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Dip coating consists of withdrawing a substrate from a bath to coat it with a thin liquid
layer. This process is well understood for homogeneous fluids, but heterogeneities, such as
particles dispersed in liquid, lead to more complex situations. Indeed, particles introduce
a new length scale, their size, in addition to the thickness of the coating film. Recent
studies have shown that, at first order, the thickness of the coating film for monodisperse
particles can be captured by an effective capillary number based on the viscosity of
the suspension, providing that the film is thicker than the particle diameter. However,
suspensions involved in most practical applications are polydisperse, characterized by
a wide range of particle sizes, introducing additional length scales. In this study, we
investigate the dip coating of suspensions having a bimodal size distribution of particles.
We show that the effective viscosity approach is still valid in the regime where the coating
film is thicker than the diameter of the largest particles, although bidisperse suspensions
are less viscous than monodisperse suspensions of the same solid fraction. We also
characterize the intermediate regime that consists of a heterogeneous coating layer and
where the composition of the film is different from the composition of the bath. A model to
predict the probability of entraining the particles in the liquid film depending on their sizes
is proposed and captures our measurements. In this regime, corresponding to a specific
range of withdrawal velocities, capillarity filters the large particles out of the film.

Key words: capillary flows, coating, suspensions

1. Introduction
Dip coating is a common industrial coating method that consists in withdrawing a
substrate from a liquid bath at a constant speed (Ruschak 1985; Scriven 1988; Quéré 1999;
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D.-H. Jeong and others

Grosso 2011). This method has been studied since 1942 by Levich & Landau (1942) and
Derjaguin (1943) in the configuration of a plate withdrawn at a constant velocity U from
a Newtonian liquid of viscosity η, density ρ and surface tension γ . Far from the liquid
bath, the thickness h of the liquid film coating the plate is uniform and set by the balance
of viscous stresses, which enable the plate to pull the liquid out of the bath, and capillary
stresses at the meniscus, which pull the fluid back to the bath (Rio & Boulogne 2017). The
relative magnitude of viscous stresses to capillary stresses at the meniscus is measured
by the capillary number, Ca = ηU/γ . In the limit of small capillary number Ca ! 1 and
small Reynolds number Re = ρUh/η ! 1, the thickness of the coating film is given by
the Landau–Levich–Derjaguin (LLD) law

h = 0.94$cCa2/3, (1.1)

where $c =
√

γ /(ρg) is the capillary length, and where g is a gravitational constant,
g = 9.81 m s−2. At larger capillary numbers, typically of the order of Ca ! 10−2, gravity
dominates capillary forces (Maleki et al. 2011). The balance between viscosity and gravity
leads to a new scaling law for the thickness of the liquid film coating a plate, h ∝ $cCa1/2.

Owing to the complexity of the fluids used in industrial processes, various studies
have considered the dip-coating of homogeneous fluids with complex rheology, such as
shear-thinning fluids (Gutfinger & Tallmadge 1965; Hewson, Kapur & Gaskell 2009),
yield-stress fluids (Maillard, Boujlel & Coussot 2014, 2015; Smit et al. 2019), viscoelastic
fluids (Ro & Homsy 1995; De Ryck & Quéré 1998; Ruckenstein 2002) as well as the
influence of surfactants (Shen et al. 2002; Krechetnikov & Homsy 2006; Delacotte et al.
2012), roughness (Krechetnikov & Homsy 2005; Seiwert, Clanet & Quéré 2011) and the
geometry of the substrate (White & Tallmadge 1965; Zhang et al. 2022). Suspensions,
in which solid particles are dispersed in a liquid phase, are of particular interest to
manufacturing applications. Indeed, the particles can give specific properties to a surface
after coating. Thus, dip coating, in particular combined with evaporation, has been
considered for optical applications, self-assembling of particles and wettability treatments
(Ghosh, Fan & Stebe 2007; Mechiakh et al. 2010; Berteloot et al. 2013; Mahadik et al.
2013). More recently, several studies have considered the dip coating of monodisperse
suspensions (single particle size), of non-Brownian particles (diameter d larger than a few
tens of microns), in non-volatile liquids (Kao & Hosoi 2012; Gans et al. 2019; Palma &
Lhuissier 2019). These studies revealed that, depending on the withdrawal velocity U, the
fluid properties and the size of the particles, three different coating regimes are observed:
(i) at small withdrawal velocity, a thin film is deposited without any particles in it; (ii)
at large withdrawal velocity (i.e. large capillary numbers), the entrained film contains
particles, and its thickness follows the Landau–Levich law using at first order the effective
viscosity of the suspension; finally (iii) at intermediate withdrawal velocities, the coating is
heterogeneous, with an average film thickness that corresponds to a monolayer of particles
and remains roughly constant over a range of capillary numbers. For a monodisperse
suspension, the transition between the different regimes is governed by the thickness of
the coating film relative to the particle diameter h/d (Gans et al. 2019; Palma & Lhuissier
2019).

The transition between the no-particle and heterogeneous coating regime also depends
on the accumulation of particles at the meniscus. This transition is therefore complex to
predict quantitatively for non-dilute suspensions, typically as soon as the volume fraction,
defined as φ = Vp/(Vp + Vl), where Vp and Vl are the volume of particles and liquid,
respectively, is larger than a few per cent. The configuration of isolated particles is simpler
to describe because the particles do not interact with each other. This configuration was
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Dip coating of bidisperse suspensions

considered for flat plates (Colosqui, Morris & Stone 2013; Sauret et al. 2019) and fibres
(Dincau et al. 2020). The two-dimensional numerical study of Colosqui et al. (2013) has
shown that an isolated particle can be entrained in the coating film if the particle diameter
d is smaller than the thickness at the stagnation point h∗. Indeed, the stagnation point
defines the boundary between a shear flow, where the fluid continues into the coating film,
and a recirculation flow, where the fluid returns into the liquid bath. Thus, the thickness
h∗ controls the entrainment of particles in the coating film. The value of h∗ is related
to the thickness of the coating film through h∗/$c = 3h/$c − (h/$c)

3 (Levich & Landau
1942), which in the limit of small capillary numbers becomes h∗ = 3h. Experiments
with monodisperse spherical particles, have demonstrated that the entrainment of isolated
particles occurs when the particle radius is roughly smaller than the thickness of the
stagnation point (Sauret et al. 2019)

h∗ = 3h ! d/2. (1.2)

The ability to control the film thickness, and thus the thickness at the stagnation point,
by simply tuning the withdrawal velocity U has led to a method for sorting particles by
size through dip coating (Dincau et al. 2019). This study has considered dilute suspensions
and has shown that, since smaller particles can be entrained for smaller coating thickness,
isolated particles can be separated by size via selecting an appropriate withdrawal velocity.

This entrainment process is not specific to dip coating. The translation of an air bubble in
a tube, as well as the withdrawal of the fluid leading to the deposition of a thin film on the
wall of a capillary tube, share many common features with the dip-coating configuration,
in particular, the presence of a stagnation point (Bretherton 1961; Krechetnikov 2010).
Therefore, similar observations on the entrainment of particles (Jeong et al. 2020; Wu et al.
2021) and the filtering of particles (Yu, Khodaparast & Stone 2018) have been reported. We
should also emphasize that the influence of particles on different interfacial phenomena,
such as the formation of droplets (Furbank & Morris 2004; Bonnoit et al. 2012; Château,
Guazzelli & Lhuissier 2018; Thiévenaz & Sauret 2021), jets (Château & Lhuissier 2019)
and liquid sheets (Raux et al. 2020), has also reported that the critical length scale at which
the particles start to modify significantly the dynamics is comparable to the diameter of
the particles.

Whereas most of these studies have considered the ideal situation of a suspension
made of monodisperse particles, many industrial and environmental processes involve
polydisperse particles with a wide range of sizes. It is known that for a given solid volume
fraction, a polydisperse suspension will be less viscous than its monodisperse counterpart
(Shapiro & Probstein 1992). For dip coating, the size distribution of the particles also
needs to be compared with the thickness of the coating film. It remains unclear how the
three regimes reported previously for monodisperse suspensions will need to be modified
to account for the polydispersity of the suspension.

Figure 1 shows four examples of coating films on a plate withdrawn from a bidisperse
suspension when increasing the withdrawal velocity U. The suspension contains particles
of diameter dL = 250 µm and dS = 80 µm, at a volume fraction of φ = 0.2. The volume
ratio of large particles is ζ = VL/(VL + VS) = 0.6, where VL and VS are the volumes of
large and small particles in the suspension, respectively. The main features observed for
monodisperse suspensions are also observed with bidisperse suspensions. In particular, at
very low withdrawal velocity (U = 0.01 mm s−1), the particles remain in the liquid bath
as they are much larger than the coating film. As a result, the meniscus filters them out,
and the thin film is only made of liquid. At large withdrawal velocities (U = 10 mm s−1)
we observe an effective viscosity regime. Both populations of particles are present, in
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D.-H. Jeong and others

0.01 0.1 1 10 (mm s–1)

U

Figure 1. Typical coating films observed on a flat plate for increasing withdrawal velocities for a bidisperse
suspension of particles of diameter dL = 250 µm and dS = 80 µm (size ratio δ = 3.125), at a volume fraction
of φ = 0.2 and a volume ratio of large particles ζ = 0.6. The withdrawal velocity U increases from left to
right: U = 0.01, 0.1, 1 and 10 mm s−1. The size of the scale bars is 500 µm.

proportions similar to the suspension in the bath. At intermediate withdrawal velocities,
a behaviour specific of bidisperse suspensions is observed. Initially, at low withdrawal
velocity (U = 0.1 mm s−1), only small particles are present in the coating film. When
increasing the withdrawal velocity (U = 1 mm s−1), the thickness of the coating film also
increases, resulting in more and more large particles being entrained in the film. As a
result, the composition of the coating film differs from that of the bath in this regime, with
varying proportions of small and large particles depending on the withdrawal velocity.

In this study, we aim to describe the evolution of the thickness and the composition of
the coating film when varying the capillary number and the composition of the suspension.
As a first step towards polydisperse systems, we consider bidisperse suspensions made of
small and large particles of diameter dS and dL, respectively. The volume ratio of large
to small particles is varied to probe the influence of the size distribution of particles on
the formation and composition of the coating film. This paper is organized as follows:
the experimental methods and the suspensions used are first presented in § 2. Dip coating
with monodisperse suspensions is recalled in § 3, notably to refine the measurements of
the thickness of the coating film. Indeed, in the effective viscosity regime, we show that
the volume fraction in the film is slightly smaller than in the suspension bath. Section 4
is devoted to the experimental characterization with bidisperse suspensions. We describe
and rationalize the different regimes observed and show that, in the thick-film regime,
rheological models developed for bidisperse suspensions enable us to model the thickness
of the coating film, while the heterogeneous regime is more complex for bidisperse
suspensions. We show that the composition of the coating film evolves with the withdrawal
velocity, and we propose a model that captures the evolution of the composition of the
coating film, in particular, the filtration of large particles at intermediate velocities.

2. Experimental methods
Our experiments consist in withdrawing a glass plate (w = 75 mm wide and e = 3.25 mm
thick) from a rectangular container (width 108 mm and thickness 35 mm) filled with a
particulate suspension. Figure 2(a) shows a schematic of the experimental set-up. The
suspensions are prepared by dispersing the non-Brownian particles in a silicone oil having
a density close to the density of the particles. The particles used are spherical polystyrene
particles (Dynoseeds TS from Microbeads) with diameters d = 22, 81, 145 and
249 µm (later referred as d = 20, 80, 140 and 250 µm) and densities between 1046 and
1062 kg m−3 depending on the batch (see the physical characterization in the Appendix).
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Dip coating of bidisperse suspensions

The silicone oil (AP100, Sigma-Aldrich) has a viscosity of η0 = 112 mPa s, density
ρ = 1058 kg m−3 and a surface tension of γ = 25 ± 2 mN m−1 at 20 ◦C. Silicone oil
perfectly wets the plate and the particles and is used for dip-coating experiments to avoid
any potential effects from surfactants, which are known to increase the thickness of the
coating film even at low concentrations (Krechetnikov & Homsy 2005, 2006; Rio &
Boulogne 2017). The surface tension of the suspension is equal to that of the suspending
liquid, i.e. it is not affected by the volume fraction or by the size of the suspended particles
(Couturier et al. 2011; Château et al. 2018; Zhao et al. 2020). The particles are first
dispersed using a paint mixer. Then, the suspension is left in a vacuum chamber for a
few minutes to remove any entrapped bubble in the suspension. Between each experiment,
the suspension is re-homogenized to ensure that the settling of the particles is negligible
at the time scale of one experiment (typically a few minutes).

The liquid bath is placed on a stage that is translated vertically using a stepper motor
(Thorlabs NRT150) at a given velocity 0.01 mm s−1 < U < 15 mm s−1. Such an approach
avoids mechanical perturbations that could influence the thickness of the coating film
(Maleki et al. 2011). After the plate has been withdrawn from the liquid bath, pictures
of the coating film are taken using a DSLR camera (Nikon D5600) equipped with a
macro lens (Nikkor 200 mm). A microscopic lens (Mitutoyo M Plan Apo 5X) is also
used for suspensions of d = 20 µm particles. Between each experiment, the glass plate
is thoroughly cleaned with isopropyl alcohol, rinsed multiple times with deionized water
and then dried with compressed air.

In addition to directly observing the coating film, its thickness is estimated by a
gravimetric method, chosen for its excellent accuracy (Krechetnikov & Homsy 2005).
The liquid bath is placed on an analytical weighing scale (Ohaus SPX622 Scout, with
an accuracy of 0.01 g) during the experiments. The translating stage is moved up until the
plate is dipped in the suspension bath to the desired dipping length L1, and then withdrawn,
holding a mass of entrained fluid m1. The plate is then dipped again to a larger length L2,
and then withdrawn while holding an increased fluid mass m2 on the plate. The resulting
average thickness of the deposited liquid film is then given by

h = m2 − m1

(L2 − L1)ρP
, (2.1)

where P = 2(w + e) is the perimeter of the plate, w is the width and e the thickness of the
plate and ρ is the density of the suspension. Subscripts 1 and 2 denote the two dipping
lengths such that L2 > L1. This approach prevents a lower edge effect that interferes with
the estimation of the film thickness (Krechetnikov & Homsy 2005). For the width of the
plate, the dipping lengths and the scale used here, the uncertainty on the film thickness
is of order ±3 µm. More details on this method have been provided by Krechetnikov &
Homsy (2005).

The shear viscosity of the suspensions is measured using a dynamic shear rheometer
(Anton Paar MCR92) with a 25 mm diameter plate–plate rough geometry and a gap of
1 mm between the plates. In the range of volume fraction considered here, the suspension
has a Newtonian behaviour and is characterized by its shear viscosity η. Figure 2(b) reports
the evolution of the relative shear viscosity, ηr(φ) = η(φ)/η0 for a volume fraction in
the range 10 % < φ < 40 % and two particles sizes (20 µm and 80 µm, monodisperse
suspensions). Many empirical correlations between ηr and φ can be found in the literature
(Quemada 1977; Stickel & Powell 2005; Dörr, Sadiki & Mehdizadeh 2013; Guazzelli &
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Fixed

Glass plate

w = 75 mm

U

e : Plate thickness

Large
particle

Small
particle

Weight scale

Stagnation
point

uz
∗ (x)

h∗ x

s

z h(z)

U

Translation stage

L 
= 

10
0 

m
m

10

5

0

20

15

25

0.1 0.2 0.3 0.4 0.5
φ

ηr

ηr = exp(–2.34φ) (1 – φ/φm
Z)–3

ηr = (1 – φ/φm)–2
d = 80 µm
d = 20 µm

(a)

(b)

Figure 2. (a) Schematic of the experimental set-up. Front (left) and side views (right). (b) Relative effective
shear viscosity ηr = η/η0 of monodisperse suspensions for particles of diameter d = 20 µm (blue circles) and
d = 80 µm (yellow squares). The solid line indicates the Maron–Pierce correlation ((2.2) with φm = 0.58),
and the dashed line is the Zarraga correlation ((2.3) with φZ

m = 0.62).

Pouliquen 2018). In the following, we use the Maron–Pierce correlation

ηr = η(φ)

η0
= (1 − φ/φm)−2, (2.2)

where φm corresponds to the volume fraction of particles at which the viscosity
diverges. Fitting (2.2) to our measurements leads to φm ≈ 0.58, in agreement with other
measurements performed in the literature with the same particles (Château et al. 2018;
Guazzelli & Pouliquen 2018). Note that other correlations can be used. For instance,
the Zarraga correlation (Zarraga, Hill & Leighton 2000) has been used to describe the
dip coating of monodisperse suspensions (Gans et al. 2019), the pinch-off of suspension
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Dip coating of bidisperse suspensions

droplets (Bonnoit et al. 2012) and the flow of suspensions on an inclined plane (Bonnoit
et al. 2010). The Zarraga correlation is given by

ηr = η(φ)

η0
= exp(−2.34φ)

(1 − φ/φZ
m)3 , (2.3)

which leads with our measurements to φZ
m = 0.62, also in agreement with the values

reported in other studies (Bonnoit et al. 2012). The Zarraga correlation slightly
underestimates the effective shear viscosity for φ ! 0.25 but better captures it at moderate
volume fraction (φ ∼ 0.1–0.2). The Eilers correlation is also an option (Stickel & Powell
2005), and has been used recently for the spreading of suspension droplets (Zhao et al.
2020). Our decision to choose the Maron–Pierce correlation here is motivated by previous
studies showing that the viscosity diverges as (1 − φ/φm)−2, stressing the exponent −2
(Guazzelli & Pouliquen 2018).

For a given φ, the effective shear viscosity of a bidisperse suspension is lower than
that of a monodisperse suspension (Shapiro & Probstein 1992; Probstein, Sengun & Tseng
1994; Gamonpilas, Morris & Denn 2016; Guy et al. 2020). This effect is linked to the
higher compacity of polydisperse sphere packings (Ouchiyama & Tanaka 1984). Indeed,
in a packing of polydisperse spheres, small particles can fill the interstices between the
larger ones, which leads to a higher maximum packing fraction φm. Compared with
the monodisperse case, where η is only a function of φ, the viscosity of bidisperse
suspensions depends on two additional parameters: the ratio of large to small particle
diameters δ = dL/dS, and the fraction of the solid volume occupied by the larger particles
ζ = VL/(VL + VS) (Shapiro & Probstein 1992). Experimental measurements have shown
that the viscosity of bidisperse suspensions follows the Maron–Pierce correlation, provided
that φm takes the polydispersity into account (Thiévenaz, Rajesh & Sauret 2021).

3. Dip coating of monodisperse suspension
Monodisperse suspensions, i.e. composed of particles of a single size, are first considered
for volume fractions ranging from φ = 10 % to φ = 40 % and different particle diameters.
The goal here is to verify whether the Maron–Pierce correlation (2.2) can predict the
thickness of the coating films. Gans et al. (2019) and Palma & Lhuissier (2019) have
previously shown that, if the film is approximately thicker than the particle diameter
(h ! d), its thickness follows the same law as a viscous liquid (1.1), where the viscosity
corresponds to the effective viscosity of the suspension. However, despite a good
agreement, this approach slightly overestimates the thickness of the coating film (see
figures 5 and 8 in Gans et al. 2019 for large volume fraction).

Figures 3(a) and 3(b) show the thickness of the coating film h when varying the
withdrawal velocity of the plate U for particles of diameter 20 µm and 80 µm, respectively.
As expected, the faster the withdrawal, the thicker the coating film. Besides, increasing the
volume fraction of particles, and thus the viscosity of the suspension in the bath, also leads
to thicker films. When h ! d, we observe the transition to the effective viscosity regime, in
which h ∝ U2/3 according to the LLD law (1.1), in agreement with previous works (Gans
et al. 2019; Palma & Lhuissier 2019).

To begin with, no assumption regarding the effective viscosity of the suspension is
made. Instead, it is treated as a fitting parameter that we can estimate through the LLD
law

h = 0.94$cCaφ
2/3 = 0.94$c

(
η(φ)U

γ

)2/3
. (3.1)
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101
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(b)(a)

(d)(c)

Figure 3. Thickness of the coating film as a function of (a,b) the withdrawal velocity U, and of (c,d) the
effective capillary number Caφ , for varying volume fractions φ of particles of diameter (a–c) d = 20 µm, and
(b–d) d = 80 µm. The thick continuous line is the LLD law (1.1) where the viscosity is considered as a fitting
parameter. The horizontal dashed line in figures (c) and (d) corresponds to a coating film of thickness equals
to the particle diameter (h = d). The coloured area in (c) and (d) corresponds to the effective viscosity regime.

The capillary number is based on the effective viscosity of the suspension: Caφ =
η(φ)U/γ . In this expression, the capillary length $c and the surface tension γ are physical
properties of the liquid which are not modified by the particles, U is the withdrawal
velocity and η(φ) is the effective viscosity of the suspension. For each experiment, η(φ)
is considered as a fitting parameter so that the thickness of the film in the LLD regime is
captured quantitatively by (3.1).

We observe that, for both particle diameters (20 µm and 80 µm), the experimental data
collapse onto the LLD law when h ! d (figure 3c,d). A similar observation can also be
made for other sizes of particles used in this study. Figure 4(a) reports the relative effective
viscosity of the suspension, ηr = η(φ)/η0 obtained through this approach. The evolution
is similar for both particle sizes: at small enough volume fractions (φ " 0.2), the viscosity
follows the Mason–Pierce correlation (2.2) although it is slightly smaller than the viscosity
of the suspension in the bath.

At larger volume fractions, the viscosity η(φ) obtained by fitting the experimental data
with the LLD law is systematically lower than the viscosity of the suspension in the
bath. The larger difference in viscosity observed for larger volume fractions is due to the
nonlinearity of the evolution of ηr with φ. The estimated value of η(φ) then allows us to
calculate the corresponding volume fraction φ by using (2.2). The difference between the
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Dip coating of bidisperse suspensions
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d = 80 µm - Dip-coating
d = 20 µm - Dip-coating
d = 80 µm - Rheometer
d = 20 µm - Rheometer

0.3

0.4

0.1

0.2
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φ

φ
m

ea
s

d = 80 µm - Dip-coating
d = 20 µm - Dip-coating
d = 80 µm - Rheometer
d = 20 µm - Rheometer

(a) (b)

Figure 4. (a) Relative shear viscosity ηr of suspensions of particle diameter d = 20 µm and d = 80 µm as
a function of the particle volume fraction in the bath φ (circles). Here, ηr is estimated from the thickness of
the coating film using (3.1). The shear viscosity measured with the rheometer is also reported (squares). The
dashed line is the Maron–Pierce correlation (2.2). (b) Comparison between the particle volume fraction of the
suspensions in the bath, φ, and the value obtained from the viscosity φmeas, measured either by dip coating or
rheometer. The dashed line corresponds to φmax = φ.

actual volume fraction of the suspension in the bath and the estimated volume fraction of
the coating film is reported in figure 4(b). The difference is approximatively equal to ∆φ =
0.008, 0.012, 0.056, 0.049 for φ = 0.1, 0.2, 0.3, 0.4, and thus shows a relative variation of
∆φ/φ = 8 %, 6 %, 18 % and 12 %. The decrease in particle volume fraction in the coating
film has been previously reported, yet it was of smaller magnitude (Palma & Lhuissier
2019). This small variation in volume fraction could be an effect of self-filtration due to
the abrupt change in the flow at the stagnation point. This effect has been investigated
by Kulkarni, Metzger & Morris (2010) for the gravity-driven flow of dense suspensions
(φ > 0.5) through a wide aperture. Here, the stagnation point and the dynamic meniscus
also play the role of an aperture, with one solid boundary and one deformable boundary
imposed by the air–liquid interface, so that a similar self-filtration effect can be expected.
Note that the resulting difference between the coating thickness and the predicted value
by the LLD law and the Maron–Pierce correlation is small (approximately 10 %) and was
already visible in previous measurements (Gans et al. 2019). We insist on this point to
stress the difference between the viscosity decrease due to self-filtration and the viscosity
decrease to polydispersity, which can be of similar magnitude. We should also emphasize
that confinement effects are also known to influence the viscosity of suspension due to a
change in the packing structure (Peyla & Verdier 2011; Fornari et al. 2016). Nevertheless,
since a constant viscosity was measured for a range of coating thicknesses, as shown in
figure 3, the influence of confinement effects on the decrease in viscosity is negligible
here. In the following section, we consider the role of a bimodal distribution of particle
size on the coating film.

4. Coating of bidisperse suspensions

4.1. General observations
In this section, we consider suspensions of particles having a bimodal size distribution:
small particles of diameter dS and large particles of diameter dL. The composition of the
solid phase is defined by the volume ratio of large particles: ζ = VL/(VL + VS), where VL
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D.-H. Jeong and others

0.2

0.03

0.80

3.00

0.4 0.6 0.8

(mm s–1)
U

ζ

Figure 5. Examples of coating films observed for bidisperse suspensions of particles of diameter dS = 20 µm
and dL = 80 µm (size ratio δ = 4), at a volume fraction φ = 0.2 and different volume ratios of large particles
(ζ = 0.2, 0.4, 0.6 and 0.8) for increasing withdrawal velocity U. The size of the scale bars is 250 µm.

and VS are the volume of large and small particles in the suspension, respectively. Figure 5
shows examples of typical coating patterns observed for different withdrawal velocities
U and for different compositions of the solid phase, with dS = 20 µm and dL = 80 µm.
The solid volume fraction is kept constant and equal to φ = 0.2. We observe that the
composition of the coating film changes drastically in terms of particle size distribution
and depends both on U and ζ . For instance, for a balanced composition (ζ = 0.4) and a
low withdrawal velocity, only the small particles are entrained in the coating film. For a
given value of ζ , the number of large particles increases with the withdrawal velocity, and
thus the thickness h of the film. We observe the same behaviour for all compositions of ζ
considered here.

A deficit of large particles in the coating film is observed for low or moderate withdrawal
velocity. Indeed, when the thickness at the stagnation point h∗ is smaller than the
particle radius, the particles are filtered out of the film (Sauret et al. 2019). It remains
unclear how three regimes that are reported for monodisperse suspensions (‘liquid only’,
‘heterogeneous films’ and ‘effective viscosity’), are modified for polydisperse suspensions.

The experiments reported in figures 1 and 5 suggest that, at low velocity and small
enough volume fraction, a first coating regime is observed. Within this regime, the coating
film does not include any particles and corresponds to the ‘liquid-only’ regime observed
for monodisperse suspensions (Gans et al. 2019). At large withdrawal velocities, multiple
layers of particles are visible, and the composition of the coating film is comparable to
the composition of the suspension bath. This regime, which corresponds to an effective
viscosity regime, is studied in detail in § 4.2. The regime in between those two regimes,
the heterogeneous regime, is more complex for bidisperse suspensions. At low withdrawal
velocity, the volume ratio of large particles ζ in the coating film is smaller than that in the
bath, i.e. the film mostly contains small particles, and only a few large particles can be seen.
Here, the small particles reach their effective viscosity regime while the large particles
only start to be entrained in the film. Increasing the withdrawal velocity leads to an increase
in the number of large particles in the coating film. We discuss this heterogeneous regime
in § 4.3.
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Dip coating of bidisperse suspensions
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Figure 6. Thickness of the coating film as a function of (a,b) the withdrawal velocity U and (c,d) the effective
capillary number Caφ for bidisperse suspensions with particles of diameter (a–c) dS = 20 µm and dL = 80 µm
(δ = 4); (b–d) dS = 20 µm and dL = 140 µm (δ = 7). The volume fraction is φ = 20 %. In each figure, we
vary the volume ratio of large particles ζ from 0 to 1. In (c) and (d) the two horizontal dashed lines respectively
correspond to a coating film thickness equal to the particle diameters, h = dS and h = dL. The continuous thick
line is the LLD law, where the viscosity is considered as a fitting parameter. We observe three regimes: (I) is
the regime where the film thickness is more or less constant and similar to dS; (II) is the regime where the film
is primarily composed of small particles, and the number of large particles depends on the withdrawal velocity;
(III) is the thick-film regime where the coating film is thicker than the diameter of the large particles, and the
composition of the coating film is similar to that of the bath. Inset pictures show the coating film in these three
regimes. The size of the scale bars is 250 µm.

4.2. Effective viscosity regime

4.2.1. Experimental observations
We measure the thickness of the coating film for the bidisperse suspension shown in
figure 5 varying the withdrawal velocity and the volume ratio of large particles ζ .
Figure 6(a) shows the thickness of the coating film as a function of the withdrawal velocity.
In the regime of fast withdrawal (here U ! 2 mm s−1), monodisperse and bidisperse
suspensions follow a common power law h ∝ U2/3. This observation suggests that an
effective viscosity can also be extracted for a thick enough film of bidisperse suspension.
We perform an analysis similar to the one used for the monodisperse suspensions in § 3 and
fit the thickness h to the LLD law (3.1), where the effective viscosity η(φ) is considered as
a fitting parameter. The rescaling is shown in figure 6(c). It demonstrates that the coating
film is in the effective viscosity regime, provided that the film is thicker than the diameter
of the large particles, h ≥ dL.
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D.-H. Jeong and others

The situation is nevertheless more complex than for monodisperse suspensions. Indeed,
the threshold to the effective viscosity regime seems to depend on the volume ratio of
large particles ζ . For small ζ (for instance ζ = 0.2 in figure 6c) the thickness of the film
follows fairly well the LLD law as soon as h ≥ dS. Indeed, small values of ζ mean that the
volume of large particles is small compared with the volume of small particles. Therefore,
the large particles do not contribute significantly to the viscosity of the suspension. Note
that, although the prediction of the LLD law is reasonably good when dS < h < dL, the
composition of the coating film is different from the composition of the suspension bath
with a deficit in large particles, as we shall see in § 4.3. For large values of ζ (for instance,
ζ = 0.8 or 0.9 in figure 6c), the LLD law is recovered only for h ≥ dL. In this case, the
large particles are the main contributor to the viscosity of the suspension. Thus, recovering
the LLD law requires the coating film to be thick enough (h ≥ dL) so that it can allow most
of the particles to be entrained in the film.

The same observation can be made with another combination of particle sizes:
figure 6(b) shows the case of a suspension with dL = 140 µm and dS = 20 µm particles.
In this case, the effective viscosity regime following the LLD law is also recovered
for h ≥ dL = 140 µm (figure 6d). Here, a similar evolution than the one reported in
figures 6(a) and 6(c) is observed.

We also considered a larger volume fraction: φ = 40 % of dL = 250 µm/dS = 140 µm
(figure 7a) and dL = 250 µm/dS = 80 µm (figure 7b). Again, the coating thickness h
follows the LLD law with an effective capillary number Caφ , where the viscosity of the
bidisperse suspension is still considered as a fitting parameter. A similar behaviour to the
one reported for suspensions at φ = 20 % is observed: the effective viscosity regime starts
at h ≥ dL, and the transition from the heterogeneous film to the effective viscosity regime
is smoother for small fraction of large particles ζ (figure 7(c,d). Besides, since the particles
used here are larger than the ones used in the φ = 20 % case, we are also able to see the
liquid-only regime, where barely any particles are entrained. This regime is observed at
small values of Caφ , and thus small h (data on the bottom left corner indicated as (I) in
figure 7c,d).

4.2.2. Effective viscosity of bidisperse suspensions
Although the LLD law is recovered for bidisperse suspensions when h ≥ dL, figures 6(a,b)
and 7(a,b) show that, for a given value of U and φ, a change in the volume ratio of large
particles ζ leads to a change in the film thickness. This observation is consistent with
the influence of the composition of the solid phase on the viscosity: a change in δ or ζ
causes a change in viscosity, hence a change in film thickness (Shapiro & Probstein 1992;
Gamonpilas et al. 2016; Thiévenaz et al. 2021).

The effective viscosity η(φ, δ, ζ ) is obtained by fitting the experimental data to the
LLD law in the effective viscosity regime. Figure 8(a) (respectively 8b) reports the
relative viscosity ηr = η/η0 as a function of the volume ratio of large particles ζ for
the experiments presented in figures 6(c) and 6(d) (respectively figures 7c and 7d). In
figure 8(a), the volume fraction in the bath is φ = 20 % and the sizes of the particles
are 20 µm/80 µm and 20 µm/140 µm. In figure 8(b), the volume fraction in the bath
is φ = 40 % and the sizes of the particles are 140 µm/250 µm and 80 µm/250 µm.
Between the two monodisperse cases, the relative viscosity ηr as a function of ζ shows
a parabolic curve, reaching its minimum around ζ * 0.4–0.6. This canonical behaviour
of bidisperse suspensions is due to the higher compacity of bidisperse packings (see e.g.
Pednekar, Chun & Morris 2018). The difference in viscosity observed between the two
monodisperse cases, at ζ = 0 and ζ = 1, arises from the size variance of the particles.

936 A36-12

�'
'$

&

��

�#
��#

%�
��

��
��

��
���

!
��

��
��

��
�

#*
" 

#�
��

��
�%

#!
��

''
$&


��
*

*
*

��
�!

�%
��

��
�#

%�
��

#%
��

��
��

�&
&�

$�
��

��
+�

'�
��

�
��

��
��

�%
�%

��
&�

�#
"�

�

��

��
��

��
��

�'
��

�

	�


�

�

�&
(�

��
�'

�'#
�'�

��
��

!
�%

��
��

��
#%

��
'�

%!
&�

#�
�(

&�
���

)�
� �

� 
��

�'
��

''
$&


��
*

*
*

��
�!

�%
��

��
�#

%�
��

#%
��

'�
%!

&�



Dip coating of bidisperse suspensions
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Figure 7. Thickness of the coating film as a function of (a,b) the withdrawal velocity U, and (c,d) the effective
capillary number Caφ for bidisperse suspensions with particles of diameter (a–c) dS = 140 µm and dL =
250 µm (δ = 1.786); (b–d) dS = 80 µm and dL = 250 µm (δ = 3.125). The volume fraction is φ = 40 %. In
(c) and (d) the two horizontal dashed lines correspond to a coating film thickness equal to the particle diameters,
respectively h = dS and h = dL. The continuous thick line is the LLD law, where the viscosity is considered as
a fitting parameter.

Although the suspensions used are monodisperse down to a certain level (see the size
measurement in the Appendix), a small amount of polydispersity is unavoidable and,
therefore, the maximum packing fraction for these two distributions of particles is slightly
different of approximately 5 %–10 % here.

For a bidisperse suspension in the effective viscosity regime (h > dL), the proportions
of small and large particles are expected to be similar in the film and in the bath. The
evolution of the viscosity can be modelled by calculating the maximal packing fraction
φm(δ, ζ ) of a bidisperse sphere packing of the same composition and then substituting
it into the Maron–Pierce correlation (2.2). To compute the maximal packing fraction,
we adapt the model of Ouchiyama & Tanaka (1984). It consists in computing the local
compacity around each size of particle and averaging it over the size distribution. The
model is simplified to consider here a bimodal size distribution. The number fractions of
small NS and large NL particles are defined as

NS = (1 − ζ )δ3

(1 − ζ )δ3 + ζ
and NL = ζ

(1 − ζ )δ3 NS, (4.1a,b)
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Figure 8. Relative shear viscosity ηr as a function of the volume fraction of large particles ζ for a suspension
containing (a) φ = 20 % for particle size ratio δ = 4 (blue) and 7 (red) and using φfilm = 17 % in the coating
film; (b) φ = 40 % for particle size ratio δ = 1.786 (blue) 3.125 (red) and using φfilm = 35.5 % in the coating
film. The symbols show data obtained by the best fit to the LLD law. The lines show the viscosity predicted by
the Maron–Pierce correlation (2.2) using the maximum packing fraction given by (4.3).

respectively, and d̃S = dS/δ and d̃L = dL/δ are the reduced sizes given by

d̃S = (1 − ζ )δ3 + ζ

(1 − ζ )δ3 + ζ δ
and d̃L = δd̃S. (4.2a,b)

The maximum packing fraction of the bidisperse packing is then given by

φm(δ, ζ ) = NSd̃S
3 + NLd̃L

3

(NS/Γ )(d̃S + 1)3 + NL((d̃L − 1)3 + [(d̃L + 1)3 − (d̃L − 1)3]/Γ )
, (4.3)

where Γ denotes the average number of particles in the vicinity of a given particle and is
equal to

Γ = 1 + 4
13

(8φm,0 − 1)

NS(d̃S + 1)2
(

1 − 3
8

1
d̃S + 1

)
+ NL(d̃L + 1)2

(
1 − 3

8
1

d̃L + 1

)

NSd̃S
3 + NL[d̃L

3 − (d̃L − 1)3]
.

(4.4)

Here, φm,0 is the maximum solid fraction in a monodisperse packing, which we estimated
through our rheometer measurements at φm,0 * 58 %. We then compute φm using (4.3)
and obtain the viscosity through the Maron–Pierce correlation given by (2.2). This
approach has been previously used to describe the viscosity of a bidisperse suspension
in an oscillating plane Couette flow (Gondret & Petit 1997), or the detachment of drops of
bidisperse suspensions (Thiévenaz et al. 2021).

Figures 8(a) and 8(b) report the viscosity measured by fitting the dip-coating results to
the LLD law, and comparing it with the predictions of (2.2) and (4.3). These predictions
match our experiments well, proving that the bidisperse suspensions behave like an
effective viscous fluid. Here, the volume fraction φ is also determined by the best fit
of the evolution of the viscosity with the composition of the bidisperse suspension.
Achieving this good match requires that we use a volume fraction φfilm slightly smaller
than the volume fraction in the suspension bath φ as φfilm * 17 % for φ = 20 % and
φfilm * 35.5 % for φ = 40 %. This discrepancy is consistent with the self-filtration effect
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Dip coating of bidisperse suspensions

(Kulkarni et al. 2010) and the observations made in the previous section for monodisperse
suspensions as there are fewer particles in the film than in the bath, regardless of their sizes.

The comparisons between the viscosity obtained from the LLD law and the model
show that, at small size ratios (δ = dL/dS), the viscosity is well predicted over the whole
range of ζ . However, at larger values of δ, the model usually fails for ζ > 60 %, i.e. when
large particles dominate. This is explicit in figure 8(a). The same failure of the model has
been observed in other configurations (Gondret & Petit 1997; Thiévenaz & Sauret 2021).
Therefore, the mismatch between experimental results and the prediction originates from
the limitation of the model for the viscosity given by (2.2) and (4.3) and not a problem
specific to dip coating.

In summary, for a bidisperse suspension, the effective viscosity regime is observed for
a coating thickness larger than the diameter of the largest particles h > dL. This condition
can be expressed in terms of capillary number associated with the interstitial fluid

Ca0
∗ ≥ 1.09

η0

η(φ, δ, ζ )

(
dL

$c

)3/2
, with Ca0 = η0U/γ , (4.5)

or associated with the capillary number based on the effective viscosity of the bidisperse
suspension

Caφ
∗ ≥ 1.09

(
dL

$c

)3/2
, with Caφ = η(φ, δ, ζ )U

γ
. (4.6)

This threshold is similar to the case of monodisperse suspensions (Gans et al. 2019; Palma
& Lhuissier 2019) but only depends on the diameter of the large particles. In the effective
viscosity regime, the thickness of the coating film can be estimated using the LLD law
with a capillary number based on the effective viscosity of the bidisperse suspension

h = 0.94$cCaφ
2/3. (4.7)

For a given solid volume fraction, bidisperse suspensions are less viscous than
monodisperse suspensions. This decrease in viscosity is more pronounced for a large
difference in the particle size ratio, that is, when δ is high (see figure 8a,b). Therefore,
in the effective film regime, bidisperse suspensions yield thinner films than monodisperse
suspensions for a given volume fraction φ.

4.3. Heterogeneous regime

4.3.1. Experimental observations
For withdrawal velocities U leading to coating films thinner than the diameter of the
large particles (h " dL), the coating thickness does not follow the LLD law anymore. This
situation is observed in regions (I) and (II) in figures 6(c,d) and 7(c,d). This heterogeneous
regime, which was already observed for monodisperse suspensions, is different depending
on the range of sizes of the particles. The heterogeneous regime can be split into two
regimes for bidisperse suspensions.

The first regime corresponds to the lowest capillary numbers, where the film is then
mainly composed of small particles. Its thickness remains more or less constant and equal
to h ∼ dS over a range of capillary numbers (region (I) in figures 6c,d and 7c,d). A similar
regime is observed for monodisperse suspensions and corresponds to a monolayer of small
particles (Gans et al. 2019; Palma & Lhuissier 2019). If the suspension is dilute enough
and the particles are large enough, we can observe an extreme case where only the liquid
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D.-H. Jeong and others

is present in the coating film, without any entrained particles. This situation occurs at very
small withdrawal velocities (left panel in figure 1). It can also be seen when the suspension
is primarily composed of large particles (ζ = 0.8 in figure 7c,d).

The second heterogeneous regime occurs at moderate capillary number, between
the first heterogeneous regime and the effective viscosity regime. In this regime,
corresponding to region (II) in figures 6(c,d) and 7(c,d), the coating film is primarily
composed of small particles but also contains some large particles. The number of
entrained large particles increases continuously with the capillary number, up to the
effective viscosity regime when h ≥ dL. For a small volume ratio of large particles,
typically ζ = 0.2 or 0.4, the LLD regime is reached earlier than for large ζ . This
observation can be rationalized by considering that the number of large particles remains
small. Therefore, the large particles do not contribute significantly to the effective viscosity
of the suspension. The main challenge in predicting the threshold between the regimes lies
in estimating the number of entrained particles. In the following subsection, we propose
a filtration model that accounts, at first order, for the variation of the composition in the
coating film.

4.3.2. Discussion: entrained particle distribution
When h < dL, the interplay between the different length scales (different sizes of particles
and film thickness) selects the particles entrained in the coating film. We present here a
model that accounts for the variation in the composition of the coating film compared with
the composition of the bath. We rely on the thickness of the coating film and the flow rate
based on the LLD theory of dip coating (Levich & Landau 1942) to which we add the
criterion given by (1.2), to set the minimum film thickness required for the entrainment of
particles of diameter d in the coating film. For a given particle size distribution in the bath,
varying the withdrawal velocity and hence the thickness of the coating film will lead to a
different particle size distribution in the coating film, as long as h < dL.

Let us consider the passage of particles from the bath to the film. We introduce z
as the coordinate parallel to the solid surface, x as the coordinate perpendicular to the
surface and s is the curvilinear coordinate that follows the meniscus (see figure 2a). The
lubrication flow in the film reduces to the axial flow profile u∗

z (x, s). Then, the probability
for a particle of diameter d and position (x, s) to be captured in the film is defined as
p∗

c(x, s, d). In addition, the particle–surface pair correlation function for a particle of
diameter d following a streamline passing through the point (x, s) in the meniscus is
defined as g∗

s (x, s, d). This function describes the interaction between the surface and the
particles. The equilibrium pair correlation may be needed to account for non-equilibrium
effects of particles passing through the meniscus, for instance, the clustering of particles or
interactions between them. From there, the flow rate of particles of diameter d that enters
the film, Qc(d), is computed. The local flux is first integrated over a cross-section of the
meniscus, perpendicular to the plate and passing through the stagnation curve defined as
x = h∗(s) Qc(d) can be expressed as

Qc(d) = φ(d)

∮ ∫ h∗(s)

0
u∗

z (x, s)p∗
c(x, s, d)g∗

s (x, s, d) dx ds. (4.8)

The general expression for the particle flow rate given by (4.8) allows us to account for
complex solid surface geometries, such as fibres or textured plates (Dincau et al. 2020;
Seiwert et al. 2011), and general particle–surface correlations. Here, we can make some
assumptions for the sake of simplification by considering the cross-section of a thin plate
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Dip coating of bidisperse suspensions

so that the s dependence can be neglected during integration over the perimeter P =
2(w + e), where w and e are the width and the thickness of the glass plate, respectively.
A thin-film assumption is also made in Cartesian coordinates (x, z)

Qc(d) = φ(d)P
∫ h∗

0
u∗

z (x)p
∗
c(x, d)g∗

s (x, d) dx. (4.9)

We further assume that a particle entering the meniscus is entrained if and only if its radius
is smaller than the meniscus at the stagnation point (Sauret et al. 2019), so that a capture
probability function can be approximated as

p∗
c(x, d) = H

(
h∗ − d

2
− x

)
, (4.10)

where H(x) is the Heaviside step function. Note that other ansatze for p∗
c(x, d) could be

used to describe the entrainment of more complex particles (emulsion droplets, deformable
capsules or anisotropic particles). We also assume the following expression for the
particle–surface pair correlation function:

g∗
s (x, d) ≈ ḡ∗

s (d)H(x − d/2), (4.11)

where the Heaviside function takes into account excluded volume near the surface
(x < d/2), and the constant meniscus surface correlation ḡ∗

s (d) reflects long-range
particle–surface forces or dynamical effects, such as boundary layer depletion, that
rescales the particle density arriving within the meniscus region relative to the well-mixed
bulk fluid. In this approximation, the volume fraction of particles of diameter d entering
the meniscus region (outside the excluded volume near the wall) is φ∗(d) = ḡ∗

s (d)φ(d),
which could be considered similar to the bulk volume fraction for a well-mixed suspension
with ḡ∗

s (d) * 1. Besides neglecting variations in particle mass transfer to the meniscus
region, the following analysis also neglects interactions between particles that may lead
to cooperative entrainment phenomena. For instance, a large particle can briefly deform
the interface at the meniscus so that nearby smaller particles are more easily entrained. In
particular, clusters of particles have been shown to be able to be collectively entrained at
small film thickness (Colosqui et al. 2013; Sauret et al. 2019) and could, in principle, be
accounted for through this function. In the following, we consider its simplest expression.

With these assumptions, (4.9) reduces to the integral over part of the velocity profile in
the meniscus,

Qc(d) = φ∗(d)P
∫ h∗−d/2

d/2
u∗

z (x) dx. (4.12)

We further assume an approximately parabolic velocity profile vanishing at the
stagnation point,

u∗
z (x) = U

(
1 − x

h∗

)2
. (4.13)

This expression for the velocity field ensures the mass conservation for the case of a
pure liquid going into the film,

∫ h∗

0 u∗
z (x) dx = Uh. We substitute the flow profile given by

(4.13) into (4.12) and perform the integral to obtain the probability distribution of particles
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D.-H. Jeong and others

in the coating film φc(d), defined as the volume fraction of particles of diameter d

φc(d) = Qc(d)

Qf
= φ(d)f (d̃)H(1 − d̃), (4.14)

where φ(d) is the probability distribution of particles in the suspension bath, Qf is the
flow rate of liquid in the coating film and the Heaviside function H(1 − d̃) indicates a
sharp size cutoff given by entrainment criterion d̃ = d/2h∗ < 1. In (4.14), the filtration
function defining the ratio of final to initial probability distribution of particles is given by

f (d̃) = (1 − d̃)3 − d̃3, (4.15)

where we have introduced a dimensionless particle radius as

d̃ = d
2h∗ = d

5.64$cCaφ
2/3 . (4.16)

Note that we have used here a thickness at the stagnation point calculated with the
effective viscosity of the suspension. However, because of the similar size between the
particles and the stagnation point, the local thickness may be modified by the volume
fraction, and the size of the particles as described recently in the wetting dynamics by Zhao
et al. (2020). Further experiments focusing on the exact structure and local composition of
the suspension at the meniscus would be needed to refine this assumption. The thickness
in this region will be set by the deformation of the meniscus, the viscosity in the bath and
the ratio of particle size to the typical length scale. This assumption could lead to small
discrepancies in quantitatively estimating the number density of entrained particles. As
expected, f (0) = 1, so that all particles that are small compared with the film thickness
will be entrained if they arrive at the meniscus. The number of entrained particles of
diameter d per unit area in the coating film is thus given by

np(d) = Qc(d)

UPVp(d)
= φc(d)h

Vp(d)
= φ(d)f (d̃)H(1 − d̃)h

Vp(d)
, (4.17)

where Vp(d) = πd3/6 is the volume of the spherical particle, and h is the film thickness.
The total entrained solid volume fraction and total solid flow rate (entrained volume per
time) in the coating are expressed as

φp =
∫ ∞

0
φc(d) d d and Qs =

∫ ∞

0
Qc(d) d d = φpQf . (4.18a,b)

We apply these equations to the particular case of the bidisperse suspensions used in
this study. We can express the probability distribution of small and large particles as φS =
(1 − ζ )φ and φL = ζφ, respectively. As a result, the number of small particles of radius
dS entrained per unit area is

np(dS) = (1 − ζ )φf (d̃S)H(1 − d̃S)h
Vp(dS)

, (4.19)

and for the large particles of diameter dL

np(dL) = ζφf (d̃L)H(1 − d̃L)h
Vp(dS)

. (4.20)

These expressions are plotted in figure 8(a–d) and show a fair agreement
with the experimental data. The model yields quantitative results as it gives
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Dip coating of bidisperse suspensions

a reasonable estimate of the number of entrained particles when varying the
volume ratio of large particles ζ from 0.6 (figure 8a) to 0.8 (figure 8b).
In both cases, the main limit occurs near the threshold velocity, where the
model underpredicts the number of particles entrained. Indeed, the threshold for
entrainment is based on the criterion for individual particles (Colosqui et al. 2013;
Sauret et al. 2019), and does not account for the clustering of particles that deform the
meniscus and allow particles at sufficient volume fraction to be entrained earlier. It was
previously reported that the onset of the monolayer regime depends significantly on the
volume fraction and so far remains empirically measured (Palma & Lhuissier 2019).
Adding this component to the model presented above could lead to a better quantitative
prediction of the density of entrained particles in this region. Nevertheless, the number
density of particles is significantly filtered in this heterogeneous regime.

We have also performed similar measurements with smaller size differences (δ = 1.75
in figure 8c). The experiments show that the velocity range in which particles could be
separated by size is significantly reduced. In addition, figure 8(c) shows that, for similar
particle sizes, a heterogeneous regime for both particle sizes is quickly reached and the
prediction does not capture well the number of particles entrained per unit area. On the
other hand, for large size difference (δ = 12.5 in figure 8d), there is a clear range below
U = 2 mm s−1 in which the film is free of large particles while entraining the small
particles.

These results illustrate that, during the coating of a plate with a polydisperse suspension,
the composition of the coating film may be very different compared with the composition
of the bath. In the heterogeneous regime, the resulting coating will contain more small
particles and fewer large particles than the original composition of the suspension, possibly
compromising the quality of the coating.

We should emphasize that we have considered in our model a Heaviside step function
in the capture probability function (4.10) and for the particle–surface pair correlation
function (4.11). However, the transition between entrainment and no entrainment could
be smoother. Considering the possible modification in our model, since u∗

z (x) = U(1 −
x/h∗)2, smoothing the particle–surface interaction g∗

s (x, d) will sample lower velocities
(since d/2 is a hard sphere limit) and thus will lower the predicted entrainment fraction.
Smoothing the capture function p∗

c(x, d) could result in either of the following trends:
(i) more probability weight at larger positions x + d/2 > h∗, e.g. from particles that
cooperatively ‘lift’ the meniscus to allow others to get into the film (Sauret et al. 2019),
will increase entrained volume fraction, and (ii) less weight at smaller sizes x + d/2 < h∗

will lower it, e.g. from smaller particles that fluctuate across the stagnation point and are
not entrained. If we assume that smoothing generally increases the effective diameter d
that can be entrained, then the present theory from (4.14) would predict more of the larger
part of the initial distribution φ(d) gets past the cutoff function, i.e. more entrainment than
predicted by a Heaviside function, as observed experimentally.

4.4. Using dip coating as a filtration method
The separation of small particles in the micron-size range (up to 1000 µm) from a liquid
dispersion is a source of challenge. When decreasing the particle size and increasing the
batch volume, most filtering methods are neither very efficient nor suitable for a large
throughput and/or are not highly selective. For example, the use of mechanical filters
of specific pore size can quickly lead to clogging of the filter pores that slows down the
filtering process (Urfer et al. 1997; Wyss et al. 2006; Sauret et al. 2014; Dressaire &
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Figure 9. Number of particles deposited on a unit area of the plate. The composition of the suspension is (a)
φ = 0.2, ζ = 0.6, δ = 7 (dS = 20 µm and dL = 140 µm); (b) φ = 0.2, ζ = 0.8, δ = 7 (dS = 20 µm and dL =
140 µm); (c) φ = 0.2, ζ = 0.9, δ = 1.75 (dS = 80 µm and dL = 140 µm); (d) φ = 0.2, ζ = 0.9, δ = 12.5
(dS = 20 µm and dL = 250 µm). The blue and red symbols correspond to the experimental measurements for
the large and small particles, respectively. The open squares represent the cases where the number of particles is
underestimated because of limitations in the camera’s depth of field and multi-layer deposition. The solid blue
and red lines correspond to the theoretical predictions of the number of large (4.19) and small (4.20) particles
per unit area on the plate, respectively. Insets: zoomed-in view on low withdrawal velocity region, highlighting
the ability to filter the particles by size in the suspension.

Sauret 2017; Sauret et al. 2018). Centrifugation is also a standard filtering method
but cannot separate the particles with a high selectivity (Svarovsky 2000). Besides,
centrifugation relies on the difference of density between the particles, and if the densities
are comparable, the process loses in efficiency (Ninfa, Ballou & Benore 2009). However,
a filtration method through a dip-coating process, as demonstrated in the insets of
figure 9(a–d), depends on whether or not a particle enters in the coating film, which is
mainly governed by the diameters of the particles and could therefore be used to sort
particles by size, regardless of the particle volume fraction, as reported previously (Dincau
et al. 2019). The main limitation to this method is that it is desirable to have particles with
a significant size difference.

The results demonstrated here with solid particles and a bimodal distribution could be
extended to particles with a polydisperse size distribution and different material types. In
addition, whereas the size of the entrained particles is limited here by the thickness of the
liquid film, which is directly correlated to the capillary length, this filtration method could
also be used with fibres (Dincau et al. 2020). In this case, the thickness of the film, and
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Dip coating of bidisperse suspensions

thus the thickness at the stagnation point, is directly proportional to the radius of the fibre
and therefore allows a larger range in size of particles that could be filtered.

In summary, the present methods offer various potential applications: in medicine,
where it may be used to separate blood plasma components and cells (in a range of
size from 5 to 50 µm), and for grains and powders, such as ceramic abrasives, where
the standard methods of sedimentation or centrifugation are relatively slow, inaccurate
and costly. Here, the possibility of scaling up the capillary filtering mechanisms with arrays
of wires could open the opportunity for high throughput and good efficiency.

5. Conclusions
In this paper, we have investigated the dip coating of a plate withdrawn from a bath
containing a suspension of particles with a bimodal size distribution. Previous studies
have reported that different regimes are observed for monodisperse suspensions (Sauret
et al. 2019; Palma & Lhuissier 2019): no entrainment at low velocities; a heterogeneous
regime with a monolayer of particles at intermediate velocity; and an effective viscosity
regime when the film is thicker than the particle diameter. For bidisperse suspensions,
the difference in diameter of the particles dispersed in the suspensions introduced a new
complexity as additional length scales need to be compared with the film thickness. We
have described the boundaries between the different coating regimes and shown that those
transitions are dependent on withdrawal velocity (i.e. capillary number), volume fraction
and composition of the suspensions. In particular, the bidispersity of the particulate
suspensions led to a new regime at intermediate withdrawal velocity.

The behaviour observed for bidisperse suspensions is summarized in figure 1. At low
velocity and moderate volume fraction, barely any particles are entrained. Increasing
the withdrawal velocity leads to a peculiar behaviour: initially, only the small particles
are entrained on the plate, and the coating exhibits a heterogeneous regime with a
monolayer of small particles. Increasing the withdrawal velocity further leads to a second
velocity threshold where the large particles start to be entrained. The number of entrained
large particles gradually increases with the withdrawal velocity. Finally, at large enough
withdrawal velocities, the composition of the suspension in the coating film is mostly
similar to the composition of the suspension in the bath. A model that accounts for the
probability of entraining particles based on their size has been developed. The model
qualitatively reproduces the experimental measurements, although the heterogeneous
regime where particles are entrained collectively is not captured in this model.

Our experiments have also revealed that the size of the largest particles in the suspension
controls the onset of the effective viscosity regime. When the thickness of the coating
film becomes larger than the diameter of the large particles, h ≥ dL, the thickness can
be predicted at first order by the LLD law by considering the effective viscosity of the
bidisperse suspension. The presence of the different particle sizes, however, lowers the
viscosity of the suspension for a given volume fraction φ, and the evolution of the viscosity
is well predicted by a model that considers the polydispersity and its influence on the
maximum packing fraction. We should emphasize that both in the monodisperse and
bidisperse regimes, the volume fraction of particles in the coating film always exhibits
a slight decrease compared with the volume fraction in the liquid bath, likely due to a
self-filtering mechanism that deserves further investigations.

As illustrated in this paper, the dip-coating process is not only an efficient tool to
passively control the coating by tuning the thickness of the coating film, but can also be
utilized as a method to sort particles by size in polydisperse suspensions. In particular,
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D.-H. Jeong and others

TS 20 TS 80 TS 140 TS 250

Mean diameter d(µm) 22 81 145 249
Standard deviation σ (µm) 1.7 4.6 8.5 13
Density ρ (kg m−3) 1.046 1.048 1.060 1.062

Table 1. Mean diameter and density of the polystyrene particles used in this study.

we have developed a model that predicts the resulting composition in particles of the
coating film, knowing the probability distribution function of particles in the liquid
bath and the withdrawal velocity of the substrate. The experiments reported here could
also be used backwards in order to infer the capture function from the data using the
theory, by solving an integral equation inverse problem. Such an approach would be
particularly interesting to quantify different effects such as the shape, concentration or
surface chemistry of the particles. We have also identified when an effective viscosity
model for a polydisperse suspension could be used to predict the resulting coating
thickness. The present contribution is a new step towards a predictive model to describe
the formation of thin films with solid particulate suspensions. Nevertheless, further work
is needed to capture the coating films formed with other types of suspensions, such as
fibres or emulsion droplets.
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Appendix. Physical properties of the polystyrene particles
The particulate suspensions used in this study consist of spherical polystyrene particles
(Dynoseeds TS, Microbeads) dispersed in silicone oil (AP100, Sigma Aldrich). Particles
with four different sizes have been used. We have measured the size distribution of each
batch of the particles. Pictures of a large number of particles are taken and processed
through ImageJ to obtain the projected area A of each particle. The diameter of the
particles d was then obtained from the project area, d = 2

√
A/π, considering that the

circularity of the particles is close to 1. The measured size and standard deviation of each
batch of particles are reported in table 1. The probability density function of the size
distribution is plotted and fitted with a Gaussian distribution curve in figure 10.
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Dip coating of bidisperse suspensions

30025020015010050
d (µm) (s)

0

0.02

0.04

0.06PDF

0.08

0.10

0.12

22 ± 1.7 µm
81 ± 4.6 µm

145 ± 8.5 µm

249 ± 13 µm

Figure 10. Probability density function (PDF) of diameter of the polystyrene particles used in this study and
corresponding Gaussian fits.

The density of the particles was measured by mixing a batch of particles into salt water
with known densities. The density of each batch of particles is also reported in table 1.
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