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Compact solid discharge products enable energy storage devices with high gravimetric and volu-
metric energy densities, but solid deposits on active surfaces can disturb charge transport and induce
mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2

crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical
non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium
insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex
to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge
rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that
limits cell performance. We predict that the transition between these surface growth modes occurs
at current densities close to the exchange current density of the cathode reaction, consistent with
experimental observations.

I. INTRODUCTION

Crystallization on active surfaces is essential in many
battery and electrodeposition processes. Crystalline re-
action products offer the potential for compact and
lightweight energy storage, but accommodating such de-
posits is challenging for electrode design. The wide range
of conditions during crystallization causes a multitude
of growth morphologies in electrochemical systems. In
lead-acid batteries, particle sizes of deposited Pb depend
on voltage sweeping rates [1]; in alkaline Zn batteries or
Zn-O2 batteries, electrodeposited ZnO undergoes a tran-
sition from film-growth to dendritic-growth as a func-
tion of cycling depth [2], influenced by electrolyte ad-
ditives [3]; in metal electrodeposition, dendritic growth
depends sensitively on the electrolyte composition and
applied current [4–6]; in rechargeable lithium batteries,
morphological changes in Li metal anodes during disso-
lution, plating and dendritic growth [6], are a critical
challenge, subject to ongoing modeling efforts [7, 8].

Recent experiments on Li-O2 batteries with ether-
based electrolyte have revealed that the electronically in-
sulating discharge product Li2O2 can deposit in complex
toroid-like morphologies [11–13] or thin films [12–14]. In
contrast, only quad-shaped particles have been observed
in sodium-oxygen batteries so far [15]. Li-O2 batteries
are prominent candidates for next-generation batteries
that can replace conventional combustion technologies
[16–21]. Although the stability of oxygen electrode and
electrolyte remains a challenge for practical Li-O2 bat-
teries, ether-based electrolytes remain relatively stable
[22, 23].

The morphology of Li2O2 formed upon discharge in
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ether-based electrolytes has an as-yet unexplained depen-
dence on the applied current. An evolution from single-
crystalline disc to complex toroid-like morphologies dur-
ing discharge was first observed in nano-structured elec-
trodes with large surface areas [9, 11] (Fig. 1). This
has since been confirmed on different carbon substrates
at low surface specific rates [7, 9, 11, 23, 24]. Although
the disc-like particles reach 100 nm sizes, toroid-like par-
ticles can grow much larger, and the electron transport
path and growth mechanisms are just beginning to be
understood [10]. Regardless of this complex behavior
at low rates, however, Li2O2 forms a crystalline film on
the active surfaces of the cathode at high surface spe-
cific rates that limits the electrode capacity and achiev-
able power density. When the film thickness approaches
5 nm, the active surfaces become passivated, as electronic
resistance increases with thickness [25].
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FIG. 1. Galvanostatic discharge of Li-O2 battery with CNT
cathode [9, 10]. The average Li2O2 thickness at 100 nAh/cm2

is 1 molecular monolayer. (a) Discharge voltage for various
discharge currents. (b) TEMmicrograph for I = 2 nA/cm2 at
280 nAh/cm2 with individual particles. (c) TEM micrograph
for I = 50 nA/cm2 at 840 nAh/cm2 with coating by small
particles. Currents are normalized to true surface area.
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FIG. 2. Scheme of the (1+1)-D surface model. Individual
Li2O2 molecules are added on top of a surface crystal of height

h(x, t) at the rate ∂h/∂t. The dimensionless variables h̃ =
h/d∥ and x̃ = x/d⊥ are used for height and surface coordinate,
where d∥ and d⊥ are the distances between molecules in the
horizontal and vertical direction.

In this Letter we model the rate-dependent morpholog-
ical transition in Li2O2 growth, using the recently devel-
oped variational theory of electrochemical kinetics [26–
31] applied to classical surface-growth models [32–34].
The theory predicts a transition, which starts in the first
monolayer, from particle growth to film growth when
the current exceeds the exchange current for the oxygen
reduction reaction. We validate that this is consistent
with experimental observations. The mechanism is anal-
ogous to the suppression of phase separation in LiFePO4

nanoparticles, first predicted by the same general the-
ory [28–30].

II. THEORY

Existing models of Li-O2 batteries are either macro-
scopic or atomistic. Cell-level models propose pore block-
ing due to reaction products [35–39] and surface passiva-
tion [25, 40]. Atomistic models discuss the surface struc-
ture of Li2O2 crystals [41–45], the kinetics of the oxygen
reduction/evolution in aprotic electrolytes [41, 45, 46],
and the electron conductivity of Li2O2 [25, 42, 47]. Here,
we develop a nanoscale continuum model based on these
atomistic studies, which bridges the gap to macroscopic
models by predicting morphological selection in the early
stages of surface growth.

We model the electrodeposition oxygen reduction re-
action (ORR),

2Li+ +O2 + 2e− 
 Li2O2 (1)

on a carbon surface in (1+1)-dimensional space, i.e.,
through the height of the crystal h(x) as a function of the
projected surface coordinate x (see Fig. 2). In this way,
Li2O2 molecules align in columns growing at the electro-
chemically controlled rate ∂h

∂t . The continuous evolution

of h(x, t) is a standard mathematical description of sur-
face growth [48].

We choose the O-rich (0001)-surface for the top-facets
and the (1100)-surface for the side-facets [44]. d∥ =
0.380 nm and d⊥ = 0.313 nm are the corresponding dis-
tances between Li2O2 molecules in the bulk crystal [47].
Our choice is motivated by the Wulff shape of the Li2O2

crystal, reconstructed from ab-initio simulations of the
surface energies [41–44]. It agrees with microscopy of the
preferred crystal orientation in disc-like and toroid-like
particles [10]. Integer values of h̃ = h/d∥ correspond to
completely deposited monolayers, and non-integer values
to intermediate states and partially filled layers.

We extract the surface energies σ from ab initio calcu-
lations [44]. Our 1D surface model is based on σ1D

⊥ =
σ⊥A⊥/d⊥ = 140 meV/d⊥ and σ1D

∥ = σ∥6A∥/2d∥ =

540 meV/d∥, where A⊥ =
√
3d2⊥/2 and A∥ = d⊥d∥/

√
3

are the areas of the top-facets and side-facets of individ-
ual molecules, respectively. The predicted Wulff shape
varies among different studies [41–44], but does not affect
our main result below; the growth mode goes through a
transition close to the exchange current, for any of these
Wulff shapes.

We describe the current density profile I(x, t) us-
ing generalized Butler-Volmer kinetics based on non-
equilibrium thermodynamics, recently developed by
Bazant et al. [26] and applied to intercalation dynamics
in Li-ion batteries [27–31, 49]. Here, we apply the the-
ory for the first time to surface growth, using a different
model for the Li2O2 chemical potential,

µ =
δG[c]

δc
= d∥d⊥

δG[h]

δh
(2)

which is the variational derivative of the Gibbs free en-
ergy G =

∫ L

0
g dx (defined below), where c(x, t) =

h(x, t)/(d∥d⊥) is the concentration of Li2O2 molecules
per substrate length. We choose as reference state, where
µ = µΘ, the fully charged state without any Li2O2 at
room temperature, and atmospheric pressure (h = 0,
T = 298.15 K, p = 1 atm). The battery voltage, E,
has the open circuit value, E0 in this reference state.
We assume constant activities for lithium ions, oxygen
molecules, and electrons, aLi+ = aO2 = ae− = 1, dur-
ing morphology selection in the early stages of growth
since thin Li2O2 deposits (< 15 molecular layers) have
negligible electronic resistivity [25] and cause negligible
electrolyte depletion at typical currents. In equilibrium,
the voltage increment, ∆Φ = E − E0, is then given by
the Nernst equation,

∆Φeq = −kBT

2e
ln a =

µΘ − µ

2e
(3)

where a is the Li2O2 activity. The variational activity,
a, and the chemical potential, µ, determine the thermo-
dynamics of Li2O2 deposits up to a few monolayers and
depend sensitively on their profile, h(x, t) (see Eq. 2).
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FIG. 3. Homogeneous Gibbs free energy density ghom +
2eE0h̃/d⊥ (in units of eV/d⊥) of a Li2O2 deposit versus di-

mensionless surface height h̃ = h/d∥ with molecule distance

d∥. The system is in metastable equilibrium at integer h̃. Dur-

ing growth of the first monolayer h̃ ≤ 1, a nucleation barrier
caused by the surface energy σ⊥ must be overcome.

Out of equilibrium, the two dimensional current den-
sity I(x, t) (per substrate area) is given by the Butler-
Volmer equation,

I = A · I0
[
e−α2eη/kBT − e(1−α)2eη/kBT

]
, (4)

in terms of the activation overpotential η, the exchange
current density I0 [26], and a geometrical factor convert-
ing substrate length to normal surface length A [48],

η = ∆Φ−∆Φeq, (5)

I0 =
2ek0a

α

γ‡
, (6)

A =

√
1 +

(
∂h

∂x

)2

, (7)

respectively. Note that in our model I0 depends on activ-
ity, which is a complicated function of the height profile
h(x). We assume that the first charge transfer step in
the ORR (1) is rate limiting and symmetric (α1 = 1

2 ),

so the overall charge transfer coefficient is α = 1
4 (see

Supporting Information and also [41, 46]), which is con-
sistent with the Tafel slope measured on glassy carbon
[50]. The activity coefficient of the transition state γ‡ is
approximately constant and can be estimated by Marcus
theory [26] because it is dominated by desolvation. Set-
ting γ‡ = 1, the rate constant k0 is determined by Tafel
analysis below.

The thermodynamics of surface growth are defined by
the Li2O2 free energy density, g = gb + gs per substrate
length. We estimate the bulk contribution as

gb =
2e

d⊥π

[
−E0πh̃+ E1 sin

2(πh̃)
]

(8)

where µΘ = −2eE0 is determined by the open cir-
cuit voltage. Our choice is motivated by the following:

With complete molecular layers, i.e., at integer ratios
h̃ = h/d∥, the system is in equilibrium (Fig. 3). The
voltage barrier E1 for homoepitaxial growth of a mono-
layer between these metastable equilibria accounts for
the increased free energy of reaction intermediates (see
Fig. 3). The parameters E0 and E1 are taken from gal-
vanostatic discharge measurements. We find the open
circuit voltage E0 = 2.96 V and the typical overpotential
E1 = 0.2 V, at which all reaction steps are downhill in
energy [25, 46]. We add Gaussian noise with standard
deviation 0.004 V = 0.15 kBT/e to E1 to model molecu-
lar fluctuations. The microscopic surface energy density
is gmicro

s = σ1D
⊥ |θ(h)|+ σ1D

∥ |∂h/∂x|. Our continuous de-

scription,

gs =
1

2

[
A
(
σ1D
⊥ + σ1D

∥

)
+ σ1D

⊥ − σ1D
∥

]
−σ1D

⊥ e−βh̃2/2 (9)

smoothes the orientation-dependent surface energy (first
term) [33] and distributes the nucleation energy σ1D

⊥ to
initiate growth over a few monolayers with β = 6 (second
term).
The chemical potential then takes the dimensionless

form

µ̃ = µ̃hom(h̃)− κ̃
∂2h̃
∂x̃2[

1 +
(
∂h
∂x

)2]3/2 (10)

where µ̃ = µ/kBT and x̃ = x/d⊥. The homogeneous
term

µ̃hom = −Ẽ0 + Ẽ1 sin(2πh̃) + Ẽ2h̃ e
−βh̃2/2 (11)

describes a uniform film of h̃ = h/d∥ layers, where

E2 = βσ1D
⊥ d⊥/2e is the nucleation voltage to initiate

heteroepitaxial growth and Ẽi = 2eEi/kBT . The inho-
mogeneous term reproduces the Cahn-Hilliard (CH) gra-

dient expansion [51], ∆µ̃ ∼ −κ̃∂2h̃/∂x̃2, for small inclina-
tions |∂h/∂x| ≪ 1 with a dimensionless gradient energy
penalty, κ̃ = (σ1D

⊥ + σ1D
∥ )d2∥/(d⊥2kBT ). In contrast to

the CH model, however, the gradient energy saturates at
large inclinations.
The dynamics of surface growth follow from the theory

of electrochemical nonequilibrium thermodynamics [26],

∂c̃

∂t̃
− ∂

∂x̃

(
M̃ c̃

∂µ̃

∂x̃

)
= Ĩ(µ̃,∆Φ̃) (12)

where M̃ = MkBT/(A⊥d
2
⊥k0) is the dimensionless mo-

bility for surface diffusion and Ĩ = I/(2ek0) is the dimen-
sionless current density scaled to the exchange current
density in the standard state (a = 1). Since the dynam-
ics is reaction limited, the dimensionless time, t̃ = tA⊥k0,
is scaled to the standard exchange time per surface site.
This equation generalizes the CH and Allen-Cahn equa-
tions for electrochemistry. As in the case of anisotropic
LiFePO4 nanoparticles [27], diffusion can be neglected
(M = 0) to yield the Butler-Volmer Allen-Cahn reaction
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(ACR) equation [26, 28], which, using Eqs. (3)-(7), takes
the dimensionless form,

Dh̃

Dt̃
=

∂h̃
∂t̃√

1 +
(
∂h
∂x

)2 = e−α∆Φ̃ − e(1−α)∆Φ̃+Ẽ0+µ̃ (13)

where ∆Φ̃ = 2e∆Φ/kBT . For galvanostatic discharge,
the ACR equation is solved subject to the constraint of
constant mean current density [28],

˜̄I =
1

L

∫ L

0

Ĩdx (14)

where L is the substrate length. Numerical integration of
Eq. 13 with periodic boundary conditions is performed
in MATLAB employing the implicit DAE-solver ode15s,
and some analytical results are also possible.

III. RESULTS

The mechanism of rate-dependent morphology can be
understood by approximating Eq. 13 in the linear and
the Tafel regimes of small and large dimensionless over-
potential, η̃ = 2eη/kBT < 0, respectively. Since we set
γ‡ = 1, the Li2O2 chemical potential only influences the
backward (dissolution) reaction. At low rates, Ī ≪ I0
or |η̃| ≪ 1, the forward (deposition) and backward reac-
tion both contribute to the overall linear response, so the
Li2O2 chemical potential drives the growth,

Dh̃

Dt̃
∼ −η̃ = −(∆Φ̃ + Ẽ0 + µ̃) (15)

Aside from the arc-length correction (left side), this is
equivalent to the classical Allen-Cahn equation. Anal-
ogous to spinodal decompositions, homogeneous growth
becomes unstable when ∂µ̃/∂h̃ = 0, and particles de-
velop. In the Tafel regime, far above the exchange cur-
rent, Ī ≫ I0 or |η̃| ≫ 1, the backward reaction is neg-
ligible, and the overall rate becomes independent of the
chemical potential,

Dh̃

Dt̃
∼ e−α∆Φ̃ (16)

enforcing film growth. In summary, the theory predicts
a transition from particle to film growth with increas-
ing discharge rate, analogous to the suppression of phase
separation in LiFePO4 [28, 29].

As with ion intercalation [28, 29], the transition in sur-
face growth can be precisely identified by linear stabil-
ity analysis. Fluctuations of dimensionless wave number
k̃ = kd⊥ = 2π/λ̃ in a uniformly growing, homogeneous

film, h̃0 = ˜̄It̃ (the base state), grow with the exponential
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FIG. 4. (a) Dependence of spinodal region on the applied cur-
rent. The curves give the boundary between particle growth
and film growth according to linear stability analysis, i.e.,

s(k̃; ˜̄I) = ˜̄I (see Eq. 17). The black line corresponds to the
most unstable wavelength λ → ∞, the blue line to the most
stable wavelength λ = 3d⊥. Dimensionless height h̃ = h/d∥
is shown. (b) Surface roughness after numerical evolution to
mean height h = 2d∥. The standard deviation ∆[h] of h(x)

normalized by mean height h (see Eq. 38) is depicted as a
function of mean discharge rate Ī (see Eq. 14). The dashed
lines illustrate the transition from growth of discrete particles
over particle coating to film growth as a function of discharge
current Ī.

rate,

s̃(k̃; ˜̄I) =
− ˜̄I

exp (−η̃0)− 1

[
∂µ̃hom

∂h̃
− k̃2

∂µ̃

∂ ∂2h̃
∂x̃2

]
(17)

= −
˜̄I
[
Ẽ12π cos(2πh̃) + Ẽ2(1− βh̃2)e−βh̃2

+ κ̃k̃2
]

exp (−η̃0)− 1

where η̃0 is the overvoltage required for uniform growth,

which solves Ĩ(h̃0, η̃0) =
˜̄I. We derive this equation in the

Suppporting Information (see Eq. 37). The dynamics are
unstable (s̃ > 0) for all currents if ∂µ/∂h = ∂2g/∂h2 < 0.
Indeed, this occurs between the equilibria at full molec-
ular layers (see Fig. 3). Development of instabilities into
particles requires that they grow faster than the homo-

geneous film, i.e., s̃ > ˜̄I. We evaluate this condition
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FIG. 5. Simulated surface growth for various discharge cur-
rents Ī. (a) Height profile in during galvanostatic discharge
to two molecular monolayers. The Li2O2 morphology under-
goes a transition from discrete particles (I = 2 nA/cm2), over
particle coatings (I = 50 nA/cm2) to films (I = 400 nA/cm2)
with increasing rate. (b) Cell potential during galvanostatic
discharge. The dip corresponds to the nucleation process.

for marginal stability in Fig. 4a for the most unsta-
ble wavelength λ̃ → ∞ and the most stable wavelength
λ̃ = 3 at which particles can still develop. Note that local
noise favors small wavelengths. Above a critical current,
growth will be homogeneous. This analysis overestimates
the critical currents as it neglects the nonlinearity of the
dynamics. The transition from particle growth to film
growth is broad because of the strong dependence of the
marginal stability on the wavelength of the fluctuation.
Growth is most unstable during nucleation of the first
monolayer when the nucleation energy Ẽ2 must be over-
come. Thus, at intermediate currents, nucleation of par-
ticles can be followed by homogeneous growth at thicker
coatings.

The numerical stability analysis shown in Fig. 4b
confirms this picture. Far below the exchange current,
the growth of distinct particles is signaled by normal-
ized standard deviations of the height profile h(x) larger
than unity. Above the exchange current, a tiny surface
roughness signals film growth. An intermediate regime
of particle coatings separates these extremes.

The exchange current density I0 is determined via

Tafel analysis [12]. We must carefully interpret this
measurement because the exchange current density de-
pends on Li2O2 activity and height profile in our model
(see Eq. 6). Experimental Tafel analysis adjusts the
Tafel slope to match the kinetics of uniform growth at
large rates, which is described by Eq. (16). The cur-
rent is then extrapolated from the large overpotential
regime to zero overpotential ∆Φ = 0, yielding the value
IΘ0 = 2ek0 = 2 nA/cm

2
. It corresponds to the exchange

current density in the thermodynamic standard state,
where a = 1. The thermodynamic standard state is the
fully charged battery without Li2O2, i.e., h(x) = 0. The
instabilities, however, develop close to the spinodal point,
h ≈ d∥/4. Therefore, the critical current for the transi-
tion in Li2O2 morphology is the exchange current density
evaluated at the spinodal point, i.e.,

Ic = I0(h = d∥/4) = IΘ0 aαd∥/4
= 500 nA/cm

2
. (18)

This exchange current agrees with the transition current
predicted by linear stability analysis as demonstrated in
Fig. 4. Our Tafel analysis gives the symmetry factor
α = 0.1 on carbon nanotubes (CNTs) [12] and α = 0.2
on glassy carbon [50]. The small apparent symmetry fac-
tor observed on CNTs could stem from additional over-
potentials, e.g., diffuse double layers in the solid due to
low electron conductivity in Li2O2 [52, 53]. Therefore,
we evaluate our model for the theoretical value α = 0.25
as discussed above.
These parameters allow the quantitative comparison

between model and experiment. Electron mircoscopy im-
ages of Li2O2 on CNT electrodes during galvanostatic
discharge are shown in Fig. 1b/c [9–12]. The predic-
tions of our surface growth model are summarized in
Fig. 5a. At very low surface specific discharge rates
2 nA/cm

2 ≪ Ic, distinct disc-like particles nucleate and
evolve into toroid-like ones (compare with Fig. 1b). At

intermediate rates 50 nA/cm
2
< Ic, small particles are

coating the CNTs (compare with Fig. 1c). At very large

rates 400 nA/cm
2 & Ic, a film is coating the CNTs. This

prediction is in excellent agreement with the films ob-
served at 1000 nm/cm

2
on glassy carbon in Ref. [25]. We

note that the amorphous coatings reported in Ref. [13]
were observed in the regime of intermediate currents.
Next, we validate cell voltages as shown in Fig. 1a

and Figs. 5b. Note that the simulations start at nonzero
currents and overvoltages. The cell voltage goes through
a minimum when 1/4 molecular monolayers are formed

and the system becomes unstable ∂µ
∂h < 0 (see Eq. 17).

The dip in cell potential is determined by the nucleation
energy at low rates, i.e., σ1D

⊥ . It is a bit smaller in ex-
periment than in theory, possibly due to surface defects,
averaging over numerous CNTs and surface capacities.
Due to our choice of the symmetry factor, α = 1

4 , over-
voltages are generally too low, which may also reflect
neglected transport and reaction processes in the solid.
Finally, we analyze the predicted particle shape and

particle density at very low currents. Our theory ex-
plains the presence of disc-shaped particles at low rates
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200 nm(a)

(b) 400 nm

FIG. 6. (a) Validation of disc-like particle morphologies real-
izing the Wulff-shape at I = 2 nA/cm2 [10]. The shaded area
shows a modeled disc shape. The aspect ratio in micrograph
and model agrees. (b) The average particle distance is in the
same order of magnitude, 500 nm, in SEM micrograph and
theory.

and capacities. These were found to be precursors of
aggregated toroid-like particles [10]. The aspect ratios
σ1D
⊥ /σ1D

∥ = 0.15 found in our simulation (see Fig. 5a)

agree with the theoretical Wulff shape and the values
observed by microscopy in Ref. [10]. We demonstrate
this by continuing our simulations to larger capacities,
at which individual discs can be imaged (see Fig. 6a).
Furthermore, the predicted average particle distance of
roughly 500 nm is consistent with experimental imaging
(see Fig. 6b).

IV. CONCLUSION

In this Letter we have developed a theory of elec-
trodeposition based on non-equilibrium thermodynam-
ics, combining existing models for surface growth and
electrochemical reaction rates. The model quantitatively
describes the experimentally observed transition from
particle growth to film growth of Li2O2 during galvano-
static discharge of an Li-O2 battery with increasing cur-
rent. The predicted transition takes place around the ex-
change current Ic of the oxygen reduction reaction eval-
uated at the nucleation barrier for growth of the first
monolayer. This characteristic current is two orders of
magnitude larger than the exchange current IΘ0 from
Tafel analysis of high-rate film growth observed in ex-
periments.

Our theoretical framework for electrochemically-driven
surface growth could be applied to other systems, such
as Na-O2 batteries [15], or extended to further dynami-
cal regimes. After the initial phase of Li2O2 particle nu-
cleation analyzed here, the particle morphology evolves
from disc-like to toroid-like under certain conditions [54].
This may be describable by our approach, e.g., by includ-
ing electron transport and elastic strain. Understanding

the principles of Li2O2 crystallization is important for
overcoming cell performance limitations due to the low
electronic conductivity of Li2O2.
The morphological transition from heterogeneous to

homogeneous at a critical rate is a general prediction of
the variational theory of chemical kinetics [26]. Using the
same theory for reaction-limited dynamics of a concentra-
tion variable, c̃ = h̃, such a transition was first predicted
for lithium intercalation in LiXFePO4 nanoparticles [28],
as the suppression of phase separation into LiFePO4 and
FePO4 domains. The only difference lies in the ther-
modynamics of intercalation, given by a Cahn-Hilliard
regular solution model [27]. LiXFePO4 intercalation is
predicted to be stable and uniform above a critical cur-
rent Ic(X), somewhat below the typical Tafel exchange
current due to coherency strain [29]. In contrast, Li2O2

growth is always unstable, but transitions from high to
low surface roughness at a critical current far above the
Tafel exchange current. In both cases, however, the tran-
sition occurs close to the exchange current at the spinodal
point due to the exponential (Arrhenius, Butler-Volmer)
dependence of the reaction rate on the local overpoten-
tial, or free energy of reaction.

ACKNOWLEDGMENTS

This work was supported in part by MRSEC Pro-
gram of National Science Foundation under award num-
ber DMR-0819762. B.H. acknowledges support from the
German Academic Exchange Service (DAAD). B.M.G.
acknowledges a National Science Foundation Graduate
Research Fellowship. The authors would like to acknowl-
edge Carl V. Thompson for fruitful discussions.

SUPPORTING INFORMATION

Numerical details. We numerically integrate the
DAE system of Eq. 13 and Eq. 14 in MATLAB em-
ploying the DAE-solver ode15s. It is an implicit, vari-
able order solver. Periodic boundary conditions are used.
Spatial derivatives are calculated with first order central
differencing. The spacing of grid points is given by the
distance between molecules d⊥. Simulations were per-
formed in systems of length L = 500 nm (Figs. 4,5,6a)
and L = 1000 nm (Fig. 6b).
Oxygen reduction reaction. Here, we explain that

the global Butler-Volmer rate in Eq. 4 is based on an
elementary kinetics description of the rate of the oxygen
reduction reaction. For first charge transfer step of the
oxygen reduction reaction (ORR) rate limiting, we pre-
dict the symmetry factor α = 1

4 . This is in good agree-
ment with the symmetry factor α = 0.2 for the ORR
measured on glassy carbon. We take into account the
activity of dissolved oxygen aO2

and the reaction inter-
mediate aLiO2

. Thus, we demonstrate the dependence of
the rate of the ORR on the oxygen concentration here.
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In the main article, however, we work with constant oxy-
gen pressure and assume aO2

= 1. For easy notation, we
continue to assume constant activities for lithium ions
and electrons, aLi+ = ae− = 1.

The ORR reaction involves two single-electron transfer
steps with lithium dioxide as the intermediate species

Li+ + e− +O2 −→ LiO2 (19)

Li+ + e− + LiO2 −→ Li2O2. (20)

If the first charge transfer step is rate limiting, the second
one is in equilibrium. The latter allows us to write

kBT ln a = −∆Φ+ kBT ln aLi2O (21)

or

aLi2O = ae
− e∆Φ

kBT . (22)

The rate limiting charge transfer should determine the
overall rate [26],

I1 = A · I10
[
e−α1eη1/kBT − e(1−α1)eη1/kBT

]
, (23)

where the superscript 1 denotes the first charge transfer
step.

In the following, we will show that the global Butler-
Volmer rate (see Eq. 4) used in the article is identical
to twice the elementary reaction rate (see Eq. 23), i.e.,
I = 2I1, if we set

α = 0.5α1. (24)

In our case, we describe the ORR symmetric elementary
charge transfers, i.e., α1 = 1

2 , via a global reaction rate

with α = 1
4 . We restate the equilibrium potential (see

Eq. 3) taking into account a varying oxygen activity aO2

∆Φeq = −kBT

2e
ln

(
a

aO2

)
(25)

and give the equilibrium potential ∆Φ1
eq of the first

charge transfer

∆Φ1
eq = −kBT

e
ln

(
aO2

aLi2O

)
−∆Φ

= 2∆Φeq −∆Φ (26)

making use of Eq. 22 and Eq. 25 [26]. This allows us to
write the overpotential of the first charge transfer step in
the simple form

η1 = ∆Φ−∆Φ1
eq = 2η. (27)

Furthermore, the global exchange current (see Eq. 6) [26]

I0 =
2ek0a

αa1−α
O2

γ‡
(28)

and the one of the first charge transfer step are related
by

I10 =
ek10a

α1

Li2O
a1−α1

O2

γ‡

=
ek0a

αa1−α
O2

γ‡

aα

aαO2

e2αe∆Φ/kBT

I10 =
1

2
I0e

α2eη/kBT . (29)

Finally, we insert the overpotential η1 (see Eq. 27) and
the exchange current I10 (see Eq. 29) into the Butler-
Volmer rate of the first charge transfer step (see Eq. 23)

I1 = A · I10
[
e−α1eη1/kBT − e(1−α1)eη1/kBT

]
=

1

2
A · I0 · eα2eη/kBT

[
e−4αeη/kBT − e(2−4α)eη/kBT

]
= A · I0

[
e−α2eη/kBT − e(1−α)2eη/kBT

]
I1 =

1

2
I, (30)

to yield half of the global Butler-Volmer rate stated in
Eq. 4.

Let us finally rewrite the global Butler-Volmer rate in
order to make clear its dependence on oxygen activity

I = A
2ek0
γ‡

[
aO2

e−α2e∆Φ/kBT − aO2
e(1−α)2e∆Φ/kBT

]
.

(31)
Thus, the pressure of O2 drives the forward rate and the
activity of Li2O2 drives the backward rate.

To summarize, we demonstrated that the global
Butler-Volmer rate stated in Eq. 4 is an accurate describ-
tion of the ORR. Its derivation takes into account reac-
tion intermediates as well as the oxygen pressure. The
latter is encoded in the overpotential η1 (see Eq. 27) and
the exchange current I10 (see Eq. 29). Because transport
of molecular oxygen O2 is fast in the standard electrolytes
for Li−O2 batteries and oxygen partial pressure is kept
constant during experiments, we do not expect a signif-
icant impact of oxygen activity on the electrodeposition
of Li2O2.

Stability analysis. In this section, we provide ad-
ditional mathematical details on the stability analysis.
First, we derive the exponential growth rate for linear
instability in Eq. 17. We decompose total surface height
h̃ = h̃0 + δh̃k̃ into height of the uniform film h̃0 and of

fluctuations δh̃k̃ of wavenumber k̃. Their second deriva-

tive is ∂2δh̃
∂x̃2 = −k̃2δh̃. δA = 0 vanishes because A de-

pends on h through the square of ∂h
∂x only. In order to

determine δ(∆Φ̃)k̃, we study the effect of fluctuations in
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surface height on the mean discharge current in Eq. 14

0 = δ ˜̄I =
1

L

∫ L

0

δĨdx (32)

= −δ(∆Φ̃)k̃

[
αe−α∆Φ̃0 + (1− α)a(h̃0)e

(1−α)∆Φ̃0

]
− (1− α)a(h̃0)e

(1−α)∆Φ̃0

L

∫ L

0

δµ̃k̃dx,

where ∆Φ̃0 is the voltage step required for uniform

growth, which solves Ĩ(h̃0, η̃0) =
˜̄I. The integral

∫ L

0

δµ̃k̃dx =

[
∂µ̃

∂h̃
− k̃2

∂µ̃

∂ ∂2h̃
∂x̃2

]∫ L

0

δh̃k̃dx = 0 (33)

vanishes for all k̃ > 0. Therefore, according to Eq. 32,
δ(∆Φ̃)k̃ = 0 vanishes, too. We can now calculate the

dynamics of the fluctuations δh̃k̃ from Eq. 13

∂δh̃k̃

∂t̃
= −δh̃k̃a(h̃0)e

(1−α)∆Φ̃0

[
∂µ̃hom

∂h̃
− k̃2

∂µ̃

∂ ∂2h̃
∂x̃2

]
.

(34)

We want to substitute ˜̄I and η̃0 for a(h̃0) and ∆Φ̃0. To

this aim, we write for the homogeneous base state

˜̄I = e−α∆Φ̃0 − a(h̃0)e
(1−α)∆Φ̃0

= a(h̃0)e
(1−α)∆Φ̃0

[
e−∆Φ̃0−Ẽ0−µ̃(h̃0) − 1

]
˜̄I = a(h̃0)e

(1−α)∆Φ̃0
[
e−η̃0 − 1

]
(35)

and rewrite Eq. 34

∂δh̃k̃

∂t̃
=

− ˜̄Iδh̃k̃

exp (−η̃0)− 1

[
∂µ̃hom

∂h̃
− k̃2

∂µ̃

∂ ∂2h̃
∂x̃2

]
. (36)

The exponential growth rate in Eq. 17 is

s̃(k̃; ˜̄I) =

∂δh̃k̃

∂t̃

δh̃k̃

. (37)

The marginal stability curve in Fig. 4 is determined by

solving s̃ = ˜̄I for exp (−η̃0) and substituting into Eq. 4.
In Fig. 4, we determine surface roughness ∆[h] as nor-

malized standard deviation of h(x) according to

∆[h] =

√
1

L

∫ L

0

(
h(x)− h̄

)2
h̄2

dx (38)

with the mean height

h̄ =
1

L

∫ L

0

h(x)dx. (39)
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