D in which the sinusoidal perturbation is applied in
the y and z directions, and the extension of this 2D projection to the 3D case
is straightforward. The current in the electrolyte flows from left to right. The
equation shown on the left describes macroscopic electroneutrality given by
Equation 3 where ρs is the volume-averaged background charge density.

theory further implies that the convective flux in the moving refer-
ence frame is negligible and the effect of the moving reference frame
velocity u(t ) = ux (t )ex is only significant in the equation describ-
ing electrode surface growth or dissolution,149,150,164 which we will
discuss in Boundary conditions, constraints and initial conditions sec-
tion. Under these assumptions, for ion transport, the Nernst-Planck
equations describing species conservation, charge conservation equa-
tion and macroscopic electroneutrality constraint are given by

εp
∂c±
∂t

+ ∇ · F± = 0, F± = −εpD±0

(
∇c± + z±ec±

kBT
∇φ

)
, [1]

∇ · J = 0, J = e(z+F+ + z−F−), [2]

ρs = σs

hp
= apσs

εp
= −e(z+c+ + z−c−), [3]

where c±, F±, z±, are the cation and anion concentrations, fluxes and
charge numbers respectively, φ is the electrolyte electric potential, J
is the electrolyte current density, hp = εp

ap
is the effective pore size and

ρs is the volume-averaged background charge density. Denoting the
numbers of cations and anions that are formed from complete disso-
ciation of 1 molecule of neutral salt as ν±, electroneutrality requires
that z+ν+ + z−ν− = 0. We will use the macroscopic electroneutrality
constraint given by Equation 3 to eliminate c+ as a dependent variable,
therefore leaving c− and φ as the remaining dependent variables.

For a classical system with an uncharged nanoporous medium,
i.e., ρs = 0, the maximum current density that the system can possibly
attain under electrodiffusion is called the diffusion-limited or limiting
current density Jlim, which is given by181

Jlim = 2(z+ − z−)eεpD+0ν−c0

Lx
[4]

where c0 is the neutral salt bulk concentration. The limiting current
Ilim is then given by Ilim = JlimA where A = LyLz is the surface area of
the electrode. Under galvanostatic conditions, when a current density
Ja larger than Jlim is applied, the cation and anion concentrations at the
cathode reach 0 and the electrolyte electric potential and electric field
there diverge in finite time, which is called Sand’s time183 denoted as ts;
see184 for a discussion of some subtlety associated with this transition
time when Ja is exactly equal to Jlim. If we have not assumed macro-
scopic electroneutrality and instead modeled electric double layers
that can go out of equilibrium at high currents and voltages, then the
electric field would be large but finite at and past ts.8,164,185,186 Defining
the dimensionless Sand’s time t̃s = Damb0ts

L2
x

and dimensionless applied
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current density J̃a = Ja
Jlim

where Damb0 = (z+−z−)D+0D−0

z+D+0−z−D−0

103,181 is the

ambipolar diffusivity of the neutral salt in the dilute limit and L2
x

Damb0
is

the diffusion time scale, t̃s is given by184

t̃s = π

16J̃2
a

, J̃a > 1. [5]

For galvanostatic conditions, ts is a critically important time scale
because the formation of dendrites often occurs near or at ts, therefore
it will be central to the linear stability analysis results discussed in
Results section.

Unlike the classical case of ρs = 0, for ρs < 0, the system can
sustain an overlimiting current J̃a > 1 via surface conduction that is
the electromigration of the counterions in the electric double layers
(EDLs), which are formed next to the charged pore surfaces, under a
large electric field generated in the depletion region next to the cathode.
This additional surface conductivity thus enables the system to go
beyond ts and eventually reach a steady state, in stark contrast to the
finite time divergence of the classical case at ts. On the other hand,
for ρs > 0, the counterions in the EDLs are the inert anions instead
of the electroactive cations, which contribute a surface current that
flows in the opposite direction from that of the bulk current. Because
of this “negative” surface conductivity conferred by ρs > 0 relative
to ρs = 0, at the cathode, the bulk electrolyte concentration vanishes
and the electric field diverges earlier than ts; in other words, ρs > 0
effectively reduces ts. A more quantitative way of explaining this is
that the “negative” surface conductivity causes the maximum current
density that can be achieved, which is denoted as Jmax, to be smaller
than Jlim, and Jmax decreases as ρs increases. In effect, a more positive ρs

decreases Jlim, which thus leads to a smaller ts for a given Ja according
to Equation 5. Details of how to numerically compute Jmax are found
in Ref. 181; note that Jmax here corresponds to IBV

max in Ref. 181.

Electrochemical reaction kinetics.—In order to analyze how spa-
tial perturbations of an electrode surface affect its linear stability, we
need to account for the effects of surface curvature and surface energy
in the electrochemical reaction kinetics model. The mean curvature
of the electrode/electrolyte interface H is given by H = − 1

2 ∇s · n̂
where ∇s is the surface gradient operator and n̂ is the unit normal that
points outwards from the electrolyte.187 In this paper, we consider a
charge transfer reaction that involves only the cations and electrons
while the anions are inert. More concretely, we suppose the follow-
ing charge transfer reaction consuming n electrons OzO + ne− � RzR

where OzO is the oxidized species O with charge zO, e− is the electron
e with charge −1, RzR is the reduced species R with charge zR, and
zO − n = zR because of charge conservation. If the reduced species
is solid metal, i.e., zR = 0, as is the case in metal electrodeposition,
the creation of additional electrode/electrolyte interfacial area results
in a surface energy penalty that appears in the electrochemical poten-
tial of the reduced species. Therefore, the electrochemical potentials
μi of the oxidized species O, electron e and reduced species R for
i ∈ {O, e, R} are given by

μO = kBT ln aO + zOeφ + μ�
O , [6]

μe = kBT ln ae − eφe + μ�
e , [7]

μR = kBT ln aR + zReφ + μ�
R + 2�γH , [8]

where the surface energy term 2�γH 149,150,156–158,164,172,187 is included
in μR when the reduced species is solid metal (zR = 0) and the �
superscript indicates standard state. The activity of species i is given by
ai = γi ĉi where γi is the activity coefficient of species i and ĉi = ci

c�
i

is

the concentration of species i normalized by its standard concentration
c�

i . μ�
i is the standard electrochemical potential of species i, φe is the

electrode electric potential, � = Mm
ρm

is the atomic volume of the solid
metal where Mm and ρm are the atomic mass and mass density of

the metal respectively, and γ is the isotropic surface energy of the
metal/electrolyte interface. The quantity �γ

kBT is the capillary constant
that has units of length.22–24 The interfacial electric potential difference
�φ is defined as �φ = φe −φ. At equilibrium when μO +nμe = μR,
we obtain the Nernst equation

�φeq = kBT

ne
ln

aOan
e

aR
+ E� − 2�γH

ne
, E� = μ�

O + nμ�
e − μ�

R

ne
,

[9]
where the “eq” superscript denotes equilibrium and E� is the standard
electrode potential. When the system is driven out of equilibrium so
that μO + nμe �= μR, the system generates a faradaic current density
JF that is given by25,26,182

JF = nek0

[
exp

(
−μr,ex

‡ − μO − nμe

kBT

)
− exp

(
−μr,ex

‡ − μR

kBT

)]
[10]

where k0 is the overall reaction rate constant and μr,ex
‡ is the excess

electrochemical potential of the transition state for the faradaic reac-
tion. Using the Butler-Volmer hypothesis, μr,ex

‡ consists of a chemical
contribution kBT ln γr

‡, where γr
‡ is the activity coefficient of the tran-

sition state for the faradaic reaction, and a convex combination of the
electrostatic energies, surface energies (only for the reduced species)
and standard electrochemical potentials weighted by α, which is the
charge transfer coefficient. Therefore, μr,ex

‡ is given by

μr,ex
‡ = kBT ln γr

‡ + (1 − α)
(
zOeφ − neφe + μ�

O + nμ�
e

)
+ α

(
zReφ + μ�

R + 2�γH
)
. [11]

Defining the overpotential η as η = μR−μO−nμe
ne = �φ − �φeq, we

rewrite JF as

JF = j0

{
exp

(
−αneη

kBT

)
− exp

[
(1 − α)neη

kBT

]}
,

j0 = k0ne
(
aOan

e

)1−α
aα

R

γr
‡

, [12]

where j0 is the exchange current density. In this form, we can identify
the cathodic and anodic charge transfer coefficients, which are denoted
as αc and αa respectively, as αc = α and αa = 1−α such that αc +αa =
1. We note that our particular choice of μr,ex

‡ in Equation 11 corre-
sponds to choosing the “mechanical transfer coefficient” αm defined in
Ref. 156 to be equal to αa, causing j0 to not depend explicitly on H .

In this paper, we assume that the only charge transfer reaction oc-
curring is metal electrodeposition that happens via the electrochemical
reduction of cations in the electrolyte to solid metal on the electrode.
The activity of solid metal is 1 while we assume that the activity of
electrons is 1. In addition, like in Transport section, we assume that
dilute solution theory is applicable, therefore the activity coefficients
of the cation, anion and transition state for the faradaic reaction are 1
and we replace activities of the cation and anion with their normalized
concentrations ĉ±. Therefore, �φeq and j0 simplify to

�φeq = kBT

ne
ln ĉ+ + E� − 2�γH

ne
, j0 = k0neĉ1−α

+ . [13]

To compare the reaction and diffusion rates, we define the Damköhler
number Da as the ratio of the faradaic current density scale eεpk0 and
limiting current density Jlim given by

Da = eεpk0

Jlim
. [14]

When Da is large, i.e., Da � 1, the system is diffusion-limited but
when Da is small, i.e., Da � 1, the system is reaction-limited.

Boundary conditions, constraints and initial conditions.—We use
“a” and “c” superscripts to denote the anode and cathode respectively,
r = [x, y, z]T to denote the position vector, and ra,c

m = [
xa,c

m , ya,c
m , za,c

m

]T

to denote the positions of the anode and cathode. We ground the an-
ode at all times, i.e., φa

e = 0. Because the cations are electroactive, we
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impose no-flux boundary conditions for the cation flux on all bound-
aries except the anode and cathode where faradaic reactions involving
the cations occur. On the other hand, because the anions are inert, we
impose no-flux boundary conditions for the anion flux on all bound-
aries. At the anode and cathode, we require the conservation of charges
across the electrode/electrolyte interfaces. In summary, the boundary
conditions are given by n̂ · F−

(
r = ra,c

m

) = 0, n̂ · J
(
r = ra,c

m

) = εpJa,c
F ,

n̂ · F−(r = rother ) = 0 and n̂ · J (r = rother ) = 0 where rother refers to all
boundaries except the anode and cathode.

The velocity of the electrode/electrolyte interface va,c
I is defined

as va,c
I = εp

dra,c
m

dt and its normal component va,c
In is given by va,c

In =
n̂ · va,c

I = εpn̂ · dra,c
m

dt . Because the growth (dissolution) of the electrode
surface is caused by metal electrodeposition (electrodissolution), tak-
ing into account the moving reference frame velocity u(t ) = ux (t )ex ,
the normal interfacial velocity is related to the normal current density

by va,c
In = −�n̂·J(r=ra,c

m )
z+e − n̂ · u

(
r = ra,c

m

)
and therefore, εpn̂ · dra,c

m
dt =

−�n̂·J(r=ra,c
m )

z+e − n̂ · u
(
r = ra,c

m

)
.

For galvanostatic conditions in which we apply a current Ia on the
system, we require

∫
n̂ · J

(
r = rc

m

)
dSc = ∫ −n̂ · J

(
r = ra

m

)
dSa = Ia

to satisfy charge conservation whereas for potentiostatic conditions in
which we apply an electric potential V on the cathode, we set φc

e = V .
For initial conditions, we set c−(t = 0) = ν−c0 − ρs+|ρs|

2z−e ≡ β1 where
c0 is the initial neutral salt bulk concentration,181 and xa

m(t = 0) = 0
and xc

m(t = 0) = Lx , i.e., the anode and cathode are initially planar.

Linear Stability Analysis

Perturbations and linearization.—Linear stability analysis gener-
ally involves imposing a spatial perturbation around a base state, keep-
ing constant and linear terms of the perturbed state, and determining
the dispersion relation that relates the growth rate of the perturbation to
its wavenumber or wavelength. For electrodeposition specifically, the
objective is to impose a spatial perturbation on a planar electrode sur-
face and determine the effects of key system parameters on the linear
stability of the surface in response to this perturbation. In this paper,
we will choose a time-dependent base state, therefore the dispersion
relation is also time-dependent. In 3D, the electrode/electrolyte inter-
face can be written explicitly as x = h(y, z, t ) where h is the electrode
surface height. Given h, we can derive explicit expressions for surface
variables such as the curvature H and normal interfacial velocity vIn

in terms of h and its spatial and temporal derivatives,187,188 which are
provided in Section I of Supplementary Material. For brevity, we let
k = [

ky, kz

]T
and ξ = [y, z]T where k is the wavevector, and ky and kz

are the wavenumbers in the y and z directions respectively. Therefore,
k · ξ = kyy + kzz, k2 = ‖k‖2

2 = k2
y + k2

z where ‖·‖2 is the L2-norm
and ‖k‖2 is the overall wavenumber, and the wavelength λ is given by
λ = 2π

‖k‖2
. For brevity again, we write the overall wavenumber as k and

it is obvious from context whether k refers to the wavevector or overall
wavenumber. The perturbation that will be imposed is sinusoidal in
the y and z directions given by

h(ξ, t ) = h(0)(t ) + ε
[
h(1) exp(ik · ξ + ωt )

] + O
(
ε2

)
[15]

where ε � 1 is a dimensionless small parameter, the (0) and (1)
superscripts denote the base and perturbed states respectively, 
(·)
gives the real part of a complex number, h(1) is the complex-valued
perturbation amplitude of the electrode surface height, and ω is the
complex-valued growth rate of the perturbation. In response to such
an electrode surface perturbation, we assume that the perturbations to
c− and φ are similarly given by

c−(x, ξ, t ) = c(0)
− (x, t ) + ε
[

c(1)
− (x) exp(ik · ξ + ωt )

] + O
(
ε2

)
,

[16]

φ(x, ξ, t ) = φ(0)(x, t ) + ε
[
φ(1)(x) exp(ik · ξ + ωt )

] + O
(
ε2

)
,

[17]

where c(1)
− and φ(1) are the complex-valued perturbation amplitudes of

anion concentration and electrolyte electric potential respectively.
To evaluate c− andφ and their gradients∇c− and∇φ at the interface

at x = h, we require their Taylor series expansions around the base
state interface at x = h(0). Letting ε̂ = ε exp(ik · ξ + ωt ) and θ ∈
{c−, φ}, these expansions are given by149,150,164

θ(x = h) = θ(0)
(
x = h(0)

) + ε̂

(
h(1) ∂θ(0)

∂x
+ θ(1)

)∣∣∣∣
x=h(0)

+ O
(
ε2

)
,

[18]

∂θ

∂x
(x = h) = ∂θ(0)

∂x

(
x = h(0)

) + ε̂

(
h(1) ∂

2θ(0)

∂x2
+ dθ(1)

dx

)∣∣∣∣
x=h(0)

+O
(
ε2

)
, [19]

∂θ

∂y
(x = h) = ε̂ikyθ

(1)
(
x = h(0)

) + O
(
ε2

)
,

∂θ

∂z
(x = h) = ε̂ikzθ

(1)
(
x = h(0)

) + O
(
ε2

)
, [20]

∇θ(x = h) = ∂θ

∂x
(x = h)ex + ∂θ

∂y
(x = h)ey + ∂θ

∂z
(x = h)ez + O

(
ε2

)
.

[21]

After substituting these perturbation expressions into the full model
in Full model section, we obtain the base and perturbed states by
matching the O(1) and O(ε) terms respectively. The dispersion rela-
tion ω(k) is subsequently computed by solving these O(1) and O(ε)
equations. The growth rate ω is generally complex-valued and for
a particular k value, there is an infinite discrete spectrum of ω val-
ues. However, for linear stability analysis, we are primarily interested
in the maximum of the real parts of the ω values, which is denoted
as max{
(ω)}, that corresponds to the most unstable eigenmode. If
max{
(ω)} < 0, the perturbation decays exponentially in time and the
base state is linearly stable. On the other hand, if max{
(ω)} > 0, the
perturbation grows exponentially in time and the base state is linearly
unstable. Lastly, if max{
(ω)} = 0, the perturbation does not decay
nor grow and the base state is marginally stable. The imposition of the
boundary conditions at r = rother described in Boundary conditions,
constraints and initial conditions section results in the quantization of
the set of valid wavenumbers, which is explained in detail in Section
IIIC of Supplementary Material.

Nondimensionalization.—To make the equations more compact
and derive key dimensionless parameters, in Table I, we define the
scales that are used for nondimensionalizing the full model in Full
model section and the perturbation expressions in Perturbations and
linearization section. L̃y and L̃z are the aspect ratios in the y and
z directions respectively. For convenience, we also define βD =
− z−D−0

2(z+D+0−z−D−0 ) (weighted ratio of cation and anion diffusivities),

βm = ν+c0� (ratio of atomic volume of solid metal to reciprocal
electrolyte concentration), βv = βm

βD
and ξ+ = ν+c0

c�+
(ratio of elec-

trolyte concentration to standard cation concentration), and note that
ĉ+ = ξ+(c̃− − ρ̃s ). Two important dimensionless parameters emerge
from this nondimensionalization process, namely the Damköhler num-
ber Da = k̃0 that is described earlier in Equation 14 and the capillary
number Ca that is given by

Ca = γ̃ = �γ

LxkBT
, [22]

which is the ratio of the capillary constant �γ

kBT
22–24 to the inter-

electrode distance Lx , and γ̃ is the dimensionless isotropic surface
energy of the metal/electrolyte interface.

To avoid cluttering the notation, we drop tildes for all dimension-
less variables and parameters, and all variables and parameters are
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Table I. Scales used for nondimensionalization.

Variables and parameters Scale

x, y, z, Ly, Lz , r, rm, h, λ, ξ Lx

t L2
x

Damb0
(diffusion time)

c± ν±c0

φ, φe, �φeq, E�, �φ, η
kBT

e (thermal voltage)

D±0 Damb0

ρs z+ν+ec0 = −z−ν−ec0

F±
εpDamb0ν±c0

Lx

u, ux , vI, vIn
εpDamb0

Lx

J Jlim

I Ilim

j0, JF
Jlim
εp

k0
Jlim
eεp

γ
LxkBT

�

H , ky, kz , k 1
Lx

ω
Damb0

L2
x

(reciprocal diffusion time)

dimensionless in the following sections unless otherwise stated. We
also rewrite the (0) and (1) superscripts, which denote the base and per-
turbed states respectively, as 0 and 1 subscripts respectively. Similarly,
we drop the 0 subscript for diffusivities and the − subscript for anion-
related variables and parameters. As shorthand, we use subscripts to
denote partial derivatives with respect to x (with the exception that
ux denotes the x component of the moving reference frame velocity
u), y, z and t , primes to denote total derivatives with respect to x, and
an overhead dot to denote the total derivative with respect to t . All
equations for the dimensionless full model are provided in Section
II of Supplementary Material. Details for deriving the dimensionless
equations for the base and perturbed states are provided in Section III
of Supplementary Material, and we summarize them in Base state and
Perturbed state sections below.

Base state.—The equations for the base state are obtained by sub-
stituting the perturbation expressions in Perturbations and lineariza-
tion section into the full model in Full model section and matching
terms at O(1). Equivalently, the base state is simply the full model
specialized to 1D in the x direction with the curvature-related terms
dropped, which only appear atO(ε). Therefore, atO(1), the governing
PDEs (partial differential equations) are given by

c0,t − D
[
c0,xx + z

(
c0φ0,x

)
x

] = 0, [23]

βD

[
(D − D+)c0,xx + z+D+ρsφ0,xx − (z+D+ − zD)

(
c0φ0,x

)
x

] = 0,

[24]

where the first PDE is the Nernst-Planck equation describing species
conservation of anions and the second PDE is the charge conservation
equation. The boundary conditions at the anode at x = ha

0 are given
by

φa
e = 0, [25]

−D
(−c0,x − zc0φ0,x

) = 0, [26]

n̂ · J0 = j0,0{exp(−αnη0 ) − exp[(1 − α)nη0]}, [27]

−ḣ0 = −βvn̂ · J0 + ux, [28]

where η0 = φe − φ0 − 1
n ln

[
ξ+(c0 − ρs )

] − E�, j0,0 =
Dan[ξ+ (c0 − ρs )]1−α and n̂ ·J0 = βD[−(D − D+)c0,x − z+D+ρsφ0,x +
(z+D+ − zD)c0φ0,x]. Since the unit normal at the cathode points in the
opposite direction from that at the anode, the signs of the expressions
involving n̂ at the cathode are opposite to that at the anode. Therefore,
the boundary conditions at the cathode at x = hc

0 are given by

−D
(
c0,x + zc0φ0,x

) = 0, [29]

n̂ · J0 = j0,0{exp(−αnη0) − exp[(1 − α)nη0]}, [30]

ḣ0 = −βvn̂ · J0 − ux, [31]

where η0 = φe − φ0 − 1
n ln[ξ+(c0 − ρs )] − E�, j0,0 =

Dan[ξ+(c0 − ρs )]1−α and n̂ · J0 = βD[(D − D+)c0,x + z+D+ρsφ0,x −
(z+D+ − zD)c0φ0,x].

We pick ux

(
x = ha

0

)
and ux

(
x = hc

0

)
such that the positions of the

anode and cathode in the base state remain stationary, i.e., ḣa
0 = ḣc

0 = 0.
Therefore, ux = βvn̂·J0

(
x = ha

0

) = −βvn̂·J0

(
x = hc

0

)
where the second

equality automatically holds true because of charge conservation in
the 1D O(1) base state. Physically, ux is equal to the velocity of the
growing planar cathode/electrolyte interface or the dissolving planar
anode/electrolyte interface in the base state. The initial conditions are
given by

c0(t = 0) = β1, ha
0(t = 0) = 0, hc

0(t = 0) = 1. [32]

Since ḣa
0 = ḣc

0 = 0, ha
0(t ) = 0 and hc

0(t ) = 1 at all t . For galvanostatic
conditions in which we apply a current density Ja on the system, we
impose

Ja = βD

[
(D − D+)c0,x + z+D+ρsφ0,x − (z+D+ − zD)c0φ0,x

]∣∣
x=hc

0

[33]

= βD

[
(D − D+)c0,x + z+D+ρsφ0,x − (z+D+ − zD)c0φ0,x

]∣∣
x=ha

0
.

[34]

For potentiostatic conditions in which we apply an electric potential
V on the cathode, we impose φc

e = V .
The equations for the time-dependent base state cannot generally

be solved analytically, therefore we would have to solve them numer-
ically. However, at steady state, the base state admits semi-analytical
solutions for any ρs.181 Specifically, c0, φ0,x and their spatial derivatives
can be analytically expressed in terms of the Lambert W function.189

On the other hand, φ0 is known semi-analytically because it can be
analytically expressed in terms of the Lambert W function up to an
additive constant, which is a function of Ja and ρs and is found by
numerically solving the algebraic Butler-Volmer equations given by
Equations 27 and 30 with MATLAB’s fsolve or fzero function.

Perturbed state.—To derive the equations for the perturbed state
at O(ε), we substitute the perturbation expressions in Perturbations
and linearization section into the full model in Full model section and
match terms at O(ε). One important outcome is that the curvature-
related terms appear as functions of k2 because they are associated
with second-order spatial partial derivatives in the y and z directions.
At O(ε), the governing ODEs (ordinary differential equations) are
given by

D
{
c′′

1 − k2c1 + z
[(

c0φ
′
1 + φ0,xc1

)
x
− k2c0φ1

]} = ωc1, [35]

(D − D+)
(
c′′

1 − k2c1

) + z+D+ρs

(
φ′′

1 − k2φ1

)
− (z+D+ − zD)

[(
c0φ

′
1 + φ0,xc1

)
x
− k2c0φ1

] = 0, [36]

where the first ODE describes the perturbation in species conser-
vation of anions and the second ODE describes the perturbation in
charge conservation. For brevity, we define α3 = −α exp(−αnη0 ) −
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(1 − α) exp[(1 − α)nη0]. The boundary conditions at the anode at
x = ha

0 are given by

c0,t h
a
1 − D

[−c′
1 − z

(
c0φ

′
1 + φ0,xc1

)] = 0, [37]

βv j0,0

(
D̂1ha

1 + D̂2c1 + D̂3φ1

) = ωha
1, [38]

βm[−(D − D+)c′
1 − z+D+ρsφ

′
1

+ (z+D+ − zD)
(
c0φ

′
1 + φ0,xc1

)
] = ωha

1, [39]

where the D̂1, D̂2 and D̂3 parameters are

D̂1 = α3n

(
−φ0,x + γk2

n

)
+ exp(−αnη0 )c0,x

c0 − ρs
,

D̂2 = exp(−αnη0)

c0 − ρs
, D̂3 = −α3n. [40]

Because the unit normal at the cathode is in the opposite direction from
that at the anode, the signs of the expressions involving n̂ at the cathode
are opposite to that at the anode. Hence, the boundary conditions at
the cathode at x = hc

0 are given by

− c0,t h
c
1 − D

[
c′

1 + z
(
c0φ

′
1 + φ0,xc1

)] = 0, [41]

βv j0,0

(
Ĝ1hc

1 + Ĝ2c1 + Ĝ3φ1

) = −ωhc
1, [42]

βm[(D − D+)c′
1 + z+D+ρsφ

′
1

− (z+D+ − zD)
(
c0φ

′
1 + φ0,xc1

)
] = −ωhc

1, [43]

where the Ĝ1, Ĝ2 and Ĝ3 parameters are

Ĝ1 = α3n

(
−φ0,x − γk2

n

)
+ exp(−αnη0 )c0,x

c0 − ρs
,

Ĝ2 = exp(−αnη0)

c0 − ρs
, Ĝ3 = −α3n. [44]

The capillary number Ca = γ appears in the D̂1 and Ĝ1 parame-
ters in the form of γk2, which is the source of the surface stabilizing
effect that arises from the surface energy penalty incurred in creating
additional surface area. The competition between this surface stabiliz-
ing effect and the surface destabilizing effect arising from the c0, c0,x

and φ0,x fields sets the scale for the critical wavenumber kc, which is
the wavenumber at which the perturbation growth rate ω is 0 and the
electrode surface is marginally stable.

Discretization of perturbed state.—Without making further ap-
proximations, the equations for the perturbed state do not admit ana-
lytical solutions, thus we have to resort to numerical methods to solve
them. To do so, the equations for the perturbed state are spatially dis-
cretized over a uniform grid with N grid points and a grid spacing
�x = 1

N−1 using second-order accurate finite differences.190 Details
of this discretization process are provided in Section IV of Supplemen-
tary Material. In summary, the discretized equations can be written as
a generalized eigenvalue problem given by

Y v = ωZv,

v = [ ha
1 c1,1 φ1,1 c1,2 φ1,2 · · · c1,N−1 φ1,N−1 c1,N φ1,N hc

1 ]T, [45]

where Y, Z ∈ R
(2N+2)×(2N+2), v ∈ C

2N+2, ω ∈ C and the second sub-
script in c1,i and φ1,i for i = 1, 2, . . . , N denotes the grid point index.
In the context of a generalized eigenvalue problem, the eigenvector v
consists of the complex-valued amplitudes c1, φ1, ha

1 and hc
1 evaluated

at the grid points, and the eigenvalue is the complex-valued growth rate
ω. AlthoughY is non-singular, the time-independent terms in the equa-
tions for the perturbed state introduce rows of zeros in Z , therefore Z

is singular and the generalized eigenvalue problem cannot be reduced
to a standard eigenvalue problem. Specifically, Y is non-singular with
rank 2N + 2 while Z is singular with rank N , and the total number of
eigenvalues is 2N + 2.

Because Z is singular with rank N , there are N finite eigenvalues
and N + 2 infinite eigenvalues. This mathematical property is not
always consistently noted in past literature on linear stability analysis
of electrodeposition, although Sundström and Bark did mention that
N different eigenvalues are obtained with N grid points that give rise
to 2N + 2 equations without explicitly stating that the other N +
2 eigenvalues are infinite.149 The infinite eigenvalues are physically
irrelevant to the linear stability analysis,191,192 therefore we would want
to focus on solving for the finite eigenvalues. This can be achieved by
mapping the infinite eigenvalues to other arbitrarily chosen points in
the complex plane via simple matrix transformations.193 Details of
how these transformations are performed are given in Section IV of
Supplementary Material. There are methods for directly removing the
infinite eigenvalues such as the “reduced” method191,194,195 but they
are more intrusive and require more extensive matrix manipulations
as compared to the mapping technique193 that we use.

The modified generalized eigenvalue problem that results from
these transformations can then be solved using any eigenvalue solver.
For linear stability analysis, we only need to find the eigenvalue with
the largest real part instead of all the finite eigenvalues. Since the time
complexity of finding all the eigenvalues typically scales as O

(
N3

)
while that for finding k ≤ N of them, where k = 1 in our case,
scales as O

(
kN2

)
, the computational cost is dramatically reduced by

a factor of O(N ) if we use an eigenvalue solver that can find subsets
of eigenvalues and eigenvectors such as MATLAB’s eigs solver.

Numerical implementation.—The equations for the time-
dependent base state in Base state section are numerically solved us-
ing the finite element method in COMSOL Multiphysics 5.3a. The
eigenvalue with the largest real part and its corresponding eigenvec-
tor from the generalized eigenvalue problem for the perturbed state
in Discretization of perturbed state section are then solved for using
the eigs function in MATLAB R2018a. When the eigs function
occasionally fails to converge for small values of the wavenumber
k, we use Rostami and Xue’s eigenvalue solver based on the ma-
trix exponential,196,197 which is more robust than the eigs function.
The colormaps used for some of the plots in Results section are ob-
tained from BrewerMap,198 which is a MATLAB program available
in the MATLAB File Exchange that implements the ColorBrewer
colormaps.199

Results

Because of the large number of dimensionless parameters present,
the parameter space is too immense to be explored thoroughly in this
paper. Instead, the key dimensionless parameters that we focus on and
vary are ρs, Da and Ja under galvanostatic conditions. ρs = 0 corre-
sponds to the classical case of an uncharged nanoporous medium while
ρs �= 0 allows us to depart from this classical case and study its effects
on the linear stability of the electrode surface. Experimentally, ρs can
be tuned via layer-by-layer deposition of polyelectrolytes180,200,201 or
tethered immobilized anions.76 Da is very sensitive to the specific re-
actions considered and varies significantly in practice. We focus on
galvanostatic conditions instead of potentiostatic conditions because
when an overlimiting current Ja > 1 is applied on a classical system
with ρs = 0, as discussed in Transport section, the Sand’s time ts pro-
vides a time scale at which the electric field at the cathode diverges
that causes the perturbation growth rate to diverge too. This allows us
to focus the linear stability analysis on times immediately before, at
and immediately after ts.

For the results discussed in Convergence analysis, Parameter
sweeps, Comparison between numerical and approximate solutions
and Pulse electroplating and pulse charging sections below, we assume
the following dimensional quantities for a typical electrolyte in a typ-
ical nanoporous medium: T = 298 K, Mm = 6.941 g/mol (arbitrarily
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Table II. Dimensionless parameters that are used for results in Convergence analysis, Parameter sweeps, Comparison between numerical and
approximate solutions and Pulse electroplating and pulse charging sections for a typical electrolyte in a typical nanoporous medium.

Dimensionless parameter Description Value

ν+ Number of cations formed from complete dissolution of 1 molecule of neutral salt 1
ν Number of anions formed from complete dissolution of 1 molecule of neutral salt 1

z+ Cation charge number 1
z Anion charge number −1

D+ Cation diffusivity 1
D Anion diffusivity 1
n Number of electrons transferred in charge transfer reaction 1
α Charge transfer coefficient 0.5

Ca = γ Capillary number, ratio of capillary constant to inter-electrode distance (Equation 22) 8.74 × 10−5

βm Ratio of atomic volume of solid metal to reciprocal electrolyte concentration 1.30 × 10−4

βD Weighted ratio of cation and anion diffusivities 0.25
βv Ratio of βm to βD 5.20 × 10−4

ξ+ Ratio of electrolyte concentration to standard cation concentration 0.01
E� Standard electrode potential 0
Ly Aspect ratio in y direction 100
Lz Aspect ratio in z direction 100
ρs Ratio of background charge density to electrolyte concentration −1,−0.75,−0.5,−0.25, −0.05, 0, 0.05
Da Damköhler number, ratio of reaction rate to diffusion rate (Equation 14) 0.1, 1, 10

pick lithium metal),202 ρm = 0.534 g/cm3 (arbitrarily pick lithium
metal),202 Lx = 60 μm, Ly = Lz = 100Lx = 6 mm (Lx � Ly = Lz to
model a thin gap cell that reduces effects of gravity-induced convec-
tion (buoyancy)150), c0 = 10 mM (note that c0 here is the dimensional
initial neutral salt bulk concentration, not the dimensionless base state
anion concentration), c�

+ = 1 M = 103 mol/m3 (standard concen-
tration) and γ = 1 J/m2 (typical surface energy of metal/electrolyte
interface).149 Corresponding to these dimensional quantities, all di-
mensionless parameters that are used for the results in Convergence
analysis, Parameter sweeps, Comparison between numerical and ap-
proximate solutions and Pulse electroplating and pulse charging sec-
tions are given in Table II.

Approximations.—At the heart of the linear stability analysis is the
competition between the destabilizing effect that arises from the am-
plification of surface protrusions by diffusive fluxes in a positive feed-
back loop and the stabilizing effect that arises from the surface energy
penalty incurred in the creation of additional surface area. Therefore,
in the dispersion relation ω(k), we expect to see some local max-
ima or possibly just a single global maximum, which we denote as
{kmax, ωmax}, where the electrode surface is maximally unstable. We
also expect to see a critical wavenumber kc corresponding to ω = 0
where the electrode surface is marginally stable. When k is larger
than kc, ω is always negative because the surface energy stabilizing
effect always dominates when the wavenumber is sufficiently large.
We note that kc is always greater than kmax. Corresponding to kmax and
kc are the maximum wavelength λmax = 2π

kmax
and critical wavelength

λc = 2π

kc
respectively. In a porous medium, the characteristic pore size

hc = 2dp, where dp is the pore diameter, sets a threshold or cutoff for
overall electrode surface stabilization: we should observe stabilization
if hc is smaller than λc.158 If hc is larger than λc, then the most unsta-
ble eigenmode dominates the electrode surface growth with a growth
rate of ωmax and the characteristic length scale of this instability is
λmax. Therefore, {kmax, ωmax} and kc are the most physically informa-
tive points of the dispersion relation. We now derive an approximation
for the dispersion relation ω(k) that is valid at high values of k relative
to kc and will be useful for computing {kmax, ωmax} and kc quickly and
accurately because kmax and kc tend to be large. The approximation is
also useful for verifying the full numerical solution at high k, which
will be discussed in Convergence analysis section.

When k is sufficiently large compared to kc, at the cathode at x =
hc

0 = 1, we expect k2c1 to balance c′′
1 , and k2φ1 to balance φ′′

1 in
Equations 35 and 36 respectively. Therefore, k−2 is a small parameter

multiplying the highest order spatial derivative terms c′′
1 and φ′′

1, and the
spatial profiles for c1 and φ1 form a boundary layer with characteristic
thickness k−1. Hence, as an ansatz for the boundary layer analysis, we
assume

c1 = A exp[k(x − 1)], φ1 = B exp[k(x − 1)], [46]

where A and B are arbitrary constants that are determined from the
boundary conditions at x = hc

0 = 1. By assuming such an ansatz, the
cathode is effectively decoupled from the anode and the perturbation
growth rate is entirely dependent on the boundary conditions at the
cathode. The validity of this ansatz is corroborated by our observations
that hc

1 � ha
1 generally in our numerical simulations, especially at

large values of k, which was also observed by Sundström and Bark.149

Imposing the boundary conditions at x = hc
0 = 1, we obtain

ξ1(k) = c0,t

zc0Dk
, ξ2(k) = − zφ0,x + k

zc0k
, B(k) = −ξ1h1 + ξ2A,

[47]

A(k) = − βv j0,0

(
Ĝ1 − ξ1Ĝ3

) − βmα5ξ1k

βv j0,0

(
Ĝ2 + ξ2Ĝ3

) − βm

[
(α1 − α5ξ2)k − α2φ0,x

]h1, [48]

ω(k) = βm

{[
(α1 − α5ξ2 )k − α2φ0,x

][
βv j0,0

(
Ĝ1 − ξ1Ĝ3

) − βmα5ξ1k
]

βv j0,0
(
Ĝ2 + ξ2Ĝ3

) − βm
[
(α1 − α5ξ2 )k − α2φ0,x

] − α5ξ1k

}
,

[49]

where we define α1 = D − D+, α2 = z+D+ − zD and α5 = α2c0 −
z+D+ρs for brevity.

Approximate values of {kmax,ωmax} can be obtained by solving
ω′(k) = 0 and requiring ω′′(k) < 0 where the primes indicate total
derivatives with respect to k. In addition, by solving ω(k) = 0, we
can obtain approximate values of kc. However, this process is tedious
because the first term inside the braces in Equation 49 is a rational
function that consists of polynomials in k of relatively high degrees.
Specifically, after multiplying the numerator and denominator of this
term by k, it becomes a rational function with a numerator that is a
polynomial in k of degree 4 and a denominator that is a polynomial
in k of degree 2. Therefore, for the purpose of quickly approximating
{kmax, ωmax} and kc, we first find a simpler and yet still accurate ana-
lytical approximation for kc, which can then used as an initial guess
for numerically solving for {kmax, ωmax} using Equation 49 with MAT-
LAB’s fminbnd optimizer. Such an approximation can be obtained
by assuming kc is large enough that Ĝ2c1 � Ĝ1h1 and Ĝ3φ1 � Ĝ1h1
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Figure 2. Convergence plots of 
(ω) against log10 k with Da = 1 and Ja = 1.5 (overlimiting current) for ρs ∈ {−0.05, 0, 0.05} and N ∈
{251, 501, 1001, 2001, 4001} used in convergence analysis. The t

ts
values to which the curves correspond are indicated in the figure titles. In the legends, “num.”

refers to numerical solutions while “approx.” refers to approximate solutions.

and then setting ω = 0 in Equation 42, thus resulting in

kc =
{

1

α3γ

[
−α3nφ0,x + exp(−αnη0)c0,x

c0 − ρs

]} 1
2

. [50]

We observe that kc scales as Ca− 1
2 = γ− 1

2 , which is expected
because the surface energy stabilizing effect appears in the form
of γk2 in Ĝ1 in Equation 42, and this scaling agrees with that
obtained in previous work done on linear stability analysis of
electrodeposition.149,150,158,164,203

Convergence analysis.—Before analyzing the physical signifi-
cance of the linear stability analysis results, we would want to first
establish the accuracy and convergence of the full numerical solution
of the dispersion relation ω(k). To this end, we perform a numerical
convergence analysis in which we examine the convergence of the nu-
merical solution as the number of grid points N increases. At the same
time, we also compute the approximate ω(k) given by Equation 49 be-
cause we expect the numerical and approximate solutions to agree well
at high values of k; this therefore provides another way of checking
the accuracies of both the numerical and approximate solutions.

To demonstrate how the numerical dispersion relation ω(k)
changes with N , we fix Da = 1 and Ja = 1.5 (overlimiting cur-
rent) and plot numerically computed 
(ω) against log10 k for ρs ∈
{−0.05, 0, 0.05} and N ∈ {251, 501, 1001, 2001, 4001} at specific
t
ts

values in Figure 2. As expected, the numerical solutions converge
quickly as N increases from 251 to 4001. For ρs = 0 and ρs = 0.05
at small values of k, when the value of N is small at 251 or 501, we
observe that there are anomalously large values of 
(ω) that vanish at
larger values of N . This is because when N is too small, the grid is not
sufficiently fine to accurately resolve the base state variables, in par-
ticular the rapidly increasing electric field at the cathode near ts, thus
leading to an overestimation of the destabilizing effect caused by elec-
trodiffusion and an underestimation of the stabilizing effect caused by
surface energy. The numerical and approximate solutions also expect-
edly agree well with each other at large values of k and this agreement
improves as N increases, thus confirming that the approximations are
accurate at high k.

Because we are mostly interested in the kmax, ωmax and kc points
on the ω(k) curve, we plot them against N in Figure 3. We observe
that the numerically computed kmax, ωmax and kc curves rapidly level
off and converge to constant values as N increases. The numerical
and approximate solutions also agree very well as N increases, which
is expected because kmax and kc are large and the approximations are
accurate at high k. As a compromise between numerical accuracy
and computational time, we pick N = 1001 for all numerical and
approximate solutions computed in the following sections.

Parameter sweeps.—The base state anion concentration field c0,
electrolyte electric potential field φ0 and electric field E0 = −φ0,x

possess salient features that are useful for understanding the linear
stability analysis results. We focus on galvanostatic conditions under
an overlimiting current Ja > 1 because as explained in Transport
section, doing so provides us with Sand’s time ts as a time scale at
which the bulk electrolyte is depleted at the cathode. Depending on
the sign of ρs, the c0, φ0 and E0 fields behave differently at t = ts and
beyond. Fixing Da = 1 and Ja = 1.5 (overlimiting current), we plot
c0, φ0 and E0 against x for various t

ts
values for ρs ∈ {−0.05, 0, 0.05}

in Figure 4. For ρs = −0.05, because the system can go beyond ts

and eventually reach a steady state, we show plots up to t = 2ts. For
ρs = 0, since φ0 and E0 at the cathode diverge at ts, which cause the
numerical solver to stop converging, we can only show plots up to
t = 0.95ts. For ρs = 0.05, because ρs > 0 effectively reduces ts as
discussed in Transport section, we show plots up to t = 0.85ts.

For ρs = −0.05 < 0, the distinguishing features of running the
system at an overlimiting current carried by surface conduction are the
anion depletion region at the cathode and the bounded and constant
electric field E0 in this depletion region after t = ts. Because the an-
ion concentration gradient almost vanishes in the depletion region, the
current in this region is predominantly not carried by electrodiffusion
but by electromigration of the counterions in the electric double lay-
ers (EDLs) under the aforementioned bounded and constant electric
field E0, i.e., surface conduction. Moreover, because of this additional
surface conductivity, when compared to ρs = 0 and ρs = 0.05, E0 is
always smaller at all x for a given t . On the other hand, for the classical
case of ρs = 0, E0 at the cathode quickly increases near ts and even-
tually diverges at ts. Relative to this classical case, for ρs = 0.05 > 0,
E0 is always greater at all x for a given t and eventually diverges at the
cathode earlier than ts because of the “negative” surface conductivity
conferred by the positive background charge as discussed in Transport
section.

We now examine the dispersion relation ω(k) by plotting nu-
merically computed 
(ω) against k for various t

ts
values for ρs ∈

{−0.05, 0, 0.05}, Da ∈ {0.1, 1, 10} and Ja = 1.5 (overlimiting cur-
rent) in Figure 5. In Figure 5, ρs increases from left to right and Da
increases from bottom to top. Generally for all the parameters consid-
ered, the ω curve, in particular the kmax, ωmax and kc points, increases
and “moves in the northeast direction” as t increases; qualitatively, the
“total amount of instability” increases with t . For ρs = −0.05 < 0,
when compared to ρs = 0 and ρs = 0.05, the ω curve is the smallest at
a given t because of a smaller base state electric field E0. The ω curve
also remains bounded at all t and eventually reaches a steady state that
is almost attained near t = 2ts because E0 at the cathode behaves in the
same fashion. In sharp contrast, for the classical case of ρs = 0 near
ts, the ω curve grows dramatically because of the rapidly increasing
E0 at the cathode, which eventually diverges at ts and in turn causes
the ω curve to diverge at ts too. Compared to this classical case, for
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Figure 3. Convergence plots of kmax, ωmax and kc against N with Da = 1 and Ja = 1.5 (overlimiting current) for ρs ∈ {−0.05, 0, 0.05} used in convergence
analysis. Top row: Convergence plots of kmax and ωmax. Bottom row: Convergence plots of kc. The t

ts
values to which the curves correspond are indicated in the

figure titles. In the legends, “num.” refers to numerical solutions while “approx.” refers to approximate solutions.

ρs = 0.05 > 0, because E0 at the cathode is larger at a given t and di-
verges earlier than ts, the ω curve accordingly grows even more rapidly
at earlier times and diverges earlier than ts. Therefore, by bounding
the electric field at the cathode, the presence of a negative background
charge confers additional stabilization to the system beyond what is
provided by surface energy effects, although it does not completely
stabilize the system as there are still regions of positive growth rate
in the dispersion relation. On the other hand, for the classical case of
zero background charge, the system rapidly destabilizes near Sand’s
time and ultimately diverges at Sand’s time because of the diverging
electric field at the cathode, which is also demonstrated in Ref. 150.
Relative to this classical case, the presence of a positive background
charge destabilizes the system even further by generating an electric
field at the cathode that is larger at a given time and diverges earlier
than Sand’s time, resulting in higher growth rates at earlier times and
in finite time divergence earlier than Sand’s time.

We observe that increasing Da generally increases ω but this ef-
fect is very insignificant because the application of an overlimiting
current implies that the system is always diffusion-limited regardless
of what Da is. Hence, in this regime of diffusion-limited electrode-
position under an overlimiting current, specific details of the elec-
trochemical reaction kinetics model are not important in influencing
the dispersion relation as long as the model includes the surface en-
ergy stabilizing effect, which typically occurs in the functional form
of γk2.

In the interest of space, plots of numerically computed
(ω) against
k for Ja = 1 (limiting current) and Ja = 0.5 (underlimiting current)
are not shown here but are given in Figures 1 and 2 in Section V of
Supplementary Material respectively. Since the system is still always
diffusion-limited for Ja = 1, the trends observed for Ja = 1 are quali-
tatively similar to our previous discussion for Ja = 1.5, except that the
ω values are smaller because a smaller applied current density results
in a smaller electric field at the cathode. For Ja = 0.5, because the
applied current density is underlimiting, Sand’s time is not defined
and at the cathode, the bulk electrolyte concentration does not van-
ish and the electric field does not diverge at any t . Therefore, the ω
curve remains bounded at all t and reaches a steady state eventually.

Moreover, ω generally increases with Da, and this increase is espe-
cially pronounced when Da increases from 1 to 10; this effect was
also observed by Sundström and Bark149 who focused their analysis
on underlimiting currents. This increase in ω is not directly caused
by E0 because E0 does not change appreciably despite the increase in
Da (refer to Figures 3 to 5 in Section VI of Supplementary Material).
Rather, as discussed in Electrochemical reaction kinetics section, the
system becomes diffusion-limited when Da � 1, causing the surface
perturbations to destabilize faster.

As discussed in Approximations section, at each t point, each ω
curve exhibits a global maximum {kmax, ωmax} and a critical wavenum-
ber kc, which is where the curve crosses the horizontal axis ω = 0.
The {kmax, ωmax} and kc points provide a succinct way to summa-
rize the most physically significant features of the ω(k) curve for
all the parameter ranges we have explored thus far. Therefore, for
ρs ∈ {−0.05, 0, 0.05}, Da ∈ {0.1, 1, 10} and Ja ∈ {0.5, 1, 1.5}, we
plot numerically computed kmax and ωmax against t

ts
in Figure 6 and

numerically computed kc against t
ts

in Figure 7. For Ja ≥ 1, we observe
that the kmax and ωmax curves diverge near ts for ρs ≥ 0 but level off
to constant values past ts for ρs < 0, therefore these curves appear as
if they are “fanning out”. In contrast, for Ja < 1, the kmax and ωmax

curves level off past ts for all values of ρs as the system eventually
reaches a steady state when an underlimiting current is applied. The
kc curves have the same qualitative shape as the kmax curves except
that they are larger, as expected. The effects of Da and Ja on the kmax,
ωmax and kc values, which are previously discussed in the context of
the dispersion relation, are also clearly reflected in Figures 6 and 7.

In an effort to make the electrode surface less unstable at overlim-
iting current, we focus on ρs < 0 to determine how much additional
stabilization a negative ρs confers to the surface as it gets increasingly
more negative. Subsequently, we plot numerically computed kmax,
ωmax and kc against t

ts
for ρs ∈ {−1, −0.75, −0.5, −0.25, −0.05},

Da = 1 and Ja = 1.5 in Figure 8. While a more negative ρs gener-
ally decreases kmax, ωmax and kc, it is clear that there are diminishing
returns to the amount of additional stabilization achieved. It also ap-
pears that complete stabilization is not possible as ωmax remains posi-
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Figure 4. Plots of dimensionless base state anion concentration c0, electrolyte electric potential φ0 and electric field E0 against x for various t
ts

values with Da = 1
and Ja = 1.5 (overlimiting current) for ρs ∈ {−0.05, 0, 0.05}. First row: Plots of c0 against x. Second row: Plots of φ0 against x. Third row: Plots of E0 against x.
Blue lines correspond to early times t = 0.4ts and t = 0.6ts, green lines correspond to times near Sand’s time t = 0.85ts and t = 0.95ts, and red line corresponds
to time beyond Sand’s time t = 2ts. For each color, intensity increases in the direction of increasing t .

tive even for ρs = −1, albeit at a small value. In practice, it is probable
that a sufficiently small and positive ωmax value can be deemed to be
small enough for considering an electrode surface “practically stable”,
but experiments that measure and correlate ωmax with observations of
metal growth need to be performed in order to determine this threshold
ωmax value.

Comparison between numerical and approximate solutions.—
To illustrate how well the approximations given by Equations 49
and 50 work for the parameter ranges considered, we plot numer-
ical and approximate values of kmax, ωmax and kc against t

ts
for

ρs ∈ {−0.05, 0, 0.05}, Da = 1 and Ja = 1.5 in Figure 9. In the
interest of space, these plots for other values of Da and Ja are pro-
vided in Figures 6 to 11 of Section VII of Supplementary Material.
For all parameter ranges considered, the agreement between numer-
ical and approximate values of kmax, ωmax and kc is excellent, giving
us confidence that the approximations are useful for rapidly and ac-
curately computing kmax, ωmax and kc. This confirms that kmax and kc

are large enough that Equations 49 and 50, which have assumed that
k is sufficiently large, are accurate for approximating them. We will
therefore use Equations 49 and 50 extensively in Application to copper

electrodeposition and Pulse electroplating and pulse charging sections
that follow.

Application to copper electrodeposition.—We now apply linear
stability analysis to the specific case of copper electrodeposition and
electrodissolution and compare it with experimental data180 to deter-
mine how well theory agrees with experiment. Because copper elec-
trodeposition involves the overall transfer of two electrons that are
transferred one at a time in a serial manner, we need to first derive the
overall expression for the faradaic current density JF.

Assuming that the activity of electrons is 1 and dilute solution the-
ory is applicable, for a n-electron transfer reaction, the dimensionless
forms of Equations 12 and 9 are given by

JF = j0{exp(−αnη) − exp[(1 − α)nη]},
j0 = k0nĉ1−α

O ĉα
R = Danĉ1−α

O ĉα
R, [51]

�φeq = 1

n
ln

ĉO

ĉR
+ E� − 2γH

n
. [52]
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Figure 5. Plots of numerical 
(ω) against k for various t
ts

values for ρs ∈ {−0.05, 0, 0.05}, Da ∈ {0.1, 1, 10} and Ja = 1.5 (overlimiting current). ρs increases
from left to right and Da increases from bottom to top. Blue lines correspond to early times t = 0.4ts and t = 0.6ts, green lines correspond to times near Sand’s
time t = 0.85ts and t = 0.95ts, and red line corresponds to time beyond Sand’s time t = 2ts. For each color, intensity increases in the direction of increasing t .

For multistep electron transfer reactions, it is more convenient to work
with �φ instead of η. Therefore, we rewrite JF in terms of �φ as

JF = n

{
kcĉO exp

[
−αn

(
�φ + 2γH

n

)]

− kaĉR exp

[
(1 − α)n

(
�φ + 2γH

n

)]}
, [53]

E� = 1

n
ln

kc

ka
, k0 = kα

a k1−α
c , [54]

where kc and ka are the cathodic and anodic rate constants respectively.
The reaction mechanism for copper electrodeposition and elec-

trodissolution is given by103,204–206

Cu2+(aq) + e− � Cu+(ads), [55]

Cu+(ads) + e− � Cu(s), [56]

where (aq), (ads) and (s) indicate aqueous, adsorbed and solid respec-
tively. The first step is assumed to be the rate-determining step while
the second step is assumed to be at equilibrium. Applying Equation 53
to each step, noting that the activity of solid metal is 1 and rewriting

JF in terms of η, we obtain

JF = j0{exp(−α1η) − exp[(2 − α1)η]},

j0 = 2k0ĉ
1− α1

2+ = 2Daĉ
1− α1

2+ , [57]

�φeq = 1

2
ln ĉ+ + E� − 2γH , [58]

where α1 is the charge transfer coefficient of the first step.
Previously in Electrochemical reaction kinetics section, for a 1-step

n-electron transfer metal electrodeposition reaction, the dimensionless
forms of Equations 12 and 13 are given by

JF = j0{exp(−αnη) − exp[(1 − α)nη]}, j0 = k0nĉ1−α
+ = Danĉ1−α

+ ,
[59]

�φeq = 1

n
ln ĉ+ + E� − 2γH

n
. [60]

By comparing Equations 57 and 58 with Equations 59 and 60, we
set n = 2 and α = α1

2 and replace γ with 2γ in the original set
of equations in order to adapt the linear stability analysis for copper
electrodeposition.
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Figure 6. Plots of numerical kmax and ωmax against t
ts

for ρs ∈ {−0.05, 0, 0.05}, Da ∈ {0.1, 1, 10} and Ja ∈ {0.5, 1, 1.5}. ρs increases from left to right and Da
increases from bottom to top.

By carrying out nonlinear least squares fitting on experimental
steady state current-voltage relations, we have previously performed
parameter estimation181 for copper electrodeposition in a copper(II)
sulfate (CuSO4) electrolyte in cellulose nitrate (CN) membranes,180

which are a random nanoporous medium with well connected pores.
The parameters that are estimated are ρs, τ, Da, α1 and εp and their
fitted values are provided in Table III in Ref. 181. Other parameters
specific to the copper electrodeposition reaction, CuSO4 electrolyte
and CN membranes used are also provided in Tables I and II in Ref.
181. For the surface energy of the copper/electrolyte interface, we use
dimensional γ = 1.85 J/m2 given in Table I in Ref. 164.

For our analysis here, the specific experimental datasets that we fo-
cus on are labeled CN2(−) and CN2(+) in Ref. 181, which correspond
to negatively and positively charged CN membranes respectively with
a dimensional electrolyte concentration c0 of 100 mM. We will drop
the 2 subscript for brevity. The morphologies of the electrodeposited
copper films, which are visualized by EDS (energy dispersive X-ray
spectroscopy) maps, for these CN(−) and CN(+) membranes at 2000 s
for dimensional applied currents Ia of 15 mA, 20 mA and 25 mA are
given in Figure 10a that consists of magnifications of EDS maps taken
from Figures 6a to 6f of Ref. 180. At 15 mA, the copper films for
both CN(+) and CN(−) membranes appear to be uniform and sta-
ble. However, at 20 mA and 25 mA, the film for CN(+) becomes very
unstable and roughens more as the applied current increases. It is dif-
ficult to determine quantitatively the instability wavelength using the

relatively low resolution EDS maps but it is probably much smaller
than 5 μm. In contrast, for CN(−), the film still remains uniform and
stable at 20 mA but slightly destabilizes and roughens at 25 mA with
an instability wavelength probably on the order of 5 μm. In summary,
the onset of overall electrode surface destabilization occurs at 20 mA
for CN(+) with an instability wavelength of much smaller than 5 μm
and at 25 mA for CN(−) with an instability wavelength of about 5 μm.

Because the EDS maps are taken at 2000 s, which is much longer
than the diffusion times for CN(−) and CN(+) of 41.8 s and 40.9 s
respectively, we assume that the system is at steady state. This as-
sumption allows us to use the semi-analytical expressions for the base
state variables in Ref. 181, which we have previously discussed in
Base state section, to compute approximate values of {kmax, ωmax} and
kc using Equations 49 and 50. The CN(−) dataset has a dimensional
limiting current of 18.2 mA while the CN(+) dataset has a dimensional
maximum current, which we have discussed in Transport section, of
16.9 mA. Therefore, for CN(−), the three applied currents of 15 mA,
20 mA and 25 mA correspond to underlimiting, slightly overlimiting
and overlimiting currents respectively. On the other hand, for CN(+),
the model eventually diverges and does not admit a steady state when
the applied current Ia is above the maximum current Imax, therefore we
can only obtain finite values of {kmax,ωmax} and kc for the applied cur-
rent of 15 mA while the model predicts infinite values of {kmax, ωmax}
and kc for the applied currents of 20 mA and 25 mA due to finite time
divergence of the system. Other fitted key dimensionless parameters
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Figure 7. Plots of numerical kc against t
ts

for ρs ∈ {−0.05, 0, 0.05}, Da ∈ {0.1, 1, 10} and Ja ∈ {0.5, 1, 1.5}. ρs increases from left to right and Da increases from
bottom to top.

include ρs ≈ −0.01 and Da ≈ 2.50 for CN(−) and ρs ≈ 0.236 and
Da ≈ 0.473 for CN(+).

To summarize the model predictions, we plot approximate dimen-
sional values of λc and λmax against the dimensional applied current
Ia in Figure 10. In the λc plot in Figure 10a, we also indicate the char-

acteristic pore size hc of 0.5 ± 0.1 μm, which is given by twice the
pore diameter dp of 250±50 nm,180 in order to determine if the model
predicts overall electrode surface stabilization. As discussed in Ap-
proximations section, we expect overall electrode surface stabilization
if hc < λc, which corresponds to the blue shaded region in the λc plot.
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Figure 8. Plots of numerical kmax, ωmax and kc against t
ts

for ρs ∈ {−1,−0.75,−0.5,−0.25,−0.05}, Da = 1 and Ja = 1.5 (overlimiting current) for investigating
additional stabilization of electrode surface conferred by increasingly negative ρs values.
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Figure 9. Plots of numerical and approximate values of kmax, ωmax and kc against t
ts

for ρs ∈ {−0.05, 0, 0.05}, Da = 1 and Ja = 1.5 (overlimiting current). Top
row: Plots of kmax and ωmax. Bottom row: Plots of kc. In the legends, “num.” refers to numerical solutions while “approx.” refers to approximate solutions.

Figure 10. Plots of EDS (energy dispersive X-ray spectroscopy) maps
at 2000 s, and approximate dimensional λc (a) and λmax (b) at steady
state against dimensional applied current Ia for copper electrodepo-
sition in 100 mM copper(II) sulfate (CuSO4) electrolyte in cellulose
nitrate (CN) membranes. EDS maps in (a) and (b) are magnifications
of EDS maps in Figures 6a to 6f of Ref. 180 where the scale bars indi-
cate 50 μm. hc = 0.5±0.1 μm in the λc plot in (a) is the characteristic
pore size where the mean is indicated by the black dashed line while
the lower (LB) and upper (UB) bounds are indicated by gray dashed
lines.
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On the contrary, we expect overall electrode surface destabilization if
hc > λc, which corresponds to the red shaded region in the λc plot,
and the characteristic instability wavelength is λmax. Comparing the
λc plot with our previous discussion of the onset of overall electrode
surface destabilization suggested by the copper film morphologies
observed experimentally, we see that the model generally agrees well
with experiment; the only disagreement is at Ia = 20 mA where the
model predicts destabilization for CN(−), which has λc = 0.352 μm,
while the EDS map of the copper film at this applied current shows
that the film appears to be stable. Nonetheless, this disagreement in
theory and experiment is relatively minor since λc = 0.352 μm for
CN(−) at Ia = 20 mA is only slightly smaller than the mean of hc

of 0.5 μm and is almost equal to the lower bound of hc of 0.4 μm.
In addition, the model predicts λmax = 0 (because kmax → ∞ when
Ia > Imax) at Ia = 20 mA and Ia = 25 mA for CN(+) while it predicts
λmax = 1.09 μm at Ia = 25 mA for CN(−). These model predictions
of λmax qualitatively agree well with the experimentally observed in-
stability wavelengths at these applied currents that we have previously
discussed. Therefore, in conclusion, the theory agrees reasonably well
with experimental data, especially given that many assumptions and
simplifications are made in the model.

Pulse electroplating and pulse charging.—For many electro-
chemical applications such as electroplating and charging of metal
batteries, which is equivalent to electrodeposition at the metal nega-
tive electrode, it is desirable to operate them as quickly as possible at
a high current without causing the formation of dendrites that short-
circuit the system. To delay or prevent the formation of dendrites, it
is common to perform pulse electroplating of metals207,208 or pulse
charging of lithium metal batteries (LMBs) and lithium-ion batteries
(LIBs)209–217 so that there is sufficient time between pulses for the
concentration gradients and electric field in the system to relax. For
pulse electroplating of metals, it has been empirically observed that
the crystal grain size generally decreases with applied current.207,208

Using an applied direct current to perform silver electrodeposition un-
der galvanostatic conditions, Aogaki experimentally observed that the
crystal grain size decreases with time,137,138 which agrees well with
theoretical predictions from linear stability analysis previously done
by Aogaki and Makino.136 With all these considerations in mind, we
apply our linear stability analysis with a time-dependent base state
as a tool to investigate how pulse electroplating protocols with high
average applied currents, which are inherently time-dependent, affect
the linear stability of the electrode surface and the crystal grain size
for both zero and negative pore surface charges.

Based on the results in Application to copper electrodeposition sec-
tion, we generally expect the characteristic pore size hc to be larger than
the critical wavelength λc at high applied currents, therefore the elec-
trode surface is unstable with a characteristic instability wavelength
λmax. Because a pulse current is applied, λmax varies in time and hence,
it would be useful to define an average λmax that averages out the effect
of time. In this spirit, we define the average maximum wavenumber
k̄max and the corresponding average maximum wavelength λ̄max as

k̄max =
∫ tf

0 kmaxωmax dt∫ tf
0 ωmax dt

, λ̄max = 2π

k̄max
, [61]

where tf is the final time of the pulse and each maximum wavenumber
kmax is weighted by its corresponding maximum growth rate ωmax. We
expect λ̄max to be on the same order of magnitude as the the crystal
grain size that is observed experimentally. As a simple example, we
suppose that the pulse electroplating protocol is a periodic pulse wave
Ja with an “on” (charging) time of �ton, a “off” (relaxation) time of
�toff, and a period T given by T = �ton + �toff. The duty cycle γdc is
given by γdc = �ton

T and the average applied current density J̄a over one
period is given by J̄a = Ja,pγdc where Ja,p is the peak applied current
density. Hence, for a particular J̄a, a smaller γdc implies a larger Ja,p.

For the classical case of ρs = 0, we pick J̄a = 1 and �ton =
0.0125ts and vary γdc from 0.2 to 1 (direct current) where the Sand’s
time ts is calculated based on J̄a. J̄a, �ton and γdc should be carefully

chosen such that Ja,p is not too high to deplete the bulk electrolyte at the
cathode during the “on” cycle so that the system does not diverge at any
point in time; this explains why γdc < 0.2 for our choice of J̄a = 1 and
�ton = 0.0125ts cannot be numerically simulated. For ρs = −0.05,
we pick J̄a = 1.5 and �ton = ts and vary γdc from 0.1 to 1 (direct
current) to drive the system at an overlimiting average applied current
density. We also fix Da = 1 for both cases and use Equations 49 and 50
to compute approximate values of kmax and ωmax. For these choices of
parameters, as an illustrative example, we plot Ja, approximate kmax and
approximate ωmax against t for γdc = 0.5 in Figure 11. We note that the
large overshoot in kmax at the beginning of each “on” cycle for ρs = 0
is caused by the sharp rate of increase of the concentration gradients
and electric field as Ja rapidly increases from 0 in the “off” cycle to
Ja,p in the “on” cycle. Corresponding to these pulse waves, we plot
λ̄max against γdc in Figure 12. For both ρs = 0 and ρs = −0.05, λ̄max

increases with γdc, which agrees with the empirical observation that
the crystal grain size generally decreases with applied current.207,208

The ability to experimentally impart a negative pore surface charge
to the nanoporous medium therefore enables pulse electroplating at
overlimiting currents for electrodepositing a large amount of charge
at a high rate and tuning the desired crystal grain size.

Conclusions

We have derived the full model that couples the leaky membrane
model for ion transport, which is capable of predicting overlimiting
current due to surface conduction, with Butler-Volmer reaction ki-
netics, which describes the metal electrodeposition reaction, and per-
formed linear stability analysis on it with respect to a time-dependent
base state. The volume-averaged background charge density can gen-
erally be of any sign. As a result, we have generalized previous work
on linear stability analysis of electrodeposition carried out in Refs.
149,150,158. We then performed a boundary layer analysis on the
perturbed state in order to derive an accurate approximation for the
dispersion relation and a convergence analysis to verify the accuracy
and convergence of the full numerical solution of the dispersion re-
lation. By performing parameter sweeps over the volume-averaged
background charge density, Damköhler number and applied current
density under galvanostatic conditions, we have concluded that a neg-
ative background charge significantly stabilizes the electrode surface
instability, although it does not completely stabilize it, while a posi-
tive background charge further destabilizes this instability. We have
also verified that the approximations for the maximum wavenumber,
maximum growth rate and and critical wavenumber are very accu-
rate, and applied them to demonstrate good agreement between the-
ory and experimental data for copper electrodeposition in cellulose
nitrate membranes.180 Lastly, we have employed the linear stability
analysis as a tool to analyze the dependence of the crystal grain size
on duty cycle in pulse electroplating. These results demonstrate the
predictive power and robustness of the theory despite its simplicity.
Although detailed analysis of the Poisson-Nernst-Planck-Stokes equa-
tions for transport in a microchannel by Nielsen and Bruus134 reveals
that the leaky membrane model for surface conduction is at best a
rough approximation of the real system, the good agreement between
theory and experiment that we have demonstrated suggests that the
model is applicable in similar electrochemical systems using charged
membranes such as shock electrodeposition for information storage
applications218 and shock electrodialysis for water treatment.111–113

We have made many assumptions and simplifications in the model
presented, and relaxing some of them offers opportunities for ex-
tending it in useful ways. First, we have ignored surface adsorp-
tion, surface diffusion of adsorbed species139–142 and additional me-
chanical effects such as pressure, viscous stress and deformational
stress,156,157,159,161–163 which confer additional stabilization to the elec-
trode surface. Adding these physics and chemistry to the model are
likely to result in finite values of the maximum wavenumber, maximum
growth rate and critical wavenumber near and at Sand’s time under an
overlimiting current for zero and positive background charges respec-
tively, as opposed to diverging in our current model. The inclusion of
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Figure 11. Plots of Ja, approximate kmax and approximate ωmax against t with Da = 1 and γdc = 0.5 for pulse electroplating. Top row: ρs = 0, J̄a = 1 and
�ton = 0.0125ts. Bottom row: ρs = −0.05, J̄a = 1.5 and �ton = ts.

these additional mechanical effects will also extend the applicability
of the model to solid electrolytes219 that are used in solid state bat-
teries. Deformation of the porous medium caused by metal growth
inside the pores also results in a porosity that varies in both time and
space whose effects would be interesting to study. Second, in order to
apply the linear stability analysis to lithium metal batteries (LMBs),
we would also need to model the solid electrolyte interphase (SEI)
layer,176–179 which will certainly increase the complexity of the model
but also make it more predictive. Incorporating these two aforemen-
tioned extensions into the model may help explain recent experimental
studies of lithium growth that have demonstrated that competing SEI

reactions and stress effects lead to root growth before Sand’s time or
below limiting current,93–95 which is different from tip growth of den-
drites under transport limitation that we have focused on in this paper.
Third, other chemical mechanisms for overlimiting current such as
water splitting114,115 and current-induced membrane discharge132 may
be present. These effects are typically highly nonlinear and there-
fore, we expect them to significantly influence the transient base state
and linear stability analysis. Fourth, we should consider the effects
of coupling nucleation, which is fundamentally a nonlinear instability
unlike spinodal decomposition that is a linear instability, to the current
model. Specifically, nucleation may affect the transient base state dur-
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Figure 12. Plots of λ̄max against γdc with Da = 1. Left: ρs = 0, J̄a = 1 and �ton = 0.0125ts. Right: ρs = −0.05, J̄a = 1.5 and �ton = ts.
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ing initial and early reaction-limited surface growth and create surface
roughness on the scale of the characteristic nucleus size, which may in
turn influence overall electrode surface stabilization or destabilization
when the system reaches transport limitation near or at Sand’s time.
Fifth, an interesting and useful generalization of the reaction model
would be to use the symmetric Marcus-Hush-Chidsey kinetics220,221

or asymmetric Marcus-Hush kinetics222 instead of Butler-Volmer ki-
netics for modeling electron transfer reactions, which would afford us
the reorganization energy as a key system parameter whose influence
on the linear stability of the electrode surface can be investigated.
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