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SUMMARY

Enabling accurate prediction of battery failure will lead to safer bat-
tery systems, as well as accelerating cell design and manufacturing
processes for increased consistency and reliability. Data-driven pre-
diction methods have shown promise for accurately predicting cell
behaviors with low computational cost, but they are expensive to
train. Furthermore, given that the risk of battery failure is already
very low, gathering enough relevant data to facilitate data-driven
predictions is extremely challenging. Here, a perspective for
designing experiments to facilitate a relatively low number of tests,
handling the data, applying data-driven methods, and improving
our understanding of behavior-dictating physics is outlined. This
perspective starts with effective strategies for experimentally repli-
cating rare failure scenarios and thus reducing the number of exper-
iments, and proceeds to describe means to acquire high-quality
datasets, apply data-driven prediction techniques, and to extract
physical insights into the events that lead to failure by incorporating
physics into data-driven approaches.

INTRODUCTION

In engineering, the term ‘‘safety’’ is well described as ‘‘the reduction or minimization
of risk and uncertainty of harmful events.’’ 1 The important implication behind this
definition is that safety is a qualitative goal, whereas ‘‘risk’’ is what we can typically
quantify and control to achieve that goal.2 Users of systems who depend on lithium
(Li)-ion batteries take on some level of risk that one or more of the Li-ion cells might
hazardously fail during the system’s operational lifetime. The risk of hazardous fail-
ure of batteries from reputable manufactures is very low but needs to be understood
and quantified for regulators and insurers. Depending on the behavior of cells and
the operating conditions to which they are exposed during their lifetime, the risk
of a cell violently failing varies and changes. Accurately predicting this risk is
extremely challenging.

The behavior of Li-ion batteries throughout their lifetime is nonlinear, with a plethora
of dynamic electrochemical and mechanical phenomena occurring within the cell at
any point in time, whether operating or not. Examples of degradation phenomena
include electrolytes reacting with active materials,3 electrode particles degrading
through changes in stoichiometry and architecture,4 and the mechanical properties
of separators degrading during cycling,5 to name a few. Degradation mechanisms
are highly dependent on the operating conditions and hence the operational history
of the cell is critical to predicting its state and risks. Just as the past and present

Context & Scale

Although the hazardous failure of
lithium-ion batteries is rare, the
fallout can be severe. The safety
and reliability of lithium-ion
batteries are more important now
than ever because of their
widespread adoption, yet our
ability to predict failure through
online and offline diagnostics is
still very limited. Lithium-ion
batteries are highly complex,
nonlinear systems. To make
matters worse, two cells of
identical geometry, chemistry,
and history might respond
differently when exposed to
identical mechanical, thermal, or
electrical stimuli. This limits the
value of classical deterministic
modeling techniques. Applying a
probabilistic approach allows for
quantification of uncertainty to
support decisions in design and
control.

Machine-learning algorithms are
well suited for predicting
nonlinear systems like lithium-ion
cells, but training and validation of
algorithms are challenging for
safety applications because large
amounts of failure data are
needed. Even if the algorithms
predict accurately, machine
learning is typically agnostic to
underlying physics and thus
presents limited value in
informing researchers and
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performances of batteries are used to predict the remaining useful life (RUL) of a bat-
tery,6,7 similar historic data might also be used to estimate the risk of a cell as it con-
tinues to age. Predicting the likelihood of an internal short circuit, however, cannot
be done with a deterministic model because of the occurrence being somewhat sto-
chastic; behavioral divergence of cells of the same type are known to occur,8,9 which
might be linked to subtle variations in synthesis conditions and unintentional defects
or contamination occurring during manufacturing. Online monitoring of a cell’s
behavior during its operational lifetime is required to identify when and by how
much its behavior has diverged from the expectations10,11 and whether it poses
an increased risk of failure (e.g., thermal runaway).12 Online data-driven methods
have been applied successfully to Li-ion batteries for predicting their RUL.13–15 Gath-
ering data for predicting a typical expected RUL under specific operating conditions
are easily achieved and some datasets have even beenmade public for others to test
their algorithms such as thodesse.14,16 Recently, NREL and NASA also released an
open-source dataset called the Battery Failure Databank.17 However, due to the rar-
ity of catastrophic failure, gathering data that include outlier cells that eventually un-
dergo thermal runaway might require cycling millions of monitored cells (ideally
simultaneously to minimize confounding factors). This might not be as much of a
problem for large electric vehicle manufactures who are monitoring billions of de-
ployed cells but is a major challenge for universities and research institutes.

For gathering enough relevant data, there are opportunities for experimental opti-
mization,13,18 as well as methods for intentionally inducing rare scenarios that lead to
the otherwise unpredictable thermal runaway of deployed cells. There might also be
opportunities to expand diagnostic techniques to specifically home in on signals
that stem from known physical failure mechanisms, which would provide insight
into how specific phenomena govern degradation. Insights into physical failure
mechanisms would also help guide physics-based models and help identify
engineering designs for safer battery systems. Therefore, it is vital for the battery
community to continue to improve physics-based models while starting to develop
data-driven methods.

There are numerous challenges in achieving accurate data-driven predictions of the
risk of battery failure, and in this perspective, we discuss possibilities and challenges
for designing experiments, handling data, applying data-driven methods, and
improving our understanding of the physical phenomena that lead to failure through
physics-based modeling.

EXPERIMENT OPTIMIZATION AND INDUCING RARE FAILURE
SCENARIOS

Failures that occur unexpectedly during normal operation are of most interest to
detect and predict, the onset of which is difficult to detect. These types of cata-
strophic failures are rare but known causes exist, such as faulty tabs,19 foreign object
debris, welding burrs that press through the separator20 (Figure 1A), defective
placement of electrodes and current collectors,21 and gradual mechanical weak-
ening of the separator.5 The common factor among all the failure mechanisms is
that the thermal runaway initiates from an internal short circuit that typically occurs
from breakage of the separator, whether through the mechanical puncture, strain,
or weakening of the polymer.

Rare failure scenarios could be emulated through experiments designed to inten-
tionally induce an internal short circuit or weaken the separator through
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perspective aims to offer
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avenues of investigation to
achieve accurate predictions of
the risk of cell failure while gaining
some physical insights into the
predicted behaviors.
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mechanical or thermal means, thus increasing the likelihood of thermal runaway for
testing purposes. This can drastically reduce the number of cells required to
observe and fully characterize the relevant processes. Placed among normal cells,
these high-risk cells would facilitate experiments that use a manageable number of
cells to determine whether defective cells can be identified and whether data-
driven methods can predict the likelihood of a cell undergoing thermal runaway
and when.

Intentionally inducing an internal defect to simulate an internal short circuit scenario
has recently been achieved by incorporating a device inside different cell formats
that triggers an internal short circuit on demand, such as by a low melting-point
wax22 (Figure 1B) or shape memory alloy23 that connect the positive and negative
electrodes when moderately elevated temperatures are reached. Both techniques
could still be improved by having finer control of the resistance of the short circuit
that would empower researchers to control the severity of the short and thus whether
the short is likely to induce thermal runaway. The separator could also bemademore
likely to break by applying force on the cell and straining the separator, through
cycling at elevated temperatures,24 or by incorporating a conducting object and
lightly pressing on the cell such that the object punctures the separator. Experi-
mental optimization could be applied to achieve a favorable probability of thermal
runaway through exploration-exploitation algorithms, similar to those recently con-
ducted by Attia et al.,13 but for cycling conditions and compression or temperature,
for example.

However, upon identifying conditions under which thermal runaway is likely, there
will be cell-to-cell variation, and for the same cell under the same conditions, there
will be a spectrum of failure scenarios and risks. For example, separators have been
shown to fail in different ways when exposed to similar mechanical loadings, and
different failure mechanisms can lead to different magnitudes of short circuits.25 It
is likely that through measuring the response of both normal and stressed cells dur-
ing cycling, behavioral differences will emerge that might provide some indication of
the magnitude of an internal short circuit and the likelihood that the cell will undergo
thermal runaway. It is yet to be seen whether the signatures of pre-onset thermal
runaway can be effectively detected by using available measurement techniques
for heat, temperature, acoustic emission, coulombic efficiency, or electrochemical
processes. Hence, identifying the expected magnitude of these signals of interest

Figure 1. Unintentional and Intentional Causes of Internal Short Circuits

(A) Cross-section from an X-ray computed tomography reconstruction of a cylindrical cell showing

tab burr protruding into the electrode layers. Reproduced with permission from IEEE from Yao

et al.20

(B) Wax-based internal short-circuiting device that initiates thermal runaway at moderately

elevated temperatures.22 Reproduced from [Energy Environ. Sci., 2017,10, 1377–1388] - Published

by the Royal Society of Chemistry.
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relevant to the onset of hazardous trajectories, and thereafter measuring them, is the
crucial next step.

RECORDING DATA AND LINKING PHYSICAL PHENOMENA TO
ELECTROCHEMICAL MEASUREMENTS

Until now, data-driven prediction methods have mostly used electrochemical data,
which capture degradation from the sum of many physical phenomena but have a
limited capability to pinpoint the predominant degradation mechanisms and are
not spatially resolved. Alternative simultaneous operando measurements are
needed to help gain physical insight into the system and to interpret the causes of
behavioral divergence. Specific accessible operando measurements that can be
applied in laboratories and on-board electric vehicles are discussed in the following
sections. This section focuses on highlighting means to record signals that provide
some physical insight into the system. Figure 2 gives an overview of how signals
from cells, including electrochemical, mechanical, acoustic, and thermal, can be
used to interpret and perhaps to improve the predictions made by data-driven ap-
proaches. Brief descriptions of how these signals are linked to physics are provided
below. In field applications such as an electric vehicle, the recorded data can be re-
ported to the cloud, where data-driven analyses can be conducted. The processor
on-board can also be used to diagnose problems with the battery in real time. How-
ever, the on-board processor usually has a limited resource of data storage and pro-
cessing; therefore, the use of integrated data combined with pre-trained models is
better suited for on-board use.

Electrochemical Behavior

The electrochemical behavior of cells can provide an insight into safety issues. For
example, abnormal voltage loss can reflect an internal short circuit,26 or changes
in the voltage plateau during open-circuit relaxation can be an indicator of Li
plating.27 However, voltage under constant current charge/discharge provides
insufficient information to infer the specific degradation mechanisms within the
cell. One way to extract more information is by using differential analysis by calcu-
lating the voltage derivatives.28 Sinusoidal current input excites the response of
the complex impedance of a cell; this can be conducted for many frequencies
through electrochemical impedance spectroscopy (EIS), which can be useful for un-
derstanding how a cell’s impedance (e.g., limitations in the transportation of Li/Li+29)
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Figure 2. Recording the Electrochemical and Physical Data of a Cell for Data-Driven Prediction

and Physical Interpretations
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evolves. The distribution of relaxation times (DRT)30 approach is a powerful tool to
extract quantitative information on the internal processes occurring in the cell that
are also often easier to interpret graphically. Model-based methods are also helpful
to extract fault information from electrical data.31 For example, Naha et al.32 used a
random forest (RF) classifier approach in combination with physics-motivated equiv-
alent circuit models to predict internal short circuits for mechanically abused cells.
Thus, operando electrochemical measurements and simultaneous data processing
can facilitate both in-lab and on-board diagnostics for fault recognition and adaptive
risk predictions.

Mechanical Behavior

Mechanical behavior that can be indicative of an increased risk of a cell failing in-
cludes swelling due to gas generation, expansion or contraction due to (de)lithia-
tion, or the cell becoming stiffer due to electrolyte dry-out. Such internal mechanical
change could be measured in operando by stress or force signals. For example,
measurements by force sensors can be used to infer the swelling of Li-ion batte-
ries.33,34 Thin-film strain gauges are also useful for measuring cell expansion during
cycling.35 Acoustic methods have also shown promise in quantifying physical degra-
dation mechanisms and defects. For example, acoustic time-of-flight analysis has
been applied to estimate the state-of-health of batteries.36 This analysis can also
reveal information on electrolyte wetting or drying,37 and monitoring the acoustic
emission from cracking particles may also be a valuable indicator of the cell’s degra-
dation rate.

Thermal Behavior

The thermal behavior of a cell is an important metric to monitor when assessing the
risk of hazardous failure. The thermal behavior of a cell can reveal anomalies such as
increasing internal resistances, exothermic reactions, and internal short circuits.
Theoretically, abnormal heat generation inside a cell will be reflected in the surface
temperature.38 However, ideally, internal temperatures should also be monitored to
detect any thermal deviations accurately. Recently, some minimally invasive tech-
niques have been applied for operando measurement of internal temperatures.39

The ohmic resistance and the entropy, which are the two key parameters of heat gen-
eration, can be identified online by model-based diagnosing algorithms.40 Many of
the key parameters for thermal models can be extracted from thermal calorimetry.41

Spatial surface temperature profiles can also be indicators of underlying defects and
can be monitored by using thermal imaging.42 There are opportunities for the appli-
cation of machine-learning approaches to extract the battery behavior from many of
these physical signals, such as those from thermal imaging data.43

BUILDING A DATABASE AND IMPROVING THE ACCURACY OF
PREDICTIONS

As highlighted in the introduction, obtaining representative datasets for quantifying
the risk of failure still presents a significant challenge not just within the academic
community but also to manufactures. In the academic literature, it is extremely
rare to see studies that investigate more than one hundred of the same cell type
because of resource limitations. Furthermore, cells might not be tested concurrently
or for long enough periods to reproduce operational lifetimes, which complicates
interpretation. It is notable that a recent article by Severson et al.14 drew significant
attention in the community for exploring a data-driven approach to predicting cycle
life. A total of 124 cells were tested, which is large according to academic standards,
and an outlier cell was observed exhibiting degradation ten times faster than the
degradation that was typical of the batch. However, although a rapidly degrading
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cell is undesirable, there’s no guarantee that this cell would evolve into a safety risk
but is generally considered to be a risk factor.44 It is also worth noting that although
Severson’s model (physically motivated feature engineering with linear regression)
performed reasonably well for the group, it over predicted the short-life outlier’s cy-
cle life by around 100%.

A study by Chemali et al.45 employed a deep-learning approach to try and predict
the state of charge without the need for feature engineering. Although the power
of deep learning lies in its ability to learn to identify highly complex features from
training data, a direct consequence of this is its tendency to over fit small datasets,
which means that they essentially remember a specific dataset rather than extracting
the relations that underpin it. Furthermore, it is important to highlight that, although
machine-learning models can be trained to map complex relationships, they are
fundamentally interpolative and cannot be expected to predict behaviors outside
of the training data envelope; alternatively, a well-parameterized physics-based
model should be able to extrapolate if the correct physics has been selected. Ex-
tracting statistically significant results for predicting gradual cell-degradation pro-
cesses is difficult enough but building predicative models of a stochastic binary pro-
cess (such as internal shorting under normal operating conditions) is far more
difficult. This is why methods have been developed to exacerbate certain failure
modes by deliberately operating the cell under stressful conditions, directly
damaging the cell, or modifying the cell itself to contain a known fault.46 However,
it can be difficult to confidently relate these results back to predictions about normal
cells under standard operating conditions.

On a commercial scale, rather than trying to simply run very large cell-cycling studies
in-house, a huge opportunity resides in extracting data from cells during operation.
This is of particular relevance to electric vehicle applications as these high-value,
safety-critical products contain sufficient on-board instrumentation, telemetry, and
computing power to share detailed pack diagnostics and prognostics. Further
data-centric approaches bymanufacturers, such as cell traceability, could help relate
lifetime data of all cells produced to every measurement taken during its
manufacturing process. Although reputablemanufacturers generally achieve consis-
tent and high-quality cells, there is always a non-zero variance in any manufacturing
process. Moving from batch-level traceability to measurement collection for individ-
ual cells will further increase the potential for detailed analysis and data-driven
modeling. Recycling presents an additional data collection opportunity, where pre-
dictions of degradation at end of life can be verified.

Figure 3 illustrates a concept for the flow of traceable cells, data, and models
between manufacturers, researchers, and end users. By combining the detailed
analysis on a small number of cells provided to academia, with (appropriately ano-
nymized) data from many deployed packs, it will be possible to provide not only
accurate predictivemodels but also insights into themechanisms causing the behav-
iors. This will then be fed back to manufactures allowing them to optimize their de-
signs, simulations, and manufacturing processes at both cell and system levels.

One of the challenges here is that each vehicle will be applying a unique usage
pattern to its pack, which makes system-to-system and cell-to-cell comparisons
more difficult than the equivalent in-house testing under nominally identical condi-
tions. Methods such as rain counting47 exist to try and decompose irregular cycling
data into linear combinations of regular cycling patterns, but these approaches
necessarily miss some of the codependences and nonlinearities.
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It could be that predictive models of cell failure are too difficult to validate with high
confidence, which is why some studies are focusing on data-driven methods for early
detection of failure instead, given that this can enable mitigation strategies to be de-
ployed by the battery management system (BMS).

INCORPORATING PHYSICS INTO DATA-DRIVEN PREDICTIONS AND
ACHIEVING ENGINEERING GUIDANCE

Data-driven modeling has shown a number of key advantages over its physics-
based counterpart,48–50 such as substantially reducing the expertise required to
use the models. However, purely data-driven models do not provide much phys-
ical insight into the system, which can be somewhat frustrating and unsettling to
engineers looking to design safer battery systems. The interpolative nature of
many data-driven methods will not only result in poor predictions during extrapo-
lation but will also not flag the uncertainty of these predictions without specifically
applying a probabilistic approach. It is important to explore how data-driven
methods can be applied to the prediction of battery risks while also achieving
physical insights for design engineering. The key lies in incorporating physics
into the data-driven methods. Here, we identify three key elements from the
open literature, as illustrated in Figure 4.

Physics-Based Datasets

To promote data collection for engineering guidance, physics-based datasets
should be the foundation for any data-driven model related to battery safety. In
the previous sections of this perspective, we elaborated how such a physics-based
battery safety dataset can be built through experiments and used to train a ma-
chine-learning algorithm. It is also worth emphasizing that the predictions of
data-driven models should be linked to physical explanations. In most cases, a
‘‘testing’’ procedure is performed. But oftentimes, the testing and the training
database are randomly chosen from the same data envelope for convenience,
and the testing procedure is consequently interpolative.51,52 A stricter criterion
for validation is whether the model is able to provide more insights into the phys-
ics, referred to as extrapolative. A typical example of such extrapolative validations
in battery research is the prediction of RUL of battery cells by using measured data
during the service life.11,53 Various data-driven approaches based on machine

Figure 3. Illustration Showing a Concept Flow of Traceable Cells, Data, and Information that

Leverages Field and Research Data to Improve the Accuracy of Data-Driven Predictions, and the

Safety and Performance of Batteries through Informed Engineering Design of Cells and Battery

Management Systems
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learning, statistical analysis, and signal processing have been systematically sum-
marized in several review articles.4,6,54 Another example related to battery safety
is identifying the most critical condition of battery cells under which a mechanical
failure or short circuit is most likely to happen.18 It is usually difficult to perform ex-
periments to find such conditions, and the challenge is how to extrapolate the
directly measurable dataset to the unknown area. Identifying the most critical con-
dition is of great real-world value for the automotive industry to reduce the size of
the test matrix, standardize the test condition, and guide the passive safety design
of electric vehicles.

In many cases, a large experimental dataset is usually unaffordable or inaccessible,
for example, the investigation of the nanoscale and atomic-level structure-property
relation. Databases generated by high-throughput first-principle computations are
thus becoming increasingly important to be used in training neural networks. In a
recent study, Chen et al.55 predicted the phonon density of states of crystalline
solids by using a density functional perturbation theory calculated phonon data-
base56 to train a Euclidean neural network. The algorithm has a good extrapolative
capability to predict the properties of unseen crystal structures for the discovery of
materials with a high specific heat capacity. Similar successes have been achieved in
searching for next-generation energy materials, as summarized in a recent review
article.57

Physics-Informed Training Constraints

Li-ion batteries are complex systems involving multiple physics, scales, and phases.
Each of the aspects can be described by a set of governing equations, usually partial
differential equations (PDEs), such as the heat andmass transfer equations, as well as
balances of mechanical force andmomentum. In most physics-basedmodels or first-
principle-based models, these equations with proper initial and boundary condi-
tions are already identified by existing knowledge, and the task of the model is to
solve them. Conventional purely data-driven methods are oftentimes supposed to

Figure 4. Three Key Elements of the Data-Driven Framework into Which Physics and Knowledge

Can be Incorporated

Creating a physics-based dataset, applying physics-informed training constraints, and designing

physics-guided algorithm structures.
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bypass solving the governing equations and directly provide a solution. Conse-
quently, the prediction might violate some basic laws of physics.

Two promising approaches of incorporating the physical governing equations into
the data-driven framework are (1) reformulating the models with mathematical tech-
niques such as Galerkin and Spectral methods to reduce the computational cost, and
(2) using a data-driven approach to solve highly nonlinear differential equations.
Here, in this perspective, we offer a brief overview of the second approach, which
has accumulated a significant number of early successes over the past 2 years.
The essence of this approach is incorporating the nonlinear equations, as well as
their boundary and initial conditions, into the data-driven model as training
constraints (referred to as ‘‘physics-informed training constraints’’ hereinafter). A
few examples to quote are the physics-informed neural network (PINN) algorithm
developed by Raissi et al.,58,59 the machine-learning-integrated first-principle-
based modeling framework established by Zhang et al.,60,61 the deep-learning
library of solving commonly seen differential equations by Lu et al.,62 and the
PDE-constrained optimization method by Zhao et al.63 A practical application of
these algorithms in battery safety modeling is providing an accurate approximate
solution of the multiphysics PDEs to bypass some issues that cannot be effectively
addressed by conventional computational methods. One of the issues is the reliance
on a high-quality mesh for finite element methods. In many battery failure simula-
tions, large local deformations and crack propagations happen. Electrochemical
PDEs are usually defined on interfaces involving mass transport and growth.
Creating a robust mesh for these problems is difficult and expensive. Many deep-
learning approaches64–66 for solving PDEs could be mesh free and, therefore,
have a great potential to be used in the multiphysics modeling of batteries.

One more clear advantage of such physics-informed data-driven approaches is that
the cost of obtaining a sufficiently large database for training can be tremendously
decreased. For example, in both algorithms developed by Raissi et al.58,59 and by Lu
et al.,62 the boundary and initial conditions of the PDEs are used as the loss function
to train the network parameter (as illustrated in Figure 4), which are relatively
cheaper to obtain compared with data points at arbitrary special coordinates with
a complex time history. These algorithms turned out to be highly successful to solve
a wide class of nonlinear PDEs, and their application in energy storage systems is
quite promising. In particular, the ability to use only a small set of images63 to learn
advanced continuummodels of Li-ion batteries based on nonequilibrium thermody-
namics67 could be revolutionary, if applied to operando image data for ion interca-
lation in primary particles68 or porous electrodes.69 Armed with accurate models of
intercalation kinetics, the same approach of image inversion can then be used to
learn the physics of degradation processes, such as lithium plating and solid electro-
lyte interphase (SEI) growth70,71 on carbon anodes, for cell-level simulations using
multiphase porous electrode theory (MPET)72 to enable data-driven, physics-based
prediction of battery safety and lifetime.

Physics-Guided Algorithm Structures

The third element that could be incorporated with physics is the structure in the ma-
chine-learning algorithm itself. Here, we take the artificial neural network (ANN)
approach as an example. It is quite common that a neural network is specially de-
signed to handle a specific problem or physical phenomena. For example, the
well-known convolutional neural network was originally developed for image pro-
cessing and the recurrent neural network is suitable for processing sequential sig-
nals. To develop data-driven models of a complex system with multiple physical
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phenomena, we shall also consider designing and optimizing the structure of the al-
gorithm under the guidance of physics. Han et al.73 proposed a network architecture
for solving semi-linear parabolic PDEs, which consist of several subnetworks for
different time intervals, and the connections between them are established on the
basis of the equations to be solved (as illustrated in Figure 4). A similar approach
of algorithm structural design can be applied to the multiphysics and multiscale
problems. A neural network with several subnetworks for different fields and the con-
nections between one another to reflect the real physics behind them can be effec-
tive for potential battery safety modeling.

It is worth noting that the three key elements that we identified here should not be
understood as a strict classification. There is no absolute boundary among various
data-driven approaches. With the rapid development of machine-learning technol-
ogies, we are witnessing an increasing number of advanced models that have all the
above three merits. For example, in a recent study, Qian et al.74 developed a suc-
cessful framework named as ‘‘Lift & Learn,’’ which turns out to be effective for use
as a physics-informed approach to learn low-dimensional models of large-scale
dynamical systems. The potential applications of such types of new algorithms in
battery failure diagnostics is promising.

Practical Implementation for Commercial Applications

Beyond the three approaches described above, there is also an opportunity for using
both measured real-world data and physics-based simulations to synergistically train
machine-learning models. Inspiration for this can be taken from the robotics and auto-
mation literature. The task of learning robot control in complex systems is challenging
because of the ‘‘sim-to-real’’ mismatch. For example, the optimal control policy to
achieve upright walking in simulation might fail in the real world because of mis-
modeled actuators or dynamics. Much as in the battery case, collecting large datasets
exclusively from real-world experiments would be prohibitively expensive. Hwasser
et al.75 have shown that building a conditional variational autoencoder (VAE) by using
real-world experimental measurements and a simulator as an ‘‘informed regularizer’’ re-
sults in a data-efficientmodel that identifies the parameter posterior for the simulator to
match reality. In addition, the learning process also produces a generative model that
acts as a stochastic simulator, outperforming traditional methods using conditional
VAEs by using only 1%–10% of the data. Autoencoders work by compressing a large
feature space into a compact, low-dimensional representation (latent space). The
values of this latent space tensor are typically not interpretable but can be forced to
be semantically meaningful (e.g., a subset of simulator parameters). The approach suc-
cessfully implemented in the robotics application starts with real-world experimental
data collectionwith unknownphysical parameters (e.g., the center of gravity, coefficient
of friction). The same scenario is simulated by using a deterministic simulator with a dis-
tribution of physical input parameters. The simulator trajectories (initial and final states)
are passed alongside the corresponding simulator parameters to train the autoen-
coder’s decoder whose weights are subsequently frozen before using the experimental
data to train the encoder part (Figure 5). The freezing of weights forces the latent space
to represent the semantically meaningful simulation parameters. More data can be
collected as deemed necessary, either through real-world experiments or through
simulation (with updated parameters from the autoencoder).

For a Li-ion cell application, the real-world experimental data can be obtained from a
laboratory cycler, as well as the numerous aforementioned measurable signals that
relate to the state of the physical system within the cell. The simulation data can be ob-
tained from a high-fidelity physics-based model, including degradation mechanisms.
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The state must be physically measurable (e.g., discharge capacity, DC-IR) but not
necessarily easily interpretable by humans (e.g., complex load profile response). The
parameters will be chosen as physical simulation parameters of interest. If the simula-
tion is of sufficient quality, the approach will converge and give multiple benefits. First,
it will be possible to replace simulations with the trained neural network, which will offer
a substantial speed increase. Second, it will be possible to discover the physical param-
eters that govern the observation of a real-world experiment and thereby provide phys-
ical interpretability. In a further step, perhaps the physical parameters can be predicted
from design and/or manufacture. If so, it would be possible to chain predictions to run
experiment-informed simulations on cells that do not exist.

The approach described above has been hugely impactful on the robotics community,
but so far unreported in the battery literature. This presents a major opportunity to not
only make use of the deep expertise employed in developing physics-based models
but also to harness the data in an interpretable and robust way. For example, the prob-
ability of battery failure after mechanical abuse can be predicted by combining physics-
based mechanical models with real-world measurements from the cells, in a stochastic
framework. Additionally, this method can be applied to predict the likelihoodof battery
failure after an aggressive cycling regime, where electrochemical models and physical
signals from the cells are used to simulate the risk of the cell undergoing failure.

SUMMARY AND OUTLOOK

There are numerous challenges that face the application of data-driven methods for
improving battery safety. Notably, the collection of high-quality and robust experi-
mental data currently limits the validation and guidance of algorithms, and even with
data, extracting physical explanations from data-driven predictions presents a

Figure 5. Schematic Overview of the Application of VAEs to Enhance Data-DrivenModel Building
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further challenge. For large battery manufacturers, data-centric initiatives with cell
traceability from synthesis to end of life will become invaluable. These data will facil-
itate the development of robust data-driven predictions of battery behaviors and
failure risks, as well as in identifying their influencing factors during manufacture.
For research laboratories that do not have access to such large databanks, this chal-
lenge is far greater. Informed design of experiments to reproduce rare failure sce-
narios of interest are needed, such as intentionally inducing an internal short circuit.

Extracting physical explanations from data-driven predictions to help guide the
design of safer cells and operating conditions requires parallel development of
physics-based models. Experimentally, this link to physical phenomena might
come from effective operando data collection practices that record signals from
known physical degradation mechanisms, such as electrochemical, thermal, me-
chanical, and acoustic monitoring. Some methods such as mechanical and acoustic
monitoring might not be sufficiently mature, cost-effective, or practical to imple-
ment on electric vehicles, but if the data are revealed to be sufficiently valuable,
miniaturization, and cost reduction of the necessary equipment to achieve on-board
monitoring is possible. Syncing the signals from physical degradation mechanisms
with the electrical data used for predictions is expected to help link the predicted
behaviors to physical phenomena. Furthermore, a researcher could link data-driven
predictions back to physics via other operandomeasurements and by physics-based
modeling, or they could let the physics guide the machine-learning algorithms,
increasing the confidence in the results while reducing the quantity of training
data required. Finally, further promotion of data-driven methods for improving bat-
tery safety would come from all groups making their data open-source for the collec-
tive benefit of the global research community through access to robust, plentiful,
and high-quality datasets.
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