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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A machine learning strategy is proposed 
for optimizing rapid charging protocols. 

• The strategy explicitly includes con
straints that limit battery degradation. 

• The approach converges more quickly 
than other published optimization 
strategies. 

• The performance is quantified for vary
ing number of current steps in the 
protocol. 

• Three CC-step protocol charged 126.6 s 
and 14.0 s faster than the one and two 
CC-step protocols.  
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A B S T R A C T   

Lithium-ion batteries are one of the most commonly used energy storage device for electric vehicles. As battery 
chemistries continue to advance, an important question concerns how to efficiently determine charging protocols 
that best balance the desire for fast charging while limiting battery degradation mechanisms which shorten 
battery lifetime. Challenges in this optimization are the high dimensionality of the space of possible charging 
protocols, significant variability between batteries, and limited quantitative information on battery degradation 
mechanisms. Current approaches to addressing these challenges are model-based optimization and grid search. 
Optimization based on electrochemical models is limited by uncertainty in the underlying battery degradation 
mechanisms and grid search methods are expensive in terms of time, testing equipment, and cells. This article 
proposes a fast-charging Bayesian optimization strategy that explicitly includes constraints that limit degrada
tion. The proposed BO-based charging approaches are sample-efficient and do not require first-principles models. 
Three different types of acquisition function (i.e., expected improvement, probability of improvement, and lower 
confidence bound) are evaluated. Their efficacies are compared for exploring and exploiting the parameter space 
of charging protocols for minimizing the charging time for lithium-ion batteries described by porous electrode 
theory. The probability-of-improvement acquisition function has lower mean and best minimum charging times 
than the lower-confidence-bound and expected-improvement acquisition functions. We quantify the decrease in 
the minimum charging time and increase in its uncertainty with increasing number of current steps used in 
charging protocols. Understanding ways to increase the convergence rate of Bayesian optimization, and how the 
convergence scales with the number of degrees of freedom in the optimization, serves as a baseline for extensions 
of the optimization to include battery design parameters.  
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1. Introduction 

Lithium-ion batteries are ubiquitous in a wide range of applications 
including cellphones, laptops, automotive vehicles, and smart grids, due 
to high energy and power densities [1,2]. As battery chemistries 
continue to advance, an important question concerns how to determine 
charging protocols that best balance the desire for fast charging while 
limiting battery degradation mechanisms which shorten battery lifetime 
[3,4]. The operating temperature during battery charging is also of 
importance, as battery degradation is a strong function of the temper
ature, and high currents can result in excessive heat generation leading 
to the possibility of thermal runaway [5]. 

Challenges in the optimization of charging strategies are the high 
dimensionality of the space of possible charging protocols, significant 
variability between batteries, and limited quantitative information on 
battery degradation mechanisms. Grid search [4,6] and model-based 
optimization [7,8] are two approaches for probing the large battery 
operating parameter space. Grid search, which experimentally tests 
protocols from across the parameter space, including repeats to quantify 
variability, is accurate but expensive in terms of time, testing equipment, 
and cells. The use of battery models to optimize operating conditions in 
silico has been proposed as a way to reduce experimentation time. Yin and 
Choe [9] proposed a nonlinear model predictive control (NMPC) strategy 
for optimizing the charging current at different states of charge while 
limiting lithium plating and side reactions. Zhang et al. [10] developed an 
enhanced thermal model-based charging method to balance charging 
time and temperature rise, while satisfying polarization constraints. Yin 
et al. [11] presented and experimentally validated an alternative NMPC 
strategy that accounts for the reaction rates of solid electrolyte interphase 
(SEI) formation and lithium plating. Xu et al. [12] proposed a multi-stage 
charging strategy for lithium-ion batteries to minimize capacity fade 
accounting for the increase of SEI layer, in which an electrochemical- 
thermal-capacity fade coupled model is used to estimate battery inter
nal states, followed by using dynamic programming optimization to 
obtain charging current profiles. Li et al. [13] proposed a health-aware 
charging method that combines an ensemble transform Kalman filter 
for state estimation with a Proportional-Integral controller that is trig
gered by physical constraints. Romagnoli et al. [14] proposed a compu
tationally efficient reference governor method for fast charging while 
ensuring safety constraints. However, optimization based on electro
chemical models faces two key challenges: (i) Existing battery models do 
not describe all of the details of the degradation mechanisms and the 
effects of manufacturing variations [15,16]. The performance of model- 
based approaches is therefore limited by uncertainty in the underlying 
battery degradation mechanisms – especially in the early stage of 
development when a new battery chemistry is being introduced to the 
market. (ii) The electrochemical models that describe the details of 
degradation mechanisms in Li-ion batteries are described by hundreds or 
even thousands of states, which results in an expensive large-scale opti
mization problem when used to compute charging protocols [16,17]. The 
issues mentioned above can be addressed by applying a model-free 
Bayesian optimization (BO) framework for fast charging design. 

Bayesian optimization (BO) is a machine learning approach for the 
global optimization of objective functions that are expensive to evaluate 
and possibly noisy [18,19], which are the characteristics of the objective 
function in the fast-charging optimization problem for lithium-ion bat
teries. A BO approach comprises a surrogate model and an acquisition 
function. A surrogate model is an inexpensive probabilistic model such 
as a Gaussian process used for approximating the expensive objective 
function [18]. The role of the acquisition function, on the other hand, is 
to define a sample-efficient probing of the space of parameters by 
balancing exploration and exploitation [19,20]. 

BO approaches have been proposed for a variety of applications 
including robot path planning [21], autonomous driving policy deter
mination [22], network sensor placement [23], and hyperparameter 
tuning for complex machine learning algorithms (e.g., deep 

convolutional neural network) [24]. Investigations into the application 
of BO to fast-charging design, however, are limited. In one study [6], a 
BO algorithm was used to optimize fast-charging protocols by formu
lating the charging problem as the maximization of the battery cycle life 
in a fixed charging time. Although it is well established that the per
formance of a BO algorithm on its acquisition function,1 Ref. [6] 
considered only one such function: the upper confidence bound (UCB). 

This article extends the data-driven BO methodology in [6] in several 
specific ways. First, we minimize the charging time instead of keeping it 
fixed. Second, we optimize over the choice of acquisition functions (i.e., 
expected improvement (EI), probability of improvement (PI), and lower 
confidence bound (LCB) 2), to determine which has the fastest conver
gence to an optimal charging protocol. Third, we explicitly include 
constraints in the fast-charging optimization problem to prevent oper
ating under conditions that are known to induce high degradation rates. 
It is widely acknowledged that cells degrade faster at elevated temper
atures (e.g., >40 ◦C) or higher voltages (e.g., >4.1 V) [25,26], 
depending on the battery chemistry (e.g., graphite/lithium iron phos
phate). Such bounds approximately maintain the thermodynamic con
ditions required to avoid irreversible side reactions that could lead to 
accelerated degradation by consuming lithium inventory or building 
internal resistance. For example, lithium metal plating on the graphite 
anode (rather than lithium-ion intercalation) is an important mechanism 
for reduced battery lifetime when the voltage bound is exceeded during 
fast charging [27,28], which can also trigger thermal runaway [29]. The 
nucleation of lithium metal is strongly coupled to heterogeneous 
“mosaic” phase transformations of lithiated graphite [30], which would 
require a multiphase porous electrode theory [16] to describe in detail 
[31], but simply imposing voltage and temperature bounds within 
traditional single-phase porous electrode theory [32] provides a useful 
proxy for Li-plating-based degradation in the design of fast charging 
protocols. As proof of principle, therefore, we impose typical constraints 
on the maximum temperature (40 ◦C) and voltage (4.1 V) to determine 
the optimal fast charging protocol for a standard porous electrode 
model. We implement the constraints in a manner that does not increase 
the number of degrees of freedom in the BO, and hence does not increase 
the number of experiments that would be need to determine a fast- 
charging protocol. The proposed BO-based charging techniques are 
evaluated for a simulated graphite/LiCoO2 (LCO) cell, with the param
eter values fix to experimental data [32]. 

The main contributions of this work are  

(i) A data-driven BO framework is proposed to optimize fast charging 
while satisfying constraints that limit battery degradation. The BO- 
based charging approaches are sample-efficient and do not require 
first-principles models, in contrast to model-based optimization 
methods that require detailed quantitative understanding of the 
underlying battery degradation mechanisms, and grid search 
methods that test protocols from across the parameter space, which 
are expensive in terms of testing cells (i.e., sample-inefficient).  

(ii) The performance of various acquisition functions (i.e., expected 
improvement, probability of improvement, and lower confidence 
bound) is thoroughly compared and discussed for the minimum 
charging time problem with application to a simulated graphite/ 
LiCoO2 battery. This study analyzes the convergence rate of 
Bayesian optimization, and how the convergence scales with the 
number of degrees of freedom in the optimization. 

The rest of this article is organized as follows. The BO approach is 
briefly described in Section 2. The proposed BO approach for battery 

1 The acquisition function is defined in the Methods section. 
2 Ref. [6] used the upper confidence bound (UCB) for solving the optimiza

tion formulated as a maximization. This acquisition function is equivalent to the 
LCB in this article, which formulated as a minimization. 
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optimal charging design is developed in Section 3. The effectiveness of 
the proposed fast-charging scheme is demonstrated for a simulated 
graphite/LiCoO2 (LCO) cell in Section 4, followed by conclusions in 
Section 5. 

2. Bayesian optimization approach revisited 

The objective of the Bayesian optimization in this article is to mini
mize a function f : X→R , where X⊂Rd . At time step t, we select a point xt 
and observe a noisy function evaluation 

yt = f (xt)+ εt (1)  

where εt is measurement noise following εt ∼ N(0, σ2) . Let x* =

argminxt∈Xf(xt) , and Δt(x) = f(xt) − f(x*) measuring the deviation from 
the optimal function value. 

Gaussian process regression is used to build a probabilistic surrogate 
model of the function f, and then acquisition functions are constructed 
based on the surrogate model to decide where to sample next. The main 
features of the probabilistic surrogate model (Gaussian process regres
sion) and acquisition functions (EI, PI, and LCB) are described below. 

2.1. Gaussian process regression 

Gaussian processes (GPs) are distributions over functions, such that 

any finite set of function values follows a joint Gaussian distribution 
[33]. In GP, the mean of f(x) is often assumed zero due to lack of a priori 
knowledge, and its covariance for any two inputs xi and xj is provided by 
a kernel function κ

(
xi, xj

)
[33]. Given a set of inputs x = {xi}

N
i=1 and the 

corresponding function values f = {f(xi)}
N
i=1 and measurements y =

{
yi
}N

i=1, it can be derived from Eq. (1) that 

yÑ
(
0, Kf ,f + σ2IN

)
(2)  

where Kf,f is the N-by-N matrix defined by [Kf ,f ]i,j = κ(xi, xj) . The choice 
of the kernel function κ(xi, xj) depends on a priori knowledge and data. A 
commonly used Gaussian kernel is used here [33]. 

For a new input x∗ , its GP model output is denoted as f* . Since the 
joint distribution of f* and the observed measurements y follow 

y, f*Ñ
(

0,
[

Kf ,f + σ2IN Kf ,∗
K∗,f K∗,∗

])

(3)  

with KT
*,f = Kf ,* = [κ(x1, x*)κ(x2, x*)⋯κ(xN, x*)]

T and K*,* = κ(x*,x*), the 
predicted mean and variance of f* given y are 

E[f*|y] = K*,f (Kf ,f + σ2IN)
− 1y (4)  

cov[f*|y] = K*,* − K*,f (Kf ,f + σ2IN)
− 1Kf ,* (5)  

(a) (b)

(c) (d)
Fig. 1. Charging profiles for one-step charging protocols using the applied currents at 30, 40, 50, 60 and 75 A/m2: (a) SOC, (b) applied current density, (c) cell 
terminal voltage, and (d) cell temperature. 
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2.2. Acquisition functions 

2.2.1. Probability of improvement 
The acquisition function of the probability of improvement (PI) is to 

maximize the probability of improvement over the incumbent f(x+) , 
where x+ = argmin

xi∈X1:t

f(xi) , so that [18,19] 

αPI(x) = p(f (x)⩽f (x+) − m)

= Φ
(

f (x+) − u(x) − m
σ(x)

) (6)  

where Φ(⋅) is the normal cumulative distribution function; μ(x) and σ(x)
are the posterior predictive marginal GP mean and standard deviation, 
respectively; and m ≥ 0 is a margin parameter that selects the evaluation 
point most likely to provide at least m improvement, which is taken as 
the estimated noise standard deviation [20]. 

2.2.2. Expected improvement 
The expected improvement (EI) function with respect to the pre

dictive distribution of the Gaussian process enables a balance to the 
tradeoff of exploitation and exploration. The EI acquisition function is to 
maximize the improvement which is expressed as [19] 

αEI(x) =
{
(f (x+) − u(x) − m )Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0
0 if σ(x) = 0 (7)  

where 

Z =

⎧
⎪⎨

⎪⎩

f (x+) − u(x) − m
σ(x) if σ(x) > 0

0 if σ(x) = 0
(8)  

ϕ(Z) is the normal probability distribution function, and the parameter 
m is similar as in Eq. (6). The term (f(x+) − u(x) − m )Φ(Z) in Eq. (7) is 
for exploitation and the term σ(x)ϕ(Z) is for exploration. 

2.2.3. Lower confidence bound 
The Gaussian process lower confidence bound (LCB) acquisition 

function is defined as [18] 

αLCB(x) = μ(x) − β1/2
n σ(x) (9)  

where μ(x) and σ2(x) are the posterior predictive marginal GP mean and 
variance, respectively, and βn is a hyperparameter for balancing local 
and global search by favoring regions with low posterior mean and high 
posterior variance. Although theory indicates that the value of βn should 
increase with evaluation number [19,22], in practice its value is 
commonly selected as a constant between 0.01 and 100 [19]. This article 

(a) (b)

(c) (d)

Fig. 2. Charging profiles for one CC-step charging protocols using the applied currents at 53, 55, 56.8, 58, and 60 A/m2: (a) SOC, (b) applied current density, (c) cell 
terminal voltage, and (d) cell temperature. 
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sets the value βn = 4 using the procedure described in the Appendix B. 

3. Battery optimal charging problem 

This section briefly discusses battery models and the fast-charging 
optimization problem formulated within the Bayesian optimization 
framework. A widely used first-principles electrochemical model is 
considered that describes many of the physicochemical details of battery 
dynamics, followed by a description of the formulation of the minimum- 
time charging problem. 

3.1. Porous electrode theory-based electrochemical model 

The porous electrode theory (PET) model, which is originally 
developed by Newman and co-workers [34,35], is the most widely used 
framework for describing physical processes governing lithium-ion 
battery systems [36]. This article uses LIONSIMBA [32] – a MATLAB 
implementation of the PET model based on the finite volume method – 
as a battery simulator for the evaluation of the BO algorithms for the 
data-driven optimization of battery cycling protocols. 

The main governing equations are summarized here, with some 
equations applying to both cathode and anode. The diffusion of lithium 
ions within each solid particle is described by [34,35] 

∂
∂t

cs(z, t) =
1
z2

∂
∂z

[

z2Ds
eff

∂
∂z

cs(z, t)
]

(10)  

with boundary conditions 

∂
∂z

cs(z, t)
⃒
⃒
⃒
⃒z=0 = 0,

∂
∂z

cs(z, t)
⃒
⃒
⃒
⃒z=Rs = −

j(z, t)
Ds

eff
(11)  

where t is time, z is the one-dimensional spatial variable; cs(z, t) is the 
concentration of the solid particles; Rs is the radius of the solid particles; 
Ds

eff is the effective diffusion coefficients within the particles; and j(z, t) is 
the ionic flux. 

The bulk state of charge (SOC) of the anode is defined as 

SOC(t) :=
1

Lncmax,n
s

∫ Ln

0
cs(z, t)dz (12)  

where cmax,n
s is the maximum concentration of lithium ions in the 

negative electrode. 
The flow of lithium ions inside the electrolyte is described by [34,35] 

ε ∂
∂t

ce(z, t) =
∂
∂z

[

Deff
∂ce(z, t)

∂z

]

+ a(1 − t+)j(z, t) (13)  

where ce(z, t) is the concentration of lithium ions in the electrolyte, Deff 
is the effective diffusion coefficient in the electrolyte, a is the ratio of 
particle surface area to its volume, t+ is the transference number, and ε is 
the material porosity. 

According to Ohm’s law, the conservation of charge in the electrodes 
can be modeled as 

∂
∂z

[

σeff
∂
∂z

Φs(z, t)
]

= aFj(z, t) (14)  

where Φs(z, t) is the solid potential, F is Faraday’s constant, and σeff is 
the effective conductivity of the electrodes. The voltage of the Li-ion cell 
can be calculated from 

V(t) = Φs(0, t) − Φs(L, t) (15)  

where z = 0 and z = L correspond to the current collector at the cathode 
and anode sides. 

The temperature dynamics are described by 

ρCp
∂
∂t

T(z, t) =
∂
∂z

[

λ
∂
∂z

T(z, t)
]

+ Qohm(z, t)

+Qrxn(z, t) + Qrev(z, t)
(16)  

where λ is the thermal conductivity, Cp is the specific heat, ρ is the 
material density, and the terms Qohm(z, t) , Qrev(z, t) , and Qrxn(z, t)
represent ohmic, reversible, and reaction heat sources [32,35]. 

The above equations are coupled through ionic flux, which is 
described via the Butler–Volmer equation 

jint(z, t) = 2
i0,int

F
sinh

[
0.5F

RT(z, t)
ηint

]

(17)  

where ηint is the electrode overpotential and i0,int is the exchange current 
density given by 

i0,int = Fkeff

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ce(z, t)
(
cmax

s − c*
s (z, t)

)
c*

s (z, t)
√

(18)  

where keff is the effective kinetic reaction rate, and c*
s (z, t) is the surface 

concentration of the solid particles. 
The constraints on current, voltage, and temperature are imple

mented in a manner that does not increase the number of degrees of 
freedom in the cycling protocol optimization. The constraint on the 
current is handled directly, by only allowing the BO to choose values 
within the current constraints. During charging, the satisfaction of the 
voltage and temperature constraints is continuously monitored in real 
time. If the voltage or temperature reaches its maximum allowed value, 
then the current is reduced only as much as needed to satisfy both the 
voltage and temperature constraints. This way of embedding constraints 
into the battery operation does not increase the number of degrees of 
freedom of the optimization variables, which enables BO to have faster 
convergence to produce results of higher accuracy for the same number 
of evaluations, or for the same degree of optimality to be achieved with 
fewer evaluations. 

3.2. Minimum time charging problem 

The objective is to solve the battery charging problem in minimum 
time given a battery model and operating constraints. Specifically, the 
minimum charging time problem is formulated as 

Fig. 3. Mean and standard deviation of the minimum charging time optimized 
by BO-EI, BO-PI, and BO-LCB as a function of the number of evaluations. Each 
optimization procedure was repeated 20 times for each acquisition function. 
The mean minimum charging time tf obtained by using BO-EI, BO-PI, and BO- 
LCB after 30 evaluations are comparable, at 1178.5 s (i.e., Δt = 8.4), 1175.4 s 
(i.e., Δt = 5.3), and 1179.7 s (i.e., Δt = 9.6) respectively, where Δt =

tf − 1170.1 . The means and standard deviations are plotted separately 
in Fig. A1. 
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min
I(t)

{
tf
}

(19)  

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

battery dynamics in (10) - (17)
Tcell(t0) = T0

SOC(tf ) = SOCref

V(t)⩽Vmax, Tcell(t)⩽Tmax
cell

I(t) ∈ [Imin, Imax]

(20)  

where t0 = 0 and tf are the initial and final times of the charging process, 
T0 is the initial value for the temperature, SOCref is the reference of SOC 
at which the charging is considered completed, [Imin, Imax] is the bound 
interval for the charging current, and Vmax and Tmax

cell are upper bounds for 
the voltage and temperature. 

Multi-constant-current-step charging protocols are considered here, in 
which I(t) is a series of constant current steps which, for a fixed number of 
steps, are parameterized by the values of the current within each step and 
the times for switching between each step. This structure can be written as 
I1(t1)-…-Ii(ti)-Ii+1(tf), where Ii, i = 0, 1, 2, …, is the ith applied current 
density, ti is the charging time at which the current switches, and tf is the 
final charging time. If the cell voltage during charging reaches its 

maximum allowed value, or the cell temperature during charging reaches 
99.5% of its maximum value,3 the charging switches from constant current 
to constant voltage (see the last paragraph of Section 3.1). This approach 
embeds the inequality constraints on the voltage and temperature in Eq. 
(20) into the battery’s operation. The battery operation always starts at the 
same temperature and always operates until the SOC reaches SOCref , 
which also sets the finite time tf . This approach reduces the explicit 
constraints in Eq. (20) to only being the minimum and maximum values of 
the current in each time step, greatly simplifying the formulation and 
implementation of the Bayesian optimization. 

4. Results and discussion 

This section explores ways to increase rate of convergence to an 
optimal charging protocol or, equivalently, to minimize the number of 
battery cycling experiments needed to reach the optimal charging pro
tocol within a specified degree of accuracy. Our goal is to obtain a 

(a) (b)

(c)

Fig. 4. Comparison of (a) EI, (b) PI, and (c) LCB acquisition functions for the minimum time charging protocol optimization of a CC-CV charging profile.  

3 This strategy is known as a “soft limit” or “soft constraint” in the optimal 
control literature, and is widely used to simplify calculations [37]. The 99.5% is 
a design parameter set just low enough that the maximum allowable temper
ature is not reached during operation. 
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minimum time charging protocol that charges the battery from 20% 
state of charge (SOC) to 80% SOC, while keeping the cell temperature 
and cell terminal voltage within operational constraints. The noise-to- 
signal ratio σ in Eq. (1) is 5% in this work. The initial cell temperature 
is 303.15 K and the ambient temperature is 300 K. The values of the 
constraint parameters are Vmax = 4.1V , Tmax

cell = 313.15K , and [Imin,

Imax] = [30, 75]A/m2 . 
We examine the performance of various acquisition functions (i.e., 

EI, PI, and LCB) for the minimum time charging problem using the 

electrochemical model in Section 3, for a graphite anode/LiCoO2 (LCO) 
cathode cell, with the parameter values given in [32]. LIONSIMBA [32], 
which is a MATLAB implementation of the PET model based on the finite 
volume method, is used in place of experiments for evaluation of the 
data-driven methods for the optimization of battery cycling protocols. 

4.1. Case study 1: Single-constant-current-step (aka CC-CV) charging 
protocol 

The objective in this subsection is (i) to validate the performance of 
Bayesian optimization on the minimum time charging problem, and (ii) 
to compare the performance of using the acquisition functions of EI, PI, 
and LCB for exploiting and exploring the parameter space of charging 
protocols. The CC-CV charging protocol is first considered, followed by 
the multi-constant- current step protocols. 

Before presenting the BO results, it is instructive to first discuss the 
simulation results for noise-free CC-CV simulations. Figs. 1 and 2 plot 
the SOC, applied current density, voltage, and temperature profiles for 
initial applied currents of {30, 40, 50, 60, 75} A/m2 and {53, 55, 56.8, 

(a)

(b)
Fig. 5. The mean and standard deviation of the MCT obtained by BO-EI, BO-PI, and BO-LCB as a function of the number of evaluations for multi-constant-current- 
step charging protocols for (a) two CC steps, for which the optimal charging protocol I1(t1) − I2 = 75.0 A/m2 (400.1 s)-51.8 A/m2 and the corresponding MCT is 
1057.5 s where Δt = tf − 1057.5 , and (b) three CC steps, for which the optimal charging protocol I1(t1) − I2(t2) − I3 = 74.7 A/m2 (397.1 s)-52.4 A/m2(745.9 s)-73.4 
A/m2 and the corresponding MCT is 1043.5 s where Δt = tf − 1043.5 . Each procedure was repeated 20 times for each acquisition function. The plots at the right are 
zoom-ins of the plots on the left, to provide more resolution for larger numbers of evaluations. The means and standard deviations are plotted separately in Fig. A2. 
The mean MCT tf produced by BO-EI, BO-PI, and BO-LCB are 1134.8, 1118.7, and 1130.7 s respectively for the two-step charging protocols, and 1116.7, 1107.2, and 
1117.0 s respectively for the three-step protocols. 

Table 1 
Best and mean of minimum charging times produced by the BO approach for the 
one, two, and three CC-step protocols.   

One CC-step 
protocol 

Two CC-step 
protocol 

Three CC-step 
protocol 

Best minimum 
charging time 

1170.1 s 1057.5 s 1043.5 s 

Mean minimum 
charging time 

1175.4 s 1118.7 s 1107.2 s  
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58, 60} A/m2 respectively for the deterministic battery (i.e., noise-free 
observations). When the initial applied currents are between 30 and 
40 A/m2, the CC charging is used throughout the whole process, without 
hitting the voltage or temperature limits. When the initial applied cur
rents are between 40 and 55 A/m2, the charging process first hits the 
voltage limit, which triggers the charging switching from CC to CV; 
when the initial applied currents are between 55 and 75 A/m2, the 
charging process first hits the soft limit on the temperature (i.e., 99.5% 
of upper bound of temperature Tmax

cell ), triggering the charging to switch 
from CC to CV. As shown in Figs. 1 and 2, the optimal charging current is 
56.8 A/m2, and the corresponding minimum charging time is 1170.1 s. 

Given the budget of 30 evaluations, the mean and standard deviation 
of minimum charging time (MCT) for the minimum-time charging pro
tocols optimized by using the EI, PI, and LCB acquisition functions are 
plotted as a function of the number of evaluations in Fig. 3. As the 
number of evaluations increases, the mean MCT monotonically de
creases for all three acquisition functions. The MCT drops the most 
during the first 7 evaluations, with relatively modest further reductions 
during additional evaluations. For the same number of evaluations 
within the range from 8 to 30, the BO-PI had faster charging time than 
BO-EI and BO-LCB. Also, for the same number of evaluations within the 

range from 9 to 30, the performance of BO-PI and BO-EI is more 
consistent than BO-LCB, while providing lower mean minimum 
charging time. 

Fig. 4 visualizes the sampling behavior to reach the optimal charging 
profile, along with the corresponding GP modeling for the objective 
function, by the utilization of acquisition functions of EI, PI, and LCB, 
respectively. The EI, PI, and LCB acquisition functions provide distinct 
sampling behaviors over time. The exploratory behavior of PI and LCB 
acquisition functions did not sample the region around the applied 
current density from 35 A/m2 to 48 A/m2 once PI and LCB determined 
there was a minimum chance of improvement (Fig. 4bc), whereas the EI 
acquisition function continued to explore (Fig. 4a). The LCB acquisition 
function became trapped near 62 A/m2 after several iterations (Fig. 4c), 
which occurred because its exploitation term μ(x) in Eq. (9) is more 
dominant than the exploration item and σ2(x) , which results in the 
sampling behavior, tended to concentrate around the optimum of the 
past sampled points. 

For noisy observations, to avoid maximizing the probability or ex
pected improvement over an unreliable sample, the BO methods prob
abilistically repeat samples to obtain more reliable estimates. This 
resampling is observed in the sampling behaviors of all three acquisition 

(a) (b)

(c) (d)

Fig. 6. The best charging protocols provided by BO-PI for one, two, and three CC steps after 30 evaluations: (a) applied current density, (b) cell terminal voltage, (c) 
cell temperature, and (d) SOC. The dashed lines in the cell temperature are the hard limit of temperature (i.e., upper bound of temperature Tmax

cell ) and soft limit of the 
temperature (i.e., 99.5% of upper bound of temperature Tmax

cell ) that triggers the charging switching from CC to CV step. The MCT for the one, two, and three CC-step 
protocols is 1170.1 s, 1057.5 s, and 1043.5 s. 
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functions. Resampling is performed in the promising area around the 
applied current densities of 56 A/m2, 60 A/m2, and 62 A/m2 by the 
acquisition functions of EI, PI, and LCB respectively, as shown in Fig. 4. 

4.2. Case study 2: Multi-constant-current-step charging protocol 

The multi-constant-current-step protocols I1(t1)− …− Ii(ti)− Ii+1(tf), i 
= 1, 2, are considered in this subsection given a budget of 30 evalua
tions. I1, t1, I2 are the variables to be optimized by the BO in the case of a 
two CC-step charging protocol and I1, t1, I2, t2, I3 for the case of a three 
CC-step protocol. For the same number of evaluations from 19 to 30, BO- 
PI had faster charging time than BO-LCB and BO-EI for both the two- and 
three-step charging protocols. The MCT decreases with increasing 
number of current steps (Table 1), as more degrees of freedom become 
available for optimization. 

The best MCT was achieved by the PI acquisition function for one, 
two, and three CC-step protocols, with the applied current density, state 
of charge, cell voltage, and cell temperature plotted in Fig. 6. The 
charging processes for one and three CC-step protocols first hit the soft 
limit of the temperature (i.e., 99.5% of the upper bound of the tem
perature Tmax

cell ), which enables the charging to switch from CC to CV, 
while the two CC-step charging first hits the voltage limit that triggered 
its charging to switch from CC to CV. In both cases, the maximum 
charging current is applied until the switching point (hitting the voltage 
or temperature limits). Compared with the MCTs optimized for one and 
two CC-step charging protocols, the three CC-step protocol charged 
126.6 s and 14.0 s faster, respectively. The mean and best MCT are 
farther apart for the three than the two CC-step protocols (Table 1), and 
for the two than the one CC-step protocols. The difference between the 
mean and best MCT for three CC-step protocols is 63.7 s, which are 58.4 
and 2.5 s larger than that of one CC-step (5.3 s) and two CC-step pro
tocols (61.2 s), respectively. The reason for the differences is that, for a 
fixed number of evaluations, the higher dimension of the parameter 
spaces, the larger the variance of results produced by the BO methods. In 
addition, the increase in the difference between the mean and the best 
charging time – a measure of the uncertainty – is modest when 
increasing the number of degrees of freedom in the optimization when 
going from two- to three-CC-step protocols. 

For one CC-step charging protocols, the Bayesian optimization 
reduced the charging time from tf = ~2000 s to tf = 1170.1 s (Fig. 4 and 
Table 1), which is a reduction in charging time of ~ 41%. For two CC- 
step and three CC-step protocols, the charging time was reduced from 
~ 2000 s to 1057.5 s and 1043.5 s (Table 1), respectively, which are 
reductions of ~ 47% and ~ 48%. Increasing the number of CC-steps 
from one to two resulted in a significant reduction in charging time, 
whereas including a third CC-step led to marginal improvement. The 
three CC-step protocol has more variations in applied current and tem
perature than the two CC-step protocol (Fig. 6), suggesting that the two- 
step protocol may have less degradation in practice. Given that the 
reduction in the charging time from increasing the number of CC-steps 
from two to three is marginal, a reasonable approach would be to use 
the two CC-step protocol. 

For practical applications, the proposed BO-based approaches just 
need an initial set of data for training the machine learning model. 
Specifically, a surrogate model of Gaussian process (GP) is trained on the 
initial dataset; and an acquisition function is constructed using the in
formation of the learned GP model to probe the next data sample. The 
data sample is then incorporated into the dataset to update the GP 
model. These procedures are repeated until obtaining optimal charging 

protocols or reaching the maximum iteration step. 

5. Conclusions 

In this article, a Bayesian optimization strategy is examined for the 
minimum time battery charging problem in the presence of voltage and 
temperature constraints. We explore three types of acquisition functions 
(i.e., expected improvement, probability of improvement, and lower 
confidence bound) for minimizing the charging time for single- and 
multi-constant-current-step charging profiles. The BO strategy was 
evaluated for a porous electrode theory-based electrochemical model. 
The BO-based charging approaches are sample-efficient and do not 
require first-principles models. The probability-of-improvement acqui
sition function has lower mean and best minimum changing time than 
the expected-improvement and lower-confidence-bound acquisition 
functions. We quantified the decrease in the minimum charging time 
with increasing number of current steps – the three CC-step protocol 
charged 126.6 s and 14.0 s faster than the one and two CC-step pro
tocols, respectively. We also quantified the increase in the uncertainty in 
the minimum charging time with increasing number of degrees of 
freedom in the optimization. For the best-performing acquisition func
tion, the difference between the mean and best MCT for the three-CC- 
step protocol is 63.7 s, which are 58.4 s and 2.5 s larger than that of 
one CC-step (5.3 s) and two-CC-step protocols (61.2 s), respectively. The 
increase in the difference between the mean and the best charging time – 
a measure of the uncertainty – is modest when increasing the number of 
degrees of freedom in the optimization when going from two- to three- 
CC-step protocols. 

In terms of future work, the BO strategy can be used to optimize 
smooth fast charging protocols by parameterizing the time-varying 
current in terms of a basis function expansion or a spline [e.g., [8- 
11]]. The BO strategy can also be applied to include the optimization of 
battery design parameters, which is relevant for next-generation elec
trode and electrolyte chemistries (e.g., Si anodes, S cathodes, and solid- 
state electrolytes) with unfamiliar electrochemical behaviors near 
commercial deployment [38,39]. 
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Appendix A 

Figs. A1 and A2 are alternative ways to plot the data in Figs. 3 and 5. 
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Fig. A1. Mean (left) and standard deviation (right) of the minimum charging time for one CC-step in the CC-CV protocol optimized by BO-EI, BO-PI, and BO-LCB as a 
function of the number of evaluations. Each optimization procedure was repeated 20 times for each acquisition function. The mean minimum charging time tf 
obtained by using the BO-EI, BO-PI, and BO-LCB methods after 30 evaluations are comparable, at 1178.5 s (i.e., Δt = 8.4), 1175.4 s (i.e., Δt = 5.3), and 1179.7 s (i. 
e., Δt = 9.6) respectively, where Δt = tf − 1170.1 . 

(a) (b)

(c) (d)
Fig. A2. The performance of minimum charging time optimized by BO-EI, BO-PI, and BO-LCB as a function of evaluation number for multi-constant-current-step 
charging protocol: (a) mean and (b) standard deviation of the MCT for two CC-step charging, in which the optimal charging protocol I1(t1) − I2 = 75.0 A/m2 

(400.1 s)-51.8 A/m2 and the corresponding MCT is 1057.5 s, and (c) mean and (d) standard deviation of the MCT for three CC-step charging, in which the optimal 
charging protocol I1(t1) − I2(t2) − I3 = 74.7 A/m2 (397.1 s)-52.4 A/m2(745.9 s)-73.4 A/m2 and the corresponding MCT is 1043.5 s. The same procedure was repeated 
20 times for each acquisition function. 
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Appendix B 

Fig. B1 depicts the performance of BO-LCB as a function of βn , a hyperparameter in the LCB acquisition function for balancing the exploration and 
exploitation (see Eq. (9)), for the minimizing the charging time. It can be observed that βn = 4 is an appropriate value for BO-LCB for the fast-charging 

optimization. 
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