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a b s t r a c t 

The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions 
transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is 
fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop 
the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively 
to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends 
on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the 
excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved 
Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our 
formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known 
limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion- 
transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host 
material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately pre- 
dicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy 
without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion 
intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Charge transfer reactions are paramount in biology, e.g. in 
protein-protein electron transfer [1–3] and photosynthesis [4,5] , 
and electrochemical engineering, e.g. in water desalination [6–
10] and energy conversion and storage [11–15] . Well established 
models, such as Butler–Volmer (BV) and Marcus kinetics, are avail- 
able to describe the rate of charge transfer carried by ions or elec- 
trons [12,16–18] , respectively, as sketched in Fig. 1 . Here, we con- 
sider concerted or coupled ion-electron transfer reactions, which 
have received much less attention and lack a simple rate formula. 

Efforts to describe charge-transfer reactions can be traced to the 
early twentieth century. Building on Tafel’s discovery of exponen- 
tial overpotential dependence for Faradaic reaction rates [19] , the 
seminal work of Butler [20] and Volmer [21] introduced the phe- 
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nomenological BV equation, which is by far the most widely used 
rate expression in electrochemistry [17,18,22] and electrochemi- 
cal engineering [11,23] . The classical derivation of the BV equa- 
tion [22] is based on Eyring’s transition-state theory [24] applied 
to ion transfer (IT), Fig. 1 (a) [23] . The IT transition state is as- 
sumed to be fixed at a distance αd from the reduced state, where 
d is the distance from the oxidized state. Electron transfer (ET) 
is not treated explicitly in this picture, but the IT rate expression 
is sometimes interpreted to imply that a fraction of electrons α
is transferred on the reduced side of the transition-state barrier, 
while the remaining fraction 1 − α is transferred on the oxidized 
side in order to complete the reaction [17,25] . The BV equation 
has recently been generalized for consistency with non-ideal ther- 
modynamics [12] , e.g. for phase transformations driven by charge 
transfer reactions [26] , setting the stage for our analysis below. 

Marcus was the first to recognize that classical transition state 
theory cannot be applied to electrons [27] . Instead, he proposed 
that ET occurs iso-energetically in response to the environment 
fluctuations of the RedOx species, whose energy landscape is mod- 
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Fig. 1. Physical pictures of ion (a) and electron (b) transfer, in terms of landscapes 
of the excess chemical potential µex . In both cases, O, TS and R correspond to the 
oxidized, transition, and reduced states, respectively. (a) For ion transfer, the re- 
action coordinate ξ is the the distance of the ion from its reduces state, e.g. the 
electrode where the charge transfer takes place. Under an applied overpotential 
η, a cation, for example, is attracted towards the surface of the electrode, where 
at some distance (red point) towards the electrode it is reduced by an electron 
(dashed green arrow). This distance is described by the charge transfer coefficient 
α. (b) For electron transfer, the reaction coordinate x corresponds to the environ- 
ment polarization coordinate. For an electron transfer to occur, both the reactant 
and product states need to be at the same energy (orange point) where the elec- 
tron is able to tunnel between the two states. The reorganization step, which is 
related to the reorganization energy λ of the environment, is denoted using the 
blue shade. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

eled as intersecting parabolas in terms of the solvent reorgani- 
zation coordinate [27–33] , Fig. 1 (b). In the case of outer sphere 
ET reactions, Marcus related the ET activation energy barrier to 
the solvent reorganization energy λ, which is dominated by the 
dielectric polarization of the medium. Soon afterwards, Hush de- 
rived a similar rate expression for adiabatic inner sphere ET re- 
actions, where the electrons transfer in response to molecular vi- 
brations, and thus the reorganization energy is dominated by the 
phonons of the molecular complex [34–37] . Notably, the Marcus- 
Hush rate expression reduces to the BV equation for overpotentials 
much smaller than the reorganization energy [18] . 

The quantum mechanical theory of ET, pioneered by Levich, 
Dogonadze, Chizmadzhev, Christov, and Kuznetsov [16,38–42] , also 
leads to Marcus-Hush rate expressions. In general, electron trans- 
fer depends on the interaction of the electrons that participate 
in the reaction with the environment of the particular RedOx ac- 
tive sites [16,43] . When fluctuations of the environment are large 
enough to make the reduced and oxidized states iso-energetic, ET 
occurs by tunneling with a probability controlled by electronic 
coupling between the RedOx states. In the case of Faradaic ET reac- 
tions, all available electrons can participate in the reaction, so the 
Marcus-Hush rate must be integrated over the Fermi distribution 
of electron energies in the band structure [44] . Thus, for the typ- 
ical case of a metallic electrode [45–47] , the energy landscape of 
the electron donor is described by a family of parabolas, Fig. 1 (b). 

Classical theories assume either IT or ET is the rate limiting 
step, but there are situations where both processes occur simul- 
taneously. The characteristic example is coupled proton-electron 
transfer (CPET) [48–53] . The theory of CPET is based on the ideas 
of electron transfer, where the fluctuating environment of the Re- 
dOx species determines how the reaction will proceed. In addition 
to the isoenergetic requirement for the ET part, the initial and fi- 
nal vibrational state of the proton bond with the molecular com- 
plex need also to be at the same energy before the proton transfer 
occurs [51,54,55] . Once the isoenergetic conditions for both the ET 

and PT are satisfied, both the electron and the proton are trans- 
ferred through tunneling. Although the mathematical framework 
and concepts behind CPET are mature [56–58] and validated sev- 
eral times [59] , there has still been little attention paid to the limit 
where the ions behave classically and only the electrons are quan- 
tum particles [12,60] , as in the case of ion intercalation [61] . 

Ion intercalation has been traditionally modeled by the BV 
equation in the context of batteries [11,62] without any mention to 
electron transfer. Additionally, ion intercalation is used for selective 
separations and water desalination [7,9,10,63] , where the process 
is thought to be purely classical and dominated by IT. However, 
it has been recently shown [61] that electron transfer can be the 
limiting step in ion intercalation in the context of Li-ion batter- 
ies. Therefore, a complete microscopic picture of ion intercalation 
is still lacking, as both IT and ET seem to be important during the 
process. 

In this work, we develop the fundamental theory of coupled 
ion-electron transfer (CIET) reactions, in which ions and electrons 
are transferred through a concerted mechanism. Starting from 
the framework of far-from equilibrium chemical thermodynam- 
ics [64] applied to charge-transfer reactions [12] , we derive a sim- 
ple, closed-form reaction-rate formula, which takes into account: 
(i) the non-ideal thermodynamics of the reactants and products, 
(ii) ionic configurational entropy and other non-idealities in the 
transition state, (iii) the electrostatic coupling between the ions 
and the electrons, (iv) the tunneling of electrons, (v) the solvation 
effects of the ions near interfaces, and (vi) the electronic density of 
states and quantum statistics of the electron donor. Interestingly, 
our formula reduces to the BV equation in two different limits 
of moderate overpotentials, when either ET or IT is dominant. In 
the case of ion intercalation coupled to a metallic electron donor, 
our formula reduces to Marcus–Hush–Chidsey (MHC) kinetics of ET 
with a new pre-factor accounting for the crowding of ions during 
IT. The theory accurately predicts the exchange current versus con- 
centration for LiFePO 4 (LFP) obtained directly from x-ray imaging 
experiments [13] , as well as the chronoamperometry data [61] , and 
paves the way for predictive modeling of Li-ion battery reaction ki- 
netics [65] . 

2. Physical picture 

In order to develop a general physical picture of coupled ion- 
electron transfer, we consider a medium consisting of neutral par- 
ticles, unpaired cations and electroneutral cation-anion pairs (po- 
larons), Fig 2 (a). The concerted ion-electron transfer requires both 
the ions and the electrons that participate in the reaction to be 
transferred together to form the product complex. In the present 
picture, the electron transfer part corresponds to the reduction of 
a neutral site by either delocalized (coming from a metal) or lo- 
calized (from dopants or impurities) electrons, and the ion transfer 
corresponds to the physical transfer of the cation nearby the re- 
duced site. We assume that the individual completion of the steps 
(ion or electron transfer) cannot take place due to the prohibitively 
large electrostatic energy required to separate the cation and the 
reduced site from their final state. 

The physical picture of Fig. 2 (a) can be translated into the 
energy landscape shown in Figs. 2 (b) & (c). Our representation 
of coupled ion-electron transfer is a combination of the classi- 
cal ion [12] and electron [66] transfer treatments as described in 
Figs. 1 . More specifically, the ionic coordinate is equivalent to the 
distance travelled by the ion to reach its final state ξ , and the 
electron coordinate is the solvent polarization one x . Given the 
non-adiabatic nature of electron transfer, the oxidized and reduced 
states are described by different parabolic function for constant 
values of ξ , Figs. 2 (b) & (c). 
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Fig. 2. Physical and energy picture of coupled ion-electron transfer. (a) Schematic representation of an amorphous medium that consists of neutral particles, reduced, and 
oxidized species. At first, the transferring ion starts moving towards the site that is going to be reduced (blue shade), where its environment becomes reorganized as a result 
of thermal fluctuations. Once the environment of the reactant and product states have similar energies and also when the ion is at the transition state (TS), an electron 
coming either from a metal or a dopant will tunnel and reduce the site. Concurrently with this event, an ion-polaron pair is formed. (b) & (c) Energy landscape drawn as a 
contour plot and a three-dimensional surface in terms of the ionic ξ and polarization x coordinates. There are four minima, two of which correspond to the RedOx states. 
These are accessed only through a single point (yellow diamond) that has the lowest energy barrier and allows the transfer of both ions and electrons at their product 
state. In the contour plot, the minimum energy path is depicted with the red dashed line, while in the three-dimensional surface with the solid and thinly-dashed red lines. 
Additionally, in the three-dimensional landscape the solid and thinly-dashed green are the intersection of the energy landscape with x -normal planes at x =  x O and x =  x R , 
and finally, the thick-dashed red is the projection of the minimum energy path on µex =  0 . (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

We consider the energy landscape to have the four local min- 
ima as clearly shown in the contour plot of Fig. 2 (b). These min- 
ima represent the following cases: i) at ( x, ξ ) =  ( x O , ξO ) both ions 
and electrons are in reactant/oxidized state, ii) at ( x, ξ ) =  ( x R , ξR ) 
both ions and electrons are in product/reduced state, iii) at ( x, ξ ) =  
( x O , ξR ) the ion transfer is completed, but the electron transfer has 
not occurred yet, iv) at ( x, ξ ) =  ( x R , ξO ) the electron has tunneled 
in the reduced state, while the ion has not moved from its initial 
position. The system can explore the last two minima only when 
the driving force (overpotential) is large enough to exceed the elec- 
trostatic attraction between the ion and the reduced complex in 
their final state. 

According to Fig. 2 (b) & (c), the non-adiabatic surfaces intersect 
each other along the dark orange line. Across the intersection, elec- 
trons can tunnel from the reactant to the product state as their en- 
vironments are at the same energy state. However, only one point 
along the electron transfer line corresponds to the minimum en- 
ergy barrier (yellow diamond - CIET), where both the ion and the 
electron transfers occur at the same time. 

Similar ideas to coupled ion-electron transfer have been previ- 
ously demonstrated for electrocatalytic adsorption reactions, where 
solvated ions transfer at the electrode interface where an elec- 
tron transfer occurs and covalent bonding takes place [60,67–70] . 
Another example is that of non-adsorbing RedOx reactions near 
the electrodes. In that case, the ions have to work against the 
formed double layer to reach the electrified interface, where along 
their way an electron is transferred to the ion which consequently 
moves back to the solution [52,71–73] . In both examples, the con- 

certed nature of the process translates into a multidimensional en- 
ergy landscape in the reaction coordinates [71,74] , similar to that 
shown in Fig. 2 (b) & (c). 

3. Theory 

3.1. Thermodynamics of RedOx reactions 

We consider a general electrochemical reaction of the form 

O + + e − ! R 

where O + and R represent oxidized and reduced states, respec- 
tively, which may involve multiple ions or neutral molecules, while 
e − corresponds to the electron which participates in the RedOx 
reaction. In the general theory of electrochemical thermodynam- 
ics [12] , the electrochemical potential of individual species is de- 
scribed in terms of its diffusional chemical potential µi , which is 
defined relative to a reference state %, as a function of the electri- 
cal potential, φ, and species activity, a i 

µi =  
δG 

δc i 
=  µ%

i + k B T ln a i + z i eφ =  µex 
i + k B T ln c i (1) 

where c i dimensionless species concentrations, k B is the Boltzmann 
constant, T is the absolute temperature, e is the elementary charge, 
and G corresponds to the non-equilibrium free energy of the sys- 
tem that can also be defined in terms of reaction coordinates. The 
excess chemical potential is defined as 

µex 
i =  µ%

i + k B T ln γi + z i eφ (2) 

3 
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where γi =  a i /c i is the activity coefficient of species i and contains 
all the present non-idealities of the studied system at its reduced 
and oxidized states (e.g. chemical or mechanical effects). 

3.2. Reaction kinetics 

Coupled ion-electron transfer reactions take place at interfacial 
regions in thermodynamically non-ideal systems and involve elec- 
tron tunneling events. For this reason, CIET reactions require a de- 
scription of reacting species that accounts for thermodynamic non- 
idealities, the transition state and the tunneling process. We build 
the theory using the Keizer’s principles of nonequilibrium statis- 
tical mechanics [64] , as formulated for electrochemical reactions 
in [12] . 

The reaction rate is written in terms of elementary processes 
as 

R r,o =  R red − R ox (3) 

where R red and R ox correspond to the reduction and oxidation reac- 
tion rates, respectively [12] . Each of these rates is further analyzed 
as separate probabilistic events leading to 

R red ∼ P ( O ) P 
(
O → O ‡ )P 

(
ET | O ‡ ) (4a) 

R ox ∼ P ( R ) P 
(
R → R ‡ )P 

(
ET | R ‡ ) (4b) 

In the above two equations, P ( O/R ) corresponds to the proba- 
bility on finding particles of the oxidized or the reduced species 
as well as electrons and holes from an electron donor and is pro- 
portional to the species concentration n e/h c O/R e −w O/R /k B T . The part 

c O/R e −w O/R /k B T corresponds to the RedOx species concentration at 
the reaction site, where w O/R represents the free energy required 
to form the RedOx species from a chemical reservoir [12,65,75] and 
can be associated to the electric double layer and/or species ad- 
sorption energies at the electrode/electrolyte interface [76] . Also, 
n e and n h are the normalized concentrations of the electrons and 
holes [16] , respectively. P 

(
O/R → O ‡ /R ‡ ) describes the pr obabil- 

ity of thermally exciting the oxidized/reduced species to a state 
at which electron tunneling becomes iso-energetic, and is pro- 
portional to the Boltzmann factor relative to the transition state 

and local equilibrium excess chemical potential e 

(
µex 

‡ −µex 
O/R 

)
/k B T 

. 
Also, P 

(
ET | O ‡ /R ‡ ) ≡k T corresponds to the conditional probability 

of a successful electron tunneling event [16] , given that the oxi- 
dized/reduced species are thermally activated. Thus, the formal ex- 
pressions for the forward and backward rates read [12] 

R red,ε =  k 0 k T n e c O exp 
(
− w O 

k B T 

)
exp 

(
−

µex 
‡ − µex 

O 
k B T 

)
(5a) 

R ox,ε =  k 0 k T n h c R exp 
(
− w R 

k B T 

)
exp 

(
−

µex 
‡ − µex 

R 
k B T 

)
(5b) 

where k 0 is a prefactor that satisfies microscopic reversibil- 
ity [77,78] and µex 

O includes also the excess chemical potential of 
the electrons µex 

e . Depending on the context of the reaction one is 
interested in (e.g. electron transfer in bulk solution or near an elec- 
trode), k 0 has different physical meaning. In bulk electron trans- 
fer reactions under dilute conditions, for instance, k 0 corresponds 
to the attempt frequency per unit volume [16] , while for electron 
transfer reaction near electrodes it corresponds to the the attempt 
frequency per unit area. In more complex reactions, where all mi- 
croscopic processes are clearly described (e.g. adsorption of ions on 
electrode surfaces), k 0 can have an Arrhenius form. Last, the hole 
concentration can be expressed as n h =  1 − n e [16,17] . 

3.3. Coupled ion-electron transfer 

In the present section, we derive the model for µex 
‡ found in Eq. 

( 5 ) for the case of coupled ion-electron transfer. Electron transfer 
reactions have been modeled successfully using classical Marcus 
theory [43] . In general, both µex 

O and µex 
R can be extended to in- 

clude the reaction coordinate dependencies. We propose a descrip- 
tion of the transition state that includes the typical harmonic po- 
larization reaction coordinate x [12] , as well as an additional term 
that accounts for the ion transfer 

µex 
O (x, ξ ) =  µex 

O ( x O , ξO ) + 
κO 
2 

( x − x O ) 2 + f O ( x, ξ ) (6a) 

µex 
R (x, ξ ) =  µex 

R ( x R , ξR ) + 
κR 
2 

( x − x R ) 2 + f R ( x, ξ ) (6b) 

The functions f O and f R describe dependencies with respect to 
an additional reaction coordinate, the ionic one ξ , which accounts 
for non-idealities arising from the ion transfer reaction, as well as 
its coupling to the electron transfer. Here ξ takes the values ξO in 
the oxidized state and ξR in the reduced state and can be inter- 
preted as the distance the ion has to move for the ion transfer to 
happen. That implies the following conditions on f O and f R 

f O ( x O , ξO ) =  f R ( x R , ξR ) =  0 (7) 

which ensure that reactant/product complexes satisfy their equilib- 
rium thermodynamics description and 

µO (x O , ξO ) =  µ%
O + k B T ln c O γO + z O eφ(x O , ξO ) , 

µR (x R , ξR ) =  µ%
R + k B T ln c R γR + z R eφ(x R , ξR ) 

In the classical electron transfer theory, where the reaction 
does not depend on the ionic coordinate, reduction of the oxidized 
species occurs iso-energetically [16] . Therefore, both the reactant 
and product environments need to have exactly the same energy 
for an electron to be transferred - electron tunneling events must 
conserve energy. This is true when x =  x ‡ , where 

µex 
O 
(
x ‡ 

)
=  µex 

R 
(
x ‡ 

)
=  µex 

‡ ,ET 
(
x ‡ 

)
. (8) 

is used to determine x ‡ [12] . Here, µex 
‡ ,ET is the TS chemical po- 

tential defined at the intersection of the parabolas. The value of x ‡ 
from Eq. (8) results in the same activation barrier as the quantum 
mechanical approach of ET using Fermi’s golden rule [16,79] . 

Fig. 3 illustrates the energy landscape including the ionic reac- 
tion coordinate introduced in Eqs. ( 6a ) & ( 6b ). The idea of includ- 
ing the ionic coordinates for the reaction landscape can be seen as 
a generalization of Marcus’s original picture [28] . The consideration 
of the ionic coordinate allows for the description of environmental 
effects on the transition state barrier, e.g. site exclusion due to sur- 
face crowding phenomena [12,26] . This is in contrast to existing 
studies that focus on dilute liquids and solids. 

Fig. 3 (a) shows the intersection of the 2D parabolas of both 
reactant and product species (orange thick line). Solving Eq. ( 6 ) at 
the intersection, we can express x ‡ in terms of ξ . In principle, ET is 
possible for any value of ξ along the orange line, and thus the elec- 
tron or ion transfer occurs separately from each other. However, 
we expect the ion-electron transfer to be concerted, as opposed 
to sequential, due to the large electrostatic attraction between the 
electron and the ion at their product state - the ion and the elec- 
tron reside nearby each other in ion intercalation materials, where 
they interact through short-range electrostatics. For example, in 
the case where ξ =  0 there is a probability for electron transfer 
without ion transfer. The energy barrier for that process, though, 
is prohibitively large and is expected to scale as the Coulomb in- 
teraction energy +E IT between the ion and the electron [80] . In 
the other limit, where the reaction complex is at its reduced state 
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( x, ξ ) =  ( x R , ξR ) , again, there is a large energy barrier to separate 
the electron from the transferred ion ( x, ξ ) =  ( x O , ξR ) due to their 
electrostatic attraction. In other words, +E IT corresponds to the 
energy required to eliminate an ion-electron pair (break local elec- 
troneutrality). This picture leads to the additional conditions for f O 
and f R , which is 

f O ( x O , ξR ) ≃ f R ( x R , ξO ) =  +E IT (9) 

Therefore, we argue that a sequential process would require sup- 
plying a considerable amount of energy in order to sacrifice the 
stabilizing attraction along that reaction pathway. 

Assuming the barrier is much larger than the thermal energy 
k B T , the saddle point approximation for the first passage time 
[81] is used to derive the rate at the point where ∂ µO/R /∂ ξ

∣∣
x ‡ ,ξ‡ 

=  

0 (yellow point on the orange line) where the reaction barrier is 
minimized. At (x ‡ , ξ‡ ) , the electrostatic penalty for separating the 
ions and electrons from their final state is postulated to be approx- 
imately the same, Eq. (9) , leading to an additional constraint to the 
functional forms of f O and f R 

f O 
(
x ‡ , ξ‡ 

)
≃ f R 

(
x ‡ , ξ‡ 

)
(10) 

In cases where either the species do not interact through electro- 
statics, or the difference between µO and µR is much larger than 
the stabilizing electrostatic attraction +E IT , Eq. (10) might need 
to be modified. In such situation, ‘asymmetry’ in the ionic coordi- 
nate can exist, and f O differs from f R at the transition state point (
x ‡ , ξ‡ 

)
. The true nature of f O and f R can be revealed through de- 

tailed ab-initio studies [71] . 
The oxidized cluster has to fluctuate on a 2D energy surface un- 

til both the reactant and product states are equally likely to exist 
energetically, while the fluctuating trajectory is most likely to fol- 
low the path that passes over the minimum energy barrier for the 
reaction to happen. The point of the minimum transition state bar- 
rier 

(
x ‡ , ξ‡ 

)
is defined by 

µex 
O 
(
x ‡ , ξ‡ 

)
=  µex 

R 
(
x ‡ , ξ‡ 

)
=  µex 

‡ 
(
x ‡ , ξ‡ 

)
(11) 

Additional terms that account for the widening of the RedOx 
species’ density of states upon its interaction with the elec- 
trode [82] can be added to Eqs. ( 6a ) and ( 6b ). 

The transition state chemical potential is split in two parts: 
1) one that describes the polarization coordinate from traditional 
electron transfer kinetics µex 

‡ ,ET , and 2) another which takes into 

account ionic effects of the TS landscape f (x ‡ , ξ‡ ) , e.g. surface site 
exclusion due to surface crowding phenomena [12,83] . By assum- 
ing symmetric (equal) force constants for the polarization of the 
initial and final states κO =  κR =  κ, the functional form of the ET 
contribution is found after solving Eq. (11) for x ‡ , as [43,84] 

µex 
‡ ,ET =  µex 

O ( x O , ξO ) + 
λ
4 

(
1 + 

µex 
R ( x R , ξR ) − µex 

O ( x O , ξO ) 

λ

)2 

=  µex 
R ( x R , ξR ) + 

λ
4 

(
1 −

µex 
R ( x R , ξR ) − µex 

O ( x O , ξO ) 

λ

)2 

(12) 

with reorganization energy λ =  κ
2 ( x O − x R ) 2 corresponding to the 

energy required to alter the environment of the oxidized/reduced 
state to that of the reduced/oxidized sate without allowing an elec- 
tron transfer to occur. After substituting Eq. (10) and Eq. (12) in 
one of the equations in Eq. ( 6 ), the final form of µex 

‡ reads 

µex 
‡ =  µex 

‡ ,ET + f 
(
x ‡ , ξ‡ 

)
=  µex 

‡ ,ET + µex 
IT (13) 

where µex 
IT =  αξ+E IT + k B T ln γ‡ . The first term in µex 

IT is the ion 
transfer barrier due to the electrostatic penalty on separating the 
ion from the electron, and the second term describes the ionic 
non-idealities on the transition state, such as excluded volume ef- 
fects and activation strain energies [12] . The parameter αξ can be 

viewed as an ionic transfer coefficient, the value of which is deter- 
mined by the exact functional form of f O and f R , as we describe 
in Section 4 . In the case where the transferred ion is strongly cou- 
pled with the final position of the transferred electron, we expect 
the constants κO/R to be a function of the ionic coordinate ξ . This 
can induce asymmetries between the RedOx parabolas in the po- 
larization coordinates. Although, this consideration may be more 
realistic, it poses analytical difficulties on arriving to a simple ana- 
lytical form for the transition state barrier µex 

‡ . 

3.4. Quantum tunneling of electrons 

The tunneling of electrons is modeled using the Landau-Zener 
theory [85,86] . The oxidized and reduced states are coupled to 
the surrounding reaction media which may fluctuate, leading to a 
crossing event of the wavefunctions at which tunneling may occur. 
The probability for such an event allowing for multiple re-crossings 
is given by [16] 

P 
(
ET | O ‡ /R ‡ ) =  k T =  

1 − exp ( −2 π.LZ ) 

1 − 1 
2 exp ( −2 π.LZ ) 

; (14) 

.LZ =  
H 2 

DA 
h v ‡ 

(
∂| µex 

O − µex 
R | 

∂x 

)∣∣∣∣
−1 

x ‡ ,ξ‡ 

(15) 

where, k T stands for the electron tunneling probability, H DA is the 
electronic coupling between the electron donor and acceptor, v ‡ 
is the thermally averaged reaction coordinate ‘velocity’, m is the 
effective mass of the reaction complex, and h is Planck’s con- 
stant [16] . Because the coupling involves an electrode with elec- 
trons/holes of a manifold of energy levels, the electronic cou- 
pling is in general a function of electron energy levels ε. For non- 
adiabatic ET the weak coupling limit, .LZ ≪ 1 , we obtain the more 
classical result [16,85,86] 

k T =  
H 2 

DA 

ν‡ ̄h 
√ 

4 πλk B T 
(16) 

where ν‡ is the frequency of the RedOx species along the harmonic 
reaction coordinate [16] and h̄ =  h/ 2 π . 

3.5. Electrostatic effects on ion transfer 

The main idea behind coupled ion-electron kinetics is the con- 
certed transfer of both ions and electrons along the reaction coor- 
dinates. This process is mainly controlled by the interaction be- 
tween ions and electrons that is described by the energy +E IT 
found in Eq. (13) . Marcus in his original papers connected the re- 
organization energy with the Born solvation energy [16,43,44] , giv- 
ing a simple estimate of the electron solvation energy in a dielec- 
tric medium. Herein, we develop an analogous formula to estimate 
+E IT based on electrostatics. 

We focus on the process ( x R , ξR ) → ( x R , ξO ) . In this case, the 
electron and the ion are in the reduced state where we supply en- 
ergy +E IT to move the ion to the position it occupies when the 
reaction complex is in its oxidized state ξO . Therefore, we define 
+E IT as 

+E IT ≡+G ξR → ξO (17) 

where +G ξR → ξO includes the energy to separate the electron and 
ion pairs as well as desolvate and resolvate the ion between dif- 
ferent media, like in the case of ion intercalation. For the solvation 
part of +G ξR → ξO , we follow a similar analysis to that presented 
by Makov & Nitzan [87] , who studied the effects of dielectric mis- 
match on the solvation of ions with finite size. 

According to Figs. 3 (a) and 5 (a), the energy +G ξR → ξO is split 
in three contributions: 1) electrostatic interaction between the ion 

5 



D. Fraggedakis, M. McEldrew, R.B. Smith et al. Electrochimica Acta 367 (2021) 137432 

Fig. 3. (a) Excess chemical potential landscape for both reactants and products vs. the reaction coordinates ( x, ξ ) . The orange line corresponds to the common points of the 
two parabolas, where iso-energetic electron transfer is possible. The red line depicts a fluctuating path in the two dimensional space where it passes through the maximum 
with the minimum value of the intersecting parabolas (yellow diamond), enabling the transfer of both the ion and the electron. In this picture, the coupled ion-electron 
transfer corresponds to concerted reaction process. (b) Excess chemical potential landscape for ξ =  ξO (dashed line), ξ =  ξ‡ (solid line), ξ =  ξR (dashed-dot line). (c) Schematic 
illustration of the projection of the energy profiles of the oxidized ( x =  x O ) and reduced ( x =  x R ) species on the energy- ξ plane is shown. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Primitive electrostatic model for the solvation of an ion near an interface 
that connects two media with dielectric permittivities ε p, 1 and ε p, 2 , respectively. 
The ion has charge q and radius a i . When the ion is solvated left/right of the in- 
terface, its distance from the interface is d 1 / 2 . At the transition state ξ‡ , the ion is 
solvated exactly at the interface, where half of it is in the left dielectric medium 
and the other half on the right one. This model is similar to the one presented by 
Makov & Nitzan [87] . 

and the electron E C , 2) desolvation of the ion from ξR in vacuum, 
+G ξR → v , 3) solvation of the ion from vacuum in ξO , +G v → ξO . This 
is summarized as 

+E IT =  E C + +G ξR → v + +G v → ξO (18) 

where we need to supply E C in order to separate the ion-e − pair 
(break of electroneutrality). We expect this term to be the domi- 
nant one in the expression above, and can be approximated analyt- 
ically using either the Coulomb or the screened Coulomb potential 
(Yukawa) [88] 

E C =  

⎧ 
⎪ ⎨ 

⎪ ⎩ 

e 2 

4 πε 0 ε r r 
Coulomb 

e 2 

4 πε 0 ε r r 
e −r/λs Screened Coulomb 

(19) 

where ε 0 and ε r are the permittivities of vacuum and the dielectric 
medium, λs is the screening length, and r the distance between the 
localized electron and the ion. 

For the solvation process, both +G ξR → v and +G v → ξO depend on 
the ion radius a i , the permittivities of the dielectric media ε p, 1 , 
ε p, 2 , and on the distances d 1 and d 2 of the ion from the interface 
1 stands for the electrolyte phase and 2 for the solid phase, Fig. 4 . 
Following [87] , we use Eq. (17) in their work to derive the follow- 

ing form of +E IT 

+E IT =  E C + 
e 2 

2 

[
1 

a i 

(
1 

ε p, 1 
− 1 

ε p, 2 

)

+ 
1 

2 

(
ε p, 2 − ε p, 1 
ε p, 1 + ε p, 2 

)(
1 

d 2 ε p, 2 
− 1 

d 1 ε p, 1 

)]
(20) 

When ξO and ξR correspond to the the same physical position, then 
the second term in Eq. (20) is zero. 

One can directly consider the relation between the energy con- 
tributions of the transition state due to the solvation effects and 
+E IT . In this case, the two dielectric media are not in equilibrium 
as the transferring ion is at ξ =  ξ‡ , so ε p, 1 and ε p, 2 correspond 
to non-equilibrium permittivities [16] . As a first approximation the 
solvation energy of the transferring ion at the transition state, we 
assume that its the environment is at equilibrium, and thus ε p,i 
are the static permittivities of the two media. As discussed earlier, 
the saddle point approximation predicts that for ξ =  ξ‡ the ion is 
midway to its final state. One can assume this position to be right 
on top of a fictitious interface between the two dielectric media 
where the ion is solvated. Again, using Eq. (18) from Ref. [87] , we 
can describe the electrostatic part of the transition state as a sol- 
vation process from the vacuum state to the interface between the 
two dielectrics. Thus, we find a simple correspondence between 
+E IT and the electrostatic part due to solvation of the transition 
state energy as follows 

+E IT =  E C −
e 2 

2 αξ a i 

(
ε p, 1 + ε p, 2 − 2 

ε p, 1 + ε p, 2 

)
(21) 

Based on this form, it is apparent that by tuning the dielectric mis- 
match between the two media, one can promote or suppress the 
reaction dynamics. Eq. (21) can be seen as an extrapolation from 
the transition state to the final state of the system – the oxidized 
or reduced one. 

The relations presented are simple approximations to the real 
system. The actual +E IT can be calculated by performing either 
molecular dynamics [71] or ab-initio simulations, where the struc- 
ture of the medium as well as the dynamics of the reactant species 
are taken into account in a systematic way. For example, Maxisch 
et al. [89] estimated +E IT ≃ E C =  0 . 37 eV for the Li + -polaron inter- 
action in a LFP crystal. 

3.6. Rate of coupled ion-electron transfer 

Combining Eq. (12) with Eq. (13) and using the definition of the 
formal overpotential and overpotential of Eqs. (24) , (25) , as well as 
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Fig. 5. (a) Excess chemical potential landscape for both reactants and products vs. the reaction coordinates ( x, ξ ) , when the dependence in ξ is linear. The description of 
the lines and the fluctuating path in the energy landscape is given in Fig. 3 . (b) Excess chemical potential landscape for ξ =  ξO (dashed line), ξ =  ξ‡ (solid line), ξ =  ξR 
(dashed-dot line). (c) Schematic illustration of the projection of the energy profiles of the oxidized ( x =  x O ) and reduced ( x =  x R ) species on the energy- ξ plane is shown. 

the tunnelling probability Eq. (16) in the elementary reaction rate 
expressions, Eq. ( 5 ), we arrive at 

R red,ε =  
˜ k 0 e −αξ +E IT /k B T 

γ‡ 
c O n e exp 

( 

−

(
λ + eη f −

(
ε − E f 

))2 

4 λk B T 

) 

(22a) 

R ox,ε =  
˜ k 0 e −αξ +E IT /k B T 

γ‡ 
c R ( 1 − n e ) exp 

( 

−

(
λ − eη f + 

(
ε − E f 

))2 

4 λk B T 

) 

(22b) 

where E f is the Fermi level of the electron donor and ˜ k 0 is the 
lumped reaction rate prefactor 

˜ k 0 =  k 0 k T e −w O/R /k B T (23) 

The electron concentration n e =  1 / 
(
1 + e ε−E f 

)
is described by the 

Fermi-Dirac distribution [16,17] . In both rate expressions, we de- 
fined the formal overpotential η f , which is a measure of the de- 
parture of the electrode potential from the formal one as a result 
of RedOx concentration effects [16] , as 

eη f =  eη + k B T ln 
(

c O 
c R 

)
(24) 

where η is the overpotential defined as [12] 

eη =  µR − µO − µe =  eV % + k B T ln 

(
γR c R 
γO c O 

)
+ e ( z R φR − z O φO ) 

(25) 

and the formal potential of the reaction is defined as eV % =  µ%
R −

µ%
O − E f . Last, to arrive at the final form of Eq. 22(a) & (b), we 

considered the excess chemical potential of the electrons to be 
µex 

e =  ε =  ϵ − eφe , and also µe =  E f =  ε + k B T ln ( n e / (1 − n e ) ) . 
We can connect the form of Eq. (22) with those found in clas- 

sical electron transfer papers [45] and electrochemistry books [18] . 
In connection to the notation used in Chidsey’s paper on elec- 
tron transfer reactions at metal-electrolyte interfaces [45] , x ≡(
ε − E f 

)
/k B T and E 0 ′ − E ≡eη f , where E 0 ′ and E are the formal 

and electrode potential, respectively. Related to electrochemistry 
books like Bard & Faulkner [18] , the formulation of Eq. (22) can be 
directly translated to the expressions of Eqs. (3.6.34) & (3.6.35) (p. 
129-130) under standard conditions where eη f =  eη =  µ%

R − µ%
O −

E f . Thus, performing the change of variables x ≡E − E F in Eqs. 
(3.6.34) & (3.6.35) of [18] , we arrive at the same form for the for- 
ward and backward reaction rates, where E and E F are the electron 
and Fermi energies, respectively. 

In Eq. (22), the term e −αξ +E IT /k B T 
/γ‡ is the main contribution 

of this work, where it describes the ion transfer effects on the 
transition state coupled with electron transfer. The other contri- 
butions such as the electron transfer term, the work required to 

bring the species to their RedOx states, and the tunneling factor 
are common in the field of electron transfer [16,43,75] . Finally, we 
are interested in validating the ionic dependencies on the transi- 
tion state encoded in γ‡ . We do so by applying the developed the- 
ory in ion intercalation. Thus, we go one step further and absorb 
the e −αξ +E IT /k B T into the reaction rate prefactor as 

k ∗0 =  ˜ k 0 e −αξ +E IT /k B T . 

For the remainder of the paper, all energetic quantities are normal- 
ized to k B T . 

4. Two limits leading to the Butler–Volmer energy barrier 

The ionic coordinate is tightly connected with the Coulomb en- 
ergy which is a result of the attraction between ions and electrons, 
and thus f O and f R scale with +E IT . From classical Marcus the- 
ory [43] , it is known that the electron transfer energy is propor- 
tional to the reorganization energy λ, which in our model is ex- 
pressed in terms of the curvature of the parabolas, κ . Given that 
we have two characteristic energy scales, dimensionless analysis 
shows that their ratio κ/ +E IT serves as a characteristic measure, 
and helps us understand the limits of the developed model. 

4.1. Electron-transfer limitation 

The first case is that of κ/ +E IT ≫ 1 . In this scenario, ion trans- 
fer is decoupled from electron transfer ( f O/R /κ → 0 ), and thus the 
reaction is limited by the environment reorganization and electron 
tunneling only. The reaction is solely described in the solvent po- 
larization coordinate and the classical approach of the two inter- 
secting parabolas is followed. As a result, we recover the original 
Marcus/MHC model, where only the electron transfer needs to be 
resolved, while ion transfer dependencies are lumped in the con- 
stants of the model. For overpotential values smaller than λ/e, one 
arrives at the BV model with charge transfer coefficient α =  1 / 2 . 
This result is well-known [12,18] and serves as the classical ap- 
proach for providing a physical picture to the phenomenological 
Butler–Volmer kinetics. 

Another interesting limit is when the ratio eη/λ ≫ 1 . In this 
case, one finds that µex 

‡ ,ET ∝ η2 and therefore the activation energy 

barrier scales with E act ∼ −η2 / 4 λk B T . For localized electrons, the 
resulting reaction rate is predicted to decrease with increasing im- 
posed driving force. This behavior leads to the well-known Marcus 
inverted region [16,43] . 

4.2. Ion-transfer limitation 

In the limiting case of κ/ +E IT ≪ 1 , which can be due to steep 
changes in the electrostatic potential nearby the electrode, e.g. 
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diffuse double layers [73,90,91] , the analysis shows an interest- 
ing connection between coupled ion-electron transfer and Butler–
Volmer kinetics [18,20,21] . Under these conditions, we consider the 
dependence of f O and f R to be linear in the ionic coordinate ξ
leading to the following expressions for the RedOx species chemi- 
cal potentials 

µex 
O (x, ξ ) ≃ µex 

O ( x O , ξO ) + 
κ
2 

( x − x O ) 2 + +E IT ξ (26a) 

µex 
R (x, ξ ) ≃ µex 

R ( x R , ξR ) + 
κ
2 

( x − x R ) 2 + +E IT ( 1 − ξ ) (26b) 

as also shown in Fig. 5 . By following the classical procedure on 
finding the intersection of µO and µR in the x coordinate, Eq. (11) , 
the transition state line x ‡ as a function of ξ is 

x ‡ ( ξ ) =  
1 
2 

( 

x R + x O + 
2 
(
+E IT (1 − 2 ξ ) + µex 

R ( x R , ξR ) − µex 
O ( x O , ξO ) 

)

κ(x R − x O ) 

) 

(27) 

Substituting back to µO or µR , Eq. ( 6 ), and minimizing over ξ we 
find the following explicit expression for ξ‡ : 

∂µex 
O 

∂ξ

∣∣∣∣
x ‡ ,ξ‡ 

=  0 → ξ‡ =  
+E IT + µex 

R ( x R , ξR ) − µex 
O ( x O , ξO ) 

2+E IT 
(28) 

Finally, the transition state chemical potential, which corresponds 
to the minimum energy barrier for the reaction to proceed, is 
found by substituting Eq. (28) and Eq. (27) in Eq. ( 26 ) 

µex 
‡ =  

1 

2 

(
+E IT + µex 

R ( x R , ξR ) + µex 
O ( x O , ξO ) + 

λ
2 

)
(29) 

where for κ/ +E IT ≪ 1 , Fig. 5 (b), we can drop the λ/ 2 term). In this 
limit, we find µex 

‡ to be equivalent to the transition state of Butler–

Volmer kinetics [12] for α =  1 / 2 , where also we can see that αξ =  
α. This is understandable in retrospect since the two-dimensional 
energy landscape can be cast in a form which imitates the phe- 
nomenological charge-transfer coordinate used in deriving Butler–
Volmer kinetics, Fig. 5 (c). Our analysis reveals a different mecha- 
nism that recovers Butler–Volmer kinetics via coupled ion-electron 
transfer, and is in agreement with Fokker–Planck approaches com- 
monly used in the field of quantum chemistry [73,92] . 

5. Application to electrodes 

5.1. Faradaic current 

In order to obtain the total Faradaic reaction rate at an elec- 
trode, we assume a continuum of electron energy levels with den- 
sity of states ρ( ε ) , which corresponds to a family of parabolas in 
the electron transfer coordinate x [16,17,47,61,93,94] . By integrating 
Eq. (3) over all available energy levels we arrive at 

R =  R red − R ox =  

∞ ∫ 

−∞ 

(
R red,ε − R ox,ε 

)
ρ dε (30) 

where in the weak coupling limit .LZ ≪ 1 , Eq. 15 , R red,ε and R ox,ε 
depend on the electron energy level ε through n e . The forward 
R red and backward R ox reaction rates satisfy the De Donder rela- 
tion R red /R ox =  e −eη/k B T , in compliance with microscopic reversibil- 
ity [12,77] . Details on the derivation of the De Donder relation for 
coupled ion-electron transfer kinetics are given in the Appendix. 

It is convenient to recast the net reaction rate in current density 
form, i =  eR, as a function of the overpotential, as defined in Eq. 
(25) , and a prefactor defining the exchange current density [12] , 

i =  

∫ ∞ 

−∞ 
i 0 
[
e −αη − e ( 1 −α) η]ρ dε (31) 

After some lengthy algebra for factorizing the current density in 
the form of Butler–Volmer, we arrive at the following form for the 
exchange current density 

i 0 (ε, η, c i ) =  
ek ∗0 
γ‡ 

e −
( ε−E f −λ) 

2 
4 λ c O 

(3 −2 α+(ε−E f ) /λ) 
4 c R 

(1+2 α−(ε−E f ) /λ) 
4 n e e −

η2 
4 λ

=  
ek ∗0 
γ‡ 

c O n e e −α2 λe −
η2 
4 λ (32) 

and we define the charge transfer coefficient as 

α( ε ) =  
1 

2 

(
1 + 

1 

λ
ln 

(
c O 
c R 

)
+ 

E f − ε 

λ

)
. (33) 

In Eq. (32) , we observe that when ion transfer limitations are 
negligible, then γ‡ ≃ 1 and k ∗0 ≃ k 0 k T e −w and the exchange current 
density is equal to 

i 0 (ε, η, c i ) =  
ek 0 ̃  H 2 

DA √ 
4 πλ

e −w c O n e e −α2 λe −
η2 
4 λ (34) 

where ˜ H DA =  H DA / 
√ 

ν‡ ̄h k B T is the dimensionless energy barrier 
between the two non-adiabatic electron states of the RedOx 
species [79] and we considered w O ≃ w R ≡w . Eq. (34) in combi- 
nation with Eq. (31) are the BV-like form of the Marcus–Hush–
Chidsey model, which simplifies into the Marcus model [12] when 
the density of states corresponds to a single electron level. 

We see that i 0 is within the integral related to the available 
energy levels of the electron donor. To be consistent with the elec- 
trochemistry literature, the classic exchange current density ˜ i 0 is 
defined as 

˜ i 0 =  lim 
η→ 0 

∫ ∞ 

−∞ 
eR red ρ dε =  lim 

η→ 0 

∫ ∞ 

−∞ 
eR ox ρ d ε =  

∫ ∞ 

−∞ 
i 0 ρ d ε (35) 

The integral does not have an analytical form, except in specific 
cases, where for instance n e =  %(E f − ε) , with % to be the Heav- 
iside step function or when uniformly valid approximations are 
used [47] . In both of these cases and under dilute conditions, the 
exchange current density can be written as 

˜ i 0 ≃ 
ek 0 ̃  H 2 

DA 
2 γ‡ 

e −w e −αξ +E IT c O f ( λ) (36) 

where f ( λ) =  erfc 
( √ 

λ
2 − A 

2 

√ 
1 
λ + 1 √ 

λ

)
, with A =  0 for n e =  

%
(
E f − ε 

)
and A =  1 for the uniformly valid approximation 

of [47] . When electron transfer near a metallic electrode is the 
limiting step (MHC model [45] ), the exchange current density be- 
comes ˜ i 0 ≃ ek 0 ̃  H 2 

DA e −w c O f ( λ) . In the case where the reorganization 
energy λ does not depend on species concentration, the form of 
˜ i 0 depends on λ as shown in Fig. 6 (a). For simplicity, we assume 
dilute solution and for completeness we include the approximated 
forms of Eq. (36) . 

The model parameters can be obtained either through ex- 
periments or first-principle calculations. In particular, the chem- 
ical potential of the species can be found either using equilib- 
rium statistical mechanical methods [95] , or using experimental 
(non-)equilibrium measurements [78] such as construction of Tafel 
plots [61] . The common practice for estimating the electron donor 
density of states ρ(ε) and the reorganization energy λ is by us- 
ing density functional theory, via the calculation of the band and 
phonon structures of the materials used in the reaction [96] . 

5.1.1. Localized electrons 
In the case of localized electrons for an insulating electrode 

or isolated molecule, the density of states can be approximated 
by a Dirac delta function around the localized energy level ε 0 as 
ρ =  δ(ε − ε 0 ) . Here, the Fermi level E f corresponds to the single 
electron level ε 0 . Additionally, the factors which account for the 
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Fig. 6. (a) Normalized exchange current density in terms of the reorganization energy λ in the case of dilute solution. For completeness we include the results of the 
numerical integration of Eq. (35) , the uniformly valid approximation of [47] , and the when n e =  %

(
E f − ε 

)
. (b) Energy landscape in terms of the reorganization coordinate 

x for constant ξ =  ξ‡ for different values of the overpotential. (c) Tafel plot for the case of localized (black) and delocalized (blue) donor electrons. In the case where the 
electrons originate from an insulating phase or an isolated molecule, CIET predicts the inverted region observed in the classical model by Marcus [43] , where the current 
decreases with increasing driving force for η >  λ. Here, η is scaled with k B T /e and λ with k B T . When the electron donor has delocalized electrons, a family of parabolas 
exists that leads to a reaction-limited current for η >  λ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.) 

probability of finding occupied n e and unoccupied 1 − n e energy 
levels in Eqs. ( 22a ),( 22b ) need to be set equal to 1. In that case, 
the total reaction rate expression reads 

R =  
k ∗0 
γ‡ 

(
c O e −

( λ+ eη f ) 
2 

4 λ − c R e −
( λ−eη f ) 

2 
4 λ

)
(37) 

where the second part of the expression corresponds to the elec- 
tron transfer event, as has been initially derived by Marcus and 
others [16,43] . The first part corresponds to the ionic part of the 
transition state according to the developed framework of coupled 
ion-electron transfer. A similar form of Eq. (37) has been given 
in [12] , where the transition state activity coefficient γ‡ has been 
included through a ‘modified’ reorganization energy that depends 
on the RedOx species concentrations, e.g. λ( c O , c R ) . 

In Figs. 6 , we present the reaction landscape in terms of x 
at ξ =  ξ‡ and the current vs. overpotential dependence. In both 
figures, η and λ are scaled with k B T /e and k B T , respectively. At 
the transition state point 

(
x ‡ , ξ‡ 

)
, CIET predicts the classical pic- 

ture of the energy landscape that Marcus reported in his seminal 
works [16–18,43] , where for η =  λ the electron transfer reaction 
becomes barrier-less [97] , Fig. 6 (b). For η >  λ, however, the elec- 
tron transfer barrier starts increasing again leading to the Marcus 
inverted region [12,97] , Fig. 6 (c). Finally, across the line where the 
parabolas intersect, there are values of ξ for which x ‡ (ξ ) lies in 
the inverted region and others that do not. For η ≫ +E IT though, 
the transition state point in the ionic coordinate becomes ξ‡ =  
ξO , resulting in negligible ionic barrier and the reaction becomes 
electron-transfer limited. 

5.1.2. Delocalized electrons 
When the electrons that participate in the electrochemical reac- 

tion come from a metal, the density of states ρ is approximated as 
uniform nearby the Fermi level E f . In that case, the total reaction 
rate is calculated by Eq. (30) by setting ρ to be constant. Gener- 
ally, the resulting integral does not admit an analytical solution, 
except in certain limits where the Fermi-Dirac distribution can be 
approximated with the Boltzmann distribution [17] . Despite these 
difficulties, one can either use special quadrature rules to evaluate 
the integral with very few function evaluations, e.g. GaussLaguerre 
quadrature, or other analytical approximations with acceptable nu- 
merical accuracy. Here, we briefly review an analytical approxima- 
tion to the integral over all available energy levels for the case of 
constant ρ [47] . After applying the approximation of Eq. (17) of 

Ref. [47] , the total reaction rate becomes 

R =  
k ∗0 

√ 
πλ

γ‡ 

(
c O 

1 + e η f − c R 
1 + e −η f 

)
erfc 

⎛ 

⎝ 
λ −

√ 
ˆ α + η2 

f 

2 
√ 

λ

⎞ 

⎠ (38) 

where ˆ α =  1 + 
√ 

λ. As discussed in [47] , Eq. (38) can be evaluated 
as quickly as BV and does not require numerical integration, as im- 
plied from Eq. (30) . This fact makes it convenient for its use in an- 
alytical models. Additionally, it was shown in Fig. 4 of [47] that 
it is extremely accurate in various limits. More specifically, in the 
physically relevant case where λ > k B T , the approximation error is 
always bounded below 5% even for small values of η f . At large η f 
and/or large λ the formula is able to replicate with extreme accu- 
racy the results obtained from numerical quadrature, since it has 
exponentially small error in both η f and λ. Therefore, we believe 
that in the case of a metallic electron donor, the integral appear- 
ing in Eq. (30) can be approximated by the formula given in Eq. 
(38) with high accuracy and numerical efficiency. 

In the case of delocalized electrons, the energy landscape of 
Fig. 6 (b) would correspond to a family of parabolas for the oxidized 
state, instead of a single one. Thus for metallic electron donors, 
CIET predicts the current density to saturate for η >  λ, Fig. 6 (c), 
while its limiting value is affected by the ionic energy barrier, Eq. 
(13) . 

6. Application to ion intercalation 

6.1. Motivation 

Intercalation is a reversible reaction of ion insertion and extrac- 
tion, whereby the stoichiometry of the host material changes with 
increasing/decreasing ion concentration. The insertion of species 
may be driven chemically, e.g. hydrogen insertion in Pd [98] , or 
electrochemically, e.g. Li ion intercalation in oxides [99] . Ion in- 
tercalation has been traditionally modeled by charge transfer ki- 
netics using the BV equation in the context of batteries [11,62] . 
While charge transfer kinetics does not explicitly specify the na- 
ture of charge, which can be either that of the transferred electron 
or ion, it is often assumed that ion intercalation is limited by IT 
due to the experimentally observed concentration-dependent cur- 
rent densities [100–102] . Some have even questioned whether ion 
intercalation is a Faradaic reaction, arguing that ET from the elec- 
trode does not occur, beyond the simple electrostatic response of a 
capacitor [103] . 

Contradicting this paradigm, it was recently proposed that ion 
intercalation in the Li-ion battery cathode material, Li x FePO 4 (LFP), 
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Fig. 7. Schematic illustration of the intercalation process described by coupled ion- 
electron transfer kinetics. The ion originates from a reservoir outside the parti- 
cle, while the electron is provided by (a) & (b) a metallic or (c) a semiconduct- 
ing source. In the present figure, the electron (e −) donor corresponds to a metal 
or semi-conductor, with Fermi energy E F . In (a) metals, electrons are delocalized 
within the solid, while in (c) semi-conductors they are localized on homogeneously 
distributed dopants. In the case of (b) an insulating material like LiFePO 4 , the elec- 
trons are provided from a thin conductive coating. 

is instead limited by electron transfer. In particular, it was ar- 
gued that the Li + ion transfer step is fast and follows the slow 
transfer of electrons between the metallic carbon coating and the 
neighboring RedOx-active Fe 3+ /Fe 2+ sites in the insulating crystal 
host [61] . These developments suggest that both ET and IT are im- 
portant in ion intercalation, and the coupling between them de- 
pends on the electronic nature of the host compound. The mate- 
rials in which ions intercalate can be metallic, semi-conducting or 
insulating. For example, LFP is a poor electronic conductor, while 
Li x C 6 (graphite) acts as a metal. Both are common materials found 
in commercial Li-ion batteries. Figs. 7 illustrate the case of coupled 
ion-electron transfer applied to ion intercalation, where the elec- 
tron donor might be conducting or semi-conducting. Initially, ions 
exist in the electrolyte reservoir, and electrons reside either in the 
environment of the system (e.g. in the LFP case, where it comes 
from the carbon coating, Fig. 7 (b)), or in the solid matrix of the in- 
tercalation material (e.g. as in Li x CoO 2 (LCO) and graphite, because 
of their metallic state, Fig. 7 (a) & (c)), or in a combination of both. 

6.2. CIET applied to ion intercalation 

The proposed mechanism of coupled ion-electron transfer takes 
into account the effects of the ion environment on the transition 
state. In ion intercalation materials, a non-negligible phenomenon 
that affects both the thermodynamics and the intercalation rates 
is the excluded volume interactions that take place either in the 
bulk or on the surface of the system. For example, in a lattice- 
gas model (solid solution) the diffusional chemical potential of the 

Fig. 8. (a) Schematic of the reactant and transition state energy landscape for only 
the ion transfer. With increasing products concentration c R ≡c, the entropic effects 
on the transition state increase the effective activation energy for the ion trans- 
fer process. As a result, the transition state excess chemical potential µex 

‡ scales as 
ln (1 − c) −1 . (b)-(d) Physical picture of the entropic effects on the transition state. 
Three representative concentrations are shown. With increasing the concentration 
of products, the ions at the transition state start interacting entropically with their 
environment, decreasing the probability for the ion transfer to occur. 

intercalated ions is described by the following equation [12,104] 

µLi =  µ%
Li + k B T ln 

c 

1 − c 
=  k B T ln c + µex 

Li (39) 

where µex 
Li =  µ%

Li + k B T ln γLi , and γLi =  1 / ( 1 − c ) that corresponds 
to the excluded volume effects. 

In the case of the transition state, the picture is similar to the 
bulk [12,12,13,97,104–108] . More specifically, the idea of excluded 
sites on the transition state is demonstrated in Fig. 8 , where we 
provide a combined energetic and physical picture. For simplic- 
ity, we consider the case of an isolated ion transfer to understand 
solely the excluded volume effects. Thus, Fig. 8 (a) shows the en- 
ergy landscape for both x =  x O and x =  x ‡ to demonstrate the ef- 
fects of surface crowding on the reaction rate. We focus on three 
cases: 1) low, 2) intermediate, and 3) high concentration of inter- 
calated ions c R ≡c. 

During ion transfer, ξ =  ξ‡ , the transferring ion occupies a free 
site from the product state. At the same time, all the other sites 
are populated by the ions of the product state. For low c, it is clear 
that there is a high probability for the TS ions to find a free site to 
be transferred, Fig. 8 (b) which corresponds to the light green curve 
in Fig. 8 (a). Once the concentration of products increases, Fig. 8 (c), 
the ions at the transition state start competing with those at the 
product state for free space. In other words, the entropic effects at 
the transition state decrease the probability of having a complete 
ion transfer by effectively increasing (medium green) the ‘activa- 
tion’ energy of the process, Fig. 8 (a). At very high product con- 
centrations, Fig. 8 (d), it becomes very rare for the transition state 
ions to not be repelled back to their reactant state. This translates 
to even higher (darker green) transition state energies, Fig. 8 (a). 
In analogy to the activity coefficient of the bulk chemical potential 
shown in Eq. (39) , and also as described in detail in Fig. 8 and sug- 
gested in Ref. [12] , the excluded-volume effect during intercalation 
can be modeled with the following expression for the transition 
state activity coefficient 

γ‡ =  ( 1 − c R ) −s (40) 

where s is the number of sites the transition state ions occupy 
during insertion. The species concentration effects on the transi- 
tion state theory lead to reaction-limited current that depends on 
species concentration, in agreement with experiments on ion in- 
tercalation materials [109] . 

In summary, for ion intercalation in a solid, excluding one site 
in the transition state ( s =  1 ), with electrons provided by a metallic 
electrode source, the CIET current density, Eq. (30) , can be approx- 
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imated as [47] 

i ≃ ek ∗0 
√ 

πλ( 1 − c ) 
(

1 
1+ e η f − c 

1+ e −η f 

)

×erfc 

( 
λ−

√ 
ˆ α+ η2 

f 
2 
√ 

λ

) 
(41) 

where c is the normalized concentration of Li ions in the mate- 
rial [97,104,108,110] . 

In the following sections, we test the predictions of coupled 
ion-electron transfer on describing Li ion intercalation in LFP on 
both the single particle and porous electrode scales. The Li inter- 
calation reaction in LFP is modeled as 

Li + 
sol + Fe +3 

s + e − ! Li + 
s + Fe +2 

s 

where Li + 
sol/ s denote the lithium ions in the electrolyte phase and 

in the particle respectively, while Fe +3 / +2 
s are the oxidized and re- 

duced states of Fe in the crystal. The electrons originate from the 
carbon film that surrounds the LFP particles [61] . Finally, the ther- 
modynamic model for LFP can be found in [104,107,111] . 

6.3. Exchange current density 

Most BV-based reaction models admit the factorization of the 
form [12,26] 

i =  eF ( c O , c R ) G ( η) 

where F ( c O , c R ) is a function only of the system species concentra- 
tions, which is directly related to the exchange current density i 0 , 
and G ( η) is solely a function of the applied overpotential [26,62] . 
When the CIET model is cast in the same form as BV, Eq. (31) , this 
factorization is not possible. More specifically, the charge trans- 
fer coefficient α becomes a function of both c O and c R , leading to 
G ( c O , c R , η) . In fact, this non-linear coupling between α and η is 
one of the main reasons for distinguishing the models developed 
based on the quantum-mechanical picture of electron transfer from 
those which are purely phenomenological. 

Table 1 summarizes several models that are commonly used in 
electrochemical ion intercalation. The first three are based on the 
BV formulation [12,13,62] , where only F ( c ) differs and α is a mate- 
rial parameter, while the last two correspond to ET kinetics, where 
α is now a function of the intercalated lithium concentration. 

When the chemical potential µ is modeled using regular solu- 
tion theory [104,105,112] , the first two models differ only by the 
factor which describes the Li-Li interactions. The regular solution 
term is responsible for the existence of spinodal points in a ther- 
modynamics system [113] . The exchange current density i 0 used 
by Srinivasan & Newman [62,114] , corresponds to an ideal lattice 
gas model with excluded volume effects. By postulating G ( η) to 
be similar to the BV model, Lim et al. [13] mapped F ( c ) using the 
experimentally extracted current. 

Both the first [12] and the third [13] models capture the auto- 
inhibition mechanism which is responsible for the suppression of 
phase separation under non-equilibrium conditions [26] . The for- 
mer, though, overestimates the range of c for which the reac- 
tion rate decreases with concentration [13] . Related to the dif- 
ferences between the ET models, the latter model introduced in 
Ref. [65] starts with the same general expression predicted by CIET 
theory, Eq. (38) , but is modified to replicate the exchange current 
density of the BV model [12] by eliminating the rough 

√ 
c depen- 

dence of G ( c, η) , which is only true for large λ. It is thus interest- 
ing to test how this ad hoc departure from the CIET theory affects 
predictions of experimental data in this section and the next. 

Fig. 9 shows the predictions of the normalized current i/i max as 
a function of c. The maximum current i max is defined at the nor- 
malized concentration c where i attains its maximum value. We 

Fig. 9. Comparison of the observed normalized current [13] versus the predicted 
ones by the models in table. 1 . Solid lines describe the fitting on the experi- 
ments [13] and the theoretical predictions of the models derived in section 3 . With 
dashed lines are shown the predictions of the phenomenological models as intro- 
duced in [12,62,65] . For clarity, we use the following abbreviation for the mod- 
els compared here: 1) Experiment [13] , 2) Phase-Field BV [12,104] , 3) Classical 
BV [11,62,114] , 4) Phase-Field MHC [65] . The model of Eq. (41) is not fitted to 
the experimental data. The parameters for the thermodynamics model of LiFePO 4 
can be found in [104] , while the used value for the reorganization energy is taken 
from [61] , and is λ ≃ 8 . 3 k B T . The inset figure corresponds to the normalized exper- 
imentally measured overpotential eη/k B T as a function of the local Li ion concen- 
tration c [13] , where the dashed dark red line corresponds to the average value of 
eη/k B T ≃ 2 . 5 . 

compare the model predictions with the experimentally measured 
data of the current density for LFP [13] (blue dots). The measured 
local concentration c and overpotential η are coupled, as the dis- 
charging was performed under constant current. Thus, Fig. 9 is 
constructed by directly using the experimentally observed values 
of ( c, η) into the models presented in table 1 . The solid lines il- 
lustrate the fitting (blue) on the experimental data as performed 
in [13] along with the theoretical predictions of the CIET model 
(orange). The dashed lines show the predictions of the other mod- 
els of Table 1 . 

It is apparent that the model of our work along with the em- 
pirical fit [13] can capture the correct behavior of the normalized 
current vs. c. It noteworthy that the developed model has not been 
calibrated to the experimental data and the predictions are based 
on the material parameters found in Refs. [61,105] . The reorganiza- 
tion energy of LFP is equal to λ =  8 . 3 k B T [61] . Regarding the pre- 
dictions of the other three models, they either overestimate or un- 
derestimate the concentration c max at which the current is maxi- 
mized. 

The quantitative agreement of our model with the experimen- 
tal data highlights the importance of considering electron trans- 
fer coupled with ion transfer for ion intercalation in solids. This 
aspect is missing in earlier models of ion intercalation based on 
BV kinetics [12,62,104,114,115] , which we show here could arise in 
certain limits of the CIET theory for either large reorganization en- 
ergy or large ion transfer energy at moderate overpotentials. Sev- 
eral similar, thermodynamically consistent generalizations of Mar- 
cus [12] and MHC [65] kinetics have also been postulated for ET- 
limited ion intercalation, but here we provide the first general mi- 
croscopic theory capable of describing all of these limits and pre- 
dicting the proper form of the rate expression. In the next section, 
we provide further quantitative support for the CIET theory by re- 
solving the controversy over the original measurements revealing 
MHC kinetics in Li-ion batteries [61] . 
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Table 1 
Constitutive relations for ion intercalation. For clarity, all BV-based and CIET-based models are 
described with constant reaction constants, k ∗BV, 0 and k ∗0 , respectively. The third model in the 
table, which is a variant of ET kinetics, is one of the versions suggested in [65] and used for 
the simulations therein. 

Model Ref. 

F ( c ) G ( c, η) 

k ∗BV, 0 ( 1 − c ) e µ/ 2 exp ( −αη) − exp ( ( 1 − α) η) [12,104] 
k ∗BV, 0 

√ 
c ( 1 − c ) “ ” [62] 

3 k ∗BV, 0 ( 1 − c ) 
√ 

c ( 1 − c ) “ ” [13] 
k ∗0 

( 1 −c ) e µ/ 2 
√ 

c exp −
(

η2 
4 λ

)
[ exp ( −α( c ) η) − exp ( (1 − α( c ) ) η) ] [65] 

k ∗0 ( 1 − c ) e −α2 λ “ ” Eq. (31) , [65] 

6.4. Chronoamperometry with porous electrodes 

Porous electrode theory [65,83,116] is widely used for predict- 
ing the behavior of macroscopic quantities (e.g. current/voltage re- 
sponse, and (dis)charging capacity) which are important in energy- 
related applications (e.g. Li-ion batteries [99] ). In general, the re- 
sulting voltage and current follow complex dynamics which are a 
result of coupled processes across multiple scales. In Li-ion batter- 
ies for example, the cathode and anode consist of multiple par- 
ticles where Li insertion and solid diffusion are important. The 
primary particles and secondary agglomerates are connected to 
each other through the electrolyte, as well as conducting additives. 
Here, our goal is to demonstrate how CIET theory performs on 
the porous electrode scale. More specifically we compare the pre- 
dictions of the model with the chronoamperometry experiments 
of [61] on LFP. 

The system we are interested in contains N LFP particles and 
is initially prepared at V cell =  3 . 422 V and room temperature. At 
t =  0 , we apply a voltage step of magnitude +V . We use the same 
voltage step values as those in [61] . The voltage range under which 
the experiment is performed covers a large spectrum of Li concen- 
trations inside the active material of the cathode. This is seen from 
the voltage-capacity curves of LFP, where for the largest voltage 
drop V cell + +V max =  3 . 069 V, the final capacity of the intercalated 
Li in the cell lies in the spinodal [13,104,118] . 

As in the case of single particles, we are interested in compar- 
ing the predictions of different reaction models that are commonly 
used to describe ion intercalation kinetics. In particular, we com- 
pare the developed model against BV [12,104] and BV with film re- 
sistance R f (BV+film) [65,83,119,120] . The mathematical expression 
of the latter can be found in Eqs. (35), (36), and (37) of Ref. [65] . 
BV+film is known to reproduce curved Tafel plots [120] , similar to 
the ones predicted by electron transfer limitations [61] . Therefore, 
we test the models not only in terms of their capability to pre- 
dict the Tafel plots, but also on the time evolution of the resulting 
current after we apply the voltage step. 

We perform the simulation using porous electrode theory, pi- 
oneered by Newman [62,121] , as recently modified to describe 
phase separating materials [65,83] . We refer the readers inter- 
ested in the porous electrode theory to Refs. [11,65,83] and for the 
numerical methods for discretizing the equations to [122,123] for 
more details. The cell has a diameter of 1.27 cm, while each elec- 
trode has thickness approximately around L electrode =  4 µm. The 
size of the LFP primary particles is described by a log-normal dis- 
tribution [124] with average diameter <  d >  =  1 µm, and variance 
of σ 2 

d =  250 nm, a value found by fitting the theory to the experi- 
ments. The total number of particles used in the simulations is of 
the order N ∼ O 

(
10 4 ). The simulation results using the particle size 

distribution are denoted with PSD, otherwise we set σ 2 
D =  0 . All the 

parameters related to the geometry of the cell, electrode and the 
particle size are reported in the Methods section of [61] . In addi- 

tion to the variance of the particle population, we also adjust the 
constant reaction rate prefactor k ∗0 to fit the experiments, and we 
find it to be k ∗0 =  8 × 10 −3 A/m 2 . The coupled ion-electron transfer 
and the BV models were calibrated on half of the available exper- 
imental data sets [61] that correspond to the lower values of the 
applied +V, while the BV+film model was calibrated on the Tafel 
plot of [61] . The fitting was performed using a common non-linear 
least squares procedure [125] . This fitted value of k ∗0 is very close 
to the one calculated in Ref. [13] by assuming a reaction-limited 
process. For the Butler–Volmer with film resistance, we use R f =  7 

3 m 2 to fit the Tafel plot. 
Additionally, we neglect diffusion limitations in the electrolyte 

within the electrode, and we set the number of volumes in the 
porous electrode model equal to one. This assumption is based on 
the estimate of the liquid diffusion timescale for the electrolyte 
within the electrode τelectrolyte =  L 2 

electrode /D Li + , where D Li + is the 
liquid electrolyte diffusion coefficient of the solvated Li ions. Using 
D Li + ≃ 5 × 10 −11 m 2 /s as a characteristic value, we find τelectrolyte ≃ 
0 . 3 s, which is much shorter than the operation timescale of the 
cell (around 1200 seconds for the largest applied overpotential). 
Under these conditions we can safely assume nearly uniform Li 
concentration across the electrolyte phase. 

In general, porous electrode experiments involve thousands of 
primary particles of variable sizes. As discussed in [117] , the result- 
ing macroscopic quantities of the cell are affected by several fac- 
tors such as particle activation/nucleation, phase-separation, vari- 
able particle size, inhomogeneous SEI formation amongst different 
particles, etc. Therefore, the usage of a statistical method is impor- 
tant in order to extract the true reaction constants of the studied 
reaction. We applied the same protocol to our simulation results 
to construct in a similar fashion the Tafel plot shown in Fig 10 (c). 
More specifically, after performing the simulations, we extract the 
resulting current, and we fit it with Eq.(4) of [61] . Then, we use 
the fitted k values (reaction constant in the population model) to 
construct the Tafel plot. 

Fig. 10 (a) illustrates the current I vs. time t after we apply a 
step of +V =  −0 . 045 V ( eη ∼ 2 k B T ). The experimental measure- 
ments are shown with black circles, while the model predictions 
are shown with continuous lines. As shown in Fig. 10 (a), for condi- 
tions near equilibrium (small overpotential) all models behave sim- 
ilarly, reproducing the experimentally observed current-time re- 
sponse. At large applied overpotential, however, the predictions of 
each model start to deviate from each other. 

Fig. 10 (b) shows the transients of the current under +V max =  
−0 . 354 V, a value almost 10 times larger than the previously dis- 
cussed voltage step. Under these conditions, the predictability of 
the developed coupled ion-electron transfer is apparent (red line), 
where it is able to reproduce the experimentally observed current 
for the largest percentage of the studied time interval. Regarding 
the predictions of BV kinetics (green line), we know that the model 
predicts exponentially increasing current with increasing overpo- 
tential. Under the experimental conditions the current is overes- 
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Fig. 10. Comparison of reaction models in chronoamperometry experiments and simulations. Experimental data are from ref. [61] . (a),(b) Transient simulated (solid lines) 
and experimental (black circles) current responses, under a voltage step of +V =  −0 . 045 V and +V =  −0 . 354 V, respectively, for the CIET (red line), CIET with particle size 
distribution (PSD) (dark red line), BV+film (blue line) and BV (green line) reaction models. (c) Tafel plot constructed using the method presented in [61,117] to extract the 
representative reaction rate constant k . 

timated for the applied overpotential, and decays rapidly at very 
early times ( t ∼ 100 s), Fig. 10 (b). Finally, the predictions on cur- 
rent vs. t using BV+film are shown with the blue line. The pre- 
dicted values of current are not able to capture the experimentally 
measured values, making clear the discrepancies that can be intro- 
duced by using only Tafel measurements to characterize the mech- 
anism of a reaction. 

This last comparison raises questions on the interpretation of 
experimental data by using classical methods such as Tafel analy- 
sis. Fig. 10 (c) shows the constructed Tafel plot by using the statis- 
tical method introduced in [117] and used in [61] . Again, the red 
line represents the predictions using CIET and the blue line those 
of BV+film. The agreement between CIET and BV+film is consistent 
with the discussion in Ref. [120] , where it was shown that curved 
Tafel plot data can be fitted by Butler–Volmer with film resistances 
included. However, as shown in Fig. 10 (b), the latter model is not 
able to capture the experimentally observed trends of the current 
transients under large values of overpotential ( eη/k B T ≫ 1 ). In both 
current-time tests, as well as on comparing the extracted Tafel 
plots, we find that CIET predictions are consistent with the exper- 
imentally observed behavior on the porous electrode scale. 

As a final remark on the porous electrode analysis, we would 
like to raise general questions related to the characterization of 
the reaction kinetics by classical electro-analytical methods [18] . 
It is common practice to use either electrochemical impedance 
measurements, Tafel analysis, or cyclic voltammetry to character- 
ize the processes present in an electrochemical system. Here, we 
show that in a reaction-limited system [13] , the Tafel analysis and 
EIS [120] alone are not able to resolve the rate-determining step of 
Li-ion intercalation and predict other types of measurements. In a 
complicated system such as a porous electrode, it is difficult to use 
the classical electroanalytical machinery to deconvolute different 
processes that take place across multiple scales involving highly 
nonlinear couplings of reaction and diffusion. 

7. Discussion 

The application of CIET theory is by no means limited to 
lithium intercalation in LFP [12,107,126] . The generality of the re- 
action rate expressions presented in Section 3 makes the theory 
applicable to CIET reactions in both concentrated solids and liq- 
uids. As described earlier, candidate processes in which coupled 
ion-electron transfer might be the rate-determining step include: 
(i) lithium intercalation in other host materials, such Li x CoO 2 
(LCO) [108] , Li x C 6 (graphite) [126–128] , Li x TiO 2 (anatase) [129] , 
and Li 4+3 x Ti 5 O 12 (LTO) [130–132] , used in Li-ion batteries, as well 
as in neuromorphic computing devices [108,132–134] , (ii) sodium 

intercalation in Na-ion batteries [135,136] or capacitive deioniza- 
tion [9,63,137] ,(iii) multivalent aluminum ion intercalation in Al- 
ion batteries [138,139] (iv) oxygen insertion in perovskite oxides 
used in fuel cells [140,141] , or oxygen reduction using perovskites 
as catalysts for metal-air batteries [142] . 

The material parameters which enter the model are directly 
connected with the microscopic nature of the species which partic- 
ipate in the reaction. In particular, via the explicit usage of chemi- 
cal potentials, the non-ideal nature of the species is included. Also, 
the electron energy levels are taken into account by describing the 
band structure of the donor of the electrons via the density of 
states of the material. Finally, the interactions between the elec- 
trons with their environment is described through the reorganiza- 
tion energy. All this microscopic information establishes coupled 
ion-electron transfer as a quantitative, physics-based model for in- 
tercalation reaction kinetics. 

There are several Li ion intercalation studies where coating the 
intercalation material with anionic additives increases the rate per- 
formance [143–150] . Until now, existing models cannot explain the 
reason why this occurs. More specifically, the parameters in BV- 
based models cannot be directly related to the physical details 
of the reaction event process, while ET models describe only the 
electron transfer event without considering the fate of the ions. 
On the other hand, the idea of coupled ion-electron transfer takes 
into account the microscopic physics of both the ion and electron 
transfer, as we consider both processes to occur simultaneously. 
Through CIET, we are able to give a possible explanation for why 
the anionic-coating rate enhancement occurs. The model includes 
the energies w O/R that correspond to the ‘adsorption’ of the ion at 
the reaction interface ( ξ =  ξO ). 

In general, w O/R corresponds to the repulsive/attractive interac- 
tions between the solvated ions and interface atoms, and the dif- 
fuse double-layer effects on the ions that participate in the reac- 
tion. For Li-ion intercalation, when anionic groups, for example N−
or S− groups [144] , are added on the surface of the intercalation 
material, the energy barrier w O/R decreases, leading to an increase 
of the effective reaction rate constant. This behavior is in qualita- 
tive agreement with both experimental and ab-initio studies on Li 
intercalation in LiFePO 4 [143,144,149] . 

Coupled ion-electron transfer can be used to provide insights 
on the design and engineering of interfaces where electrochemi- 
cal reactions take place. Very recently, it has been shown that by 
understanding the functional form of the reaction rate expressions, 
one is able to control, and consequently engineer, the physics of in- 
terfaces where reactions take place [26] . Representative examples 
are the lithiation of LFP and LiNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2 [151,152] parti- 
cles, as well as the operation of Li-air batteries, where the thermo- 
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dynamic stability of the system is controlled by varying the applied 
current [13,97,104,153,154] . In terms of CIET, by understanding the 
concentration dependencies of both the reorganization energy and 
the density of states of the electron donor, we will be able to con- 
trol interface structure by inducing or suppressing phase separa- 
tion/island formation. 

There are cases where increased interfacial anisotropy is de- 
sired. For example in electro-catalytic applications the interface 
structure of the active area affects the efficiency of processes like 
dealloying [155] or light absorption [156] . In other cases surface 
anisotropy can lead to mechanical failure, e.g. in all-solid-state Li- 
ion batteries where loss of contact between the active material 
and the solid electrolyte leads to irreversible capacity loss [157] . 
Thus, the present theoretical framework of coupled ion-electron 
transfer draws a connection between the structural information of 
the species participating in the reaction with the operational con- 
ditions, providing direct ways to engineer surfaces using electro- 
chemical methods [97] . 

The idea of the coupled ion-electron transfer can be extended 
to describe the diffusion of ion- e − pairs in solids. This description 
can give important insights on the limitations of technologies such 
as solid-state batteries [158] , where the electronic conductivity of 
solid electrolytes [159,160] is not fully understood yet [161] . 

As a last remark, we would like to stress again that, while the 
physical picture of coupled ion-electron transfer is general, our 
mathematical formulation expressing the rates via Eq. (22)(a) & (b) 
corresponds to non-adiabatic electron transfer. There are important 
cases where the electronic states of the RedOx states are strongly 
coupled [162,163] , as in specific ion adsorption, and the electron 
transfer occurs adiabatically. In such situations, the electron trans- 
fer event depends strongly on the electronic interactions between 
the RedOx species as well as with the solvent [17,60] . These effects 
have been previously discussed in the context of coupled proton- 
electron transfer for describing hydrogen evolution, where the pro- 
ton transfer is characterized by its distance from the electrode and 
the electron transfer occurs adiabatically [163,164] . In this case, the 
mathematical formulation of the forward and backward reaction 
rates is typically analyzed using model Hamiltonians, such as the 
Newns-Anderson model, combined with mean-field electrostatics 
for the double layer effects on the proton transfer [72] . 

8. Summary 

In this work, the theory of electron transfer has been extended 
to incorporate ion transfer effects on the reaction kinetics. In par- 
ticular, by expanding the reaction space to include additional coor- 
dinates in addition to the polarization one, we include phenomena 
such as surface crowding, (de)solvation effects, misfit stress contri- 
butions, etc. on the transition state. Moreover, the thermodynamics 
of the species are incorporated in the reaction kinetics formalism, 
allowing for the description of phase separation and its effects on 
the reaction rate. The results presented here illustrate the impor- 
tance of coupled ion-electron transfer kinetics in ion intercalation 
kinetics [12,13,61] . The key expressions for the total reaction rate 
derived from our theory are 

i red,ε =  
ek ∗0 c O 
γ‡ 

n e exp 

( 

−

(
λ + eη f − x ε 

)2 

4 λk B T 

) 

i ox,ε =  
ek ∗0 c R 
γ‡ 

[ 1 − n e ] exp 

( 

−

(
λ − eη f + x ε 

)2 

4 λk B T 

) 

i =  

∫ ∞ 

−∞ 

(
i red,ε − i ox,ε 

)
ρ dε 

where x ε =  ε − E f , eη f =  eη − k B T ln ( c O /c R ) , eη =  eV % + 

k B T ln 
(

γR c R 
γO c O 

)
+ e ( z R φR − z O φO ) − E f , and n e =  

(
1 + e ε−E f 

)−1 
. 

For practical purposes, the reaction rate prefactor k ∗0 can be fitted 
to experiments or predicted from first-principles as described 
in Eq. (23) . Additionally, the transition state activity coefficient 
can take into account the effects of the environment on the ion 
transfer event. One example is the exclusion of a free site during 
the transfer of an ion to its product state, where γ‡ scales with 

the number of available free sites, γ‡ ∝ ( 1 − c R ) −1 . F or insertion of 
ions in solids, pre-existing strains developed due to concentration 
fluctuations can also affect the transition state barrier. 

The usage of the theory is demonstrated by modeling the in- 
sertion of ions in solid materials, a process present in several ap- 
plications of technological importance. By comparing the predicted 
current density to available experimental data [13,61] on lithium 
intercalation in primary FePO 4 particles, we demonstrated the ca- 
pability of CIET to accurately describe, on microscopic (single par- 
ticle) and macroscopic (porous electrode) levels, the (dis)charging 
process of Li-ion batteries. In particular, the model predicts the ex- 
perimentally observed normalized total current without using any 
adjustable parameters. Additionally, the surface crowding effects 
upon Li insertion were found to be crucial in correctly predicting 
the auto-inhibitory nature of the phenomenon. 
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P.B. D.F. and M.M. integrated the quantum mechanical details. D.F., 
W.C.C and M.Z.B. justified the theory for ion intercalation materi- 
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of R.B.S. D.F., Y.S.-H. and M.Z.B. connected the developed frame- 
work with the notation present in classical electrochemistry liter- 
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Appendix A. Appendix 

Derivation of De Donder relation for coupled ion-electron transfer 
kinetics 

An essential constraint on any thermodynamically consistent 
model of reaction kinetics is that the forward and backward rates 
satisfy the de Donder relation expressing microscopic reversibil- 
ity [78] , which takes the following form for an electrochemical re- 
action [12] , 

R red 
R ox 

=  e 
− eη

k B T (A.1) 
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In order to prove De Donder relation for the ratio of R red/ox =  ∫ ∞ 
−∞ R red/ox,ε ρ dε, it is useful to group all ε-dependencies together. 

In particular, we can recast Eq. (22) in the following form 

R red,ε =  
˜ k 0 e −αξ +E IT /k B T 

γ‡ 
c O 

1+ e x ε /k B T e 
− ( λ+ eη f ) 

2 
4 λk B T e 

−
x ε ( 2 ( λ+ eη f ) −x ε ) 

4 λk B T (A.2a) 

R ox,ε =  
˜ k 0 e −αξ +E IT /k B T 

γ‡ 
c R 

1+ e x ε /k B T e 
− ( λ−eη f ) 

2 
4 λk B T e 

−
x ε ( 2 ( λ+ eη f ) −x ε ) 

4 λk B T (A.2b) 

where we used the definition of n e =  1 / (1 + e x ε /k B T ) . Then, the ra- 
tio R red /R ox can be simplified as follows: 

R red 
R ox 

=  

∫ ∞ 
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˜ k 0 e −αξ +E IT /k B T 
γ‡ 

c O 
1+ e x ε /k B T e −
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2 

4 λk B T e −
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4 λk B T ρ dε 
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−∞ 

˜ k 0 e −αξ +E IT /k B T 
γ‡ 

c R 
1+ e x ε /k B T e −
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2 
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k B T =  

c O 
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eη
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which is the De Donder relation. 
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