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Average Shape of Transport-Limited Aggregates
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We study the relation between stochastic and continuous transport-limited growth models. We derive a
nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field
approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited
aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not
identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining
the known discrepancies between average DLA shapes and viscous fingers in a channel geometry.
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Developing effective mean-field approximations to non-
linear stochastic equations constitutes a major challenge in
various active fields of statistical physics, e.g., hydrody-
namic turbulence [1] and self-organized criticality [2].
Straightforward derivation of such approximate theories
typically involves uncontrolled assumptions required to
‘‘close’’ an infinite hierarchy of equations for moments
of the probability distribution of the stochastic field. An
alternative approach consists of deriving asymptotic solu-
tions to a deterministic version of the original stochastic
dynamics, assuming that such solutions capture the behav-
ior of ensemble average of the original stochastic field [2].
Such an approach, however, might turn out to be unreliable
as well, since it underestimates the possible effects of noise
on the asymptotic evolution of a stochastic field.

A nontrivial example in which such an approach has
been advanced over the past two decades is the fractal
morphology of patterns observed in computer simulations
of the celebrated diffusion limited aggregation (DLA)
model [3]. Since the relation between the mathematical
formulations of the stochastic DLA process and the con-
tinuous viscous fingering dynamics was established [4], the
striking similarity between patterns observed in both pro-
cesses has triggered various attempts to interpret viscous
fingering dynamics as a mean field for DLA [5–8].

In this Letter, we study the connection between a broad
class of stochastic transport-limited aggregation processes
and their continuous counterparts [9]. In our models,
growth is fueled by nonlinear, non-Laplacian transport
processes, such as advection diffusion and electrochemical
conduction, which satisfy conformally invariant equations
[10]. Stochastic and continuous dynamics are defined by
generalizing conformal-mapping formulations of DLA
[11] and viscous fingering [12,13], respectively. We show
that the continuous dynamics is a self-consistent mean-
field approximation of the stochastic dynamics, which,
nevertheless, does not accurately predict the average shape
of a random ensemble of aggregates.

We consider a set of two-dimensional scalar fields, ’ �
f’1; ’2; . . . ; ’Mg, whose gradients produce quasistatic,
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conserved ‘‘flux densities,’’

F i �
XM
j�1

Cij�’�r’j; r � Fi � 0 (1)

in �z�t�, the exterior of a singly connected domain that
represents a growing aggregate at time t. The coefficients,
fCijg may be nonlinear functions of the fields. The crucial
property of the nonlinear system (1) is its conformal in-
variance [10]: If ’�w; �w�, not necessarily harmonic, is a
solution in a domain �w and w � f�z� is a conformal map
from �z to �w, then ’�f�z�; f�z�� is a solution in �z.
Using this fact, the evolving domain, �z�t�, can be de-
scribed by the conformal map, z � g�w; t�, from the ex-
terior of (say) the unit disk, �w.

Growth is driven by a combination of flux densities,
Q � �N

i�1Bi�’�Fi, on the boundary with a local growth
rate, � � n̂ �Q, where n̂ is the unit normal vector at z 2
@�z�t�. For continuous, deterministic growth, each bound-
ary point z moves with a velocity, v�z� � ���z�n̂�z�,
where � is a constant. For discrete, stochastic growth,
the initial seed, �z�t0 � 0�, is iteratively advanced by
elementary ‘‘bump’’ maps representing particles of area
�0 at times t1; . . . ; tn. The waiting time tn � tn�1 is an
exponential random variable with a mean set by the total
integrated flux. The probability density to add the nth
particle in a boundary element �z; z	 dz� 2 @�z�tn�1� is
proportional to ��z�jdzj.

The classical models are recovered in the simplest case
of one field (M � 1). DLA corresponds to stochastic
growth by diffusion, F � Q � �Drc, from a distant
source (c� logjzj as jzj ! 1) to an absorbing cluster [c �
0 for z 2 �z�t�], where c is the particle concentration and
D the diffusivity. Viscous fingering corresponds to con-
tinuous growth by the same process, where c becomes the
fluid pressure and D the permeability.

The simplest, nontrivial models with multiple fields
(M � 2) involve diffusion in a fluid flow. The stochastic
case is advection-diffusion-limited aggregation (ADLA)
[9], illustrated in Fig. 1(a). Particles are deposited around
4-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.075504


FIG. 1 (color online). (a) A typical ADLA cluster of n � 105

‘‘particles’’ (iterated conformal maps). Color contours indicate
the particle concentration c, and solid yellow curves are fluid
streamlines. (b) The exact, asymptotic shape of the analogous
continuous dynamics, Gc�w�, which describes solidification in a
fluid flow. For both (a) and (b), we set Pe � 20 so that the far
fields are similar.

PRL 95, 075504 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
12 AUGUST 2005
a circular seed of radius L0 from potential flow, v � r’,
of uniform velocity U far from the aggregate. The dimen-
sionless transport problem is

Pe 0r’ � r2c; r2’ � 0; z 2 �z�t�; (2)

c � 0; n̂ � r’ � 0; � � n̂rc; z 2 @�z�t�; (3)

c ! 1; r’ ! x̂; jzj ! 1; (4)

where c is the concentration of particles. Here x, ’, c, and
� are in units of L0, UL0, C, and DC=L0, respectively, and
Pe0 � UL0=D is the initial Péclet number. Approximate
solutions are discussed in Ref. [14].

The transport problem is conformally invariant, except
for the boundary condition, Eq. (4), which alters the flow
speed upon conformal mapping. Instead, we choose to fix
the mapped background flow and replace Pe0 with the
renormalized Péclet number, Pe�t� � A1�t�Pe0, when
Eq. (2) is transformed from �z�t� to �w. The ‘‘conformal
radius,’’ A1�t�, is the coefficient of w in the Laurent expan-
sion of g�w; t� and scales with the radius of the growing
object [11,15]. Since A1�t� ! 1 for any initial condition,
the flux approaches a self-similar form,

���; Pe� � 2
������������
Pe=�

p
sin��=2� as Pe ! 1: (5)

More generally, there is a universal crossover from DLA
(� � constant) to this stable fixed point, where Pe�t� �
A1�t�Pe0 is the appropriate scaling variable [16].

The continuous analog of ADLA models solidification
from a flowing melt [17]. Generally, continuous dynamics
in our class is described by a nonlinear equation,
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Re �wg0gt� � ���w; Pe�t�� for jwj � 1; (6)

which generalizes the Polubarinova-Kochina–Galin equa-
tion for Laplacian growth [12,13] (� � 1). In the case of
advection diffusion [17], only low-Pe approximations are
known, but we have found an exact high-Pe solution of the
form g�w; t� � A1�t�Gc�w�, where

A1�t� � t2=3; Gc�w� � w
������������������
1� 1=w

p
: (7)

This similarity solution to Eq. (6) with ����; t� ������������
A1�t�

p
sin��=2� describes the long-time limit, according

to Eq. (5). (We do not know the uniqueness or stability
of this solution or whether it can be approached without
singularities from general initial conditions.) Just as the
Saffman-Taylor finger solution (for � � 1) has been com-
pared to DLA in a channel geometry [18], this analytical
result begs comparison with ADLA.

As in Ref. [9], we grow ADLA clusters by a modified
Hastings-Levitov algorithm [11]. Random attachment of
particles to the cluster is described by perturbing the
boundary @�z�tn�1� ! @�z�tn� by a bump of character-
istic area �0, leading to the recursive dynamics

gn�w� � gn�1 ���n;�n�w�; gn�w� � g�w; tn�; (8)

where ��;��w� is a conformal map in �w that slightly
distorts the unit circle by a bump of area � around the
angle �. The parameter �n � �0jg

0
n�1�e

i�n�j�2 is the area
of the preimage of such a bump under the inverse map g�1.
The angle �n is chosen with a probability density
p��; Pe�tn�� / ��ei�; Pe�tn��, so the expected growth rate
is the same as in the continuous dynamics.

For an ensemble of n-particle aggregates, a natural
definition of average cluster shape is the conformal map,
hGn�w�i, defined by averaging at a point w 2 �w all the
maps, Gn�w� � gn�w�=A1�tn�, rescaled to have a unit con-
formal radius. We then ask: What is the limiting average
cluster shape, hG1�w�i � limn!1hGn�w�i, and how does it
compare to the similarity solution, Gc�w�, of the continu-
ous growth Eq. (6)? The same questions apply to any of our
transport-limited growth models, but here we focus on
ADLA as a representative case.

To provide numerical evidence, we grow 2000 ADLA
clusters of size n � 105 using the semicircular bump func-
tion in Ref. [15] (with a � 1=2). To reduce fluctuations, we
aggregate small particles, �0 � 1=16, on a large initial
seed �g0�w� � w; jwj � 1�. To reach the asymptotic limit
faster and also match the assumption of Gc�w�, we fix the
angular probability measure, p1��� � sin��=2�=4 for
Pe � 1, throughout the growth. In Fig. 2(a), we plot the
average contour of the ensemble hGn�e

i��i at n � 105

along with that of the continuous solution Gc�e
i��. To

give a sense of fluctuations, we also plot a ‘‘cloud’’ of
points Gn�ei�� over uniformly sampled values of �.
Figure 2(b) is the enlargement of the boxed region in
Fig. 2(a), where we also show hGn�ei��i at n � 103 and
104. Although the convergence of hGn�w�i is easily ex-
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FIG. 3 (color online). The angular profile of the Jacobian fac-
tor, �n���, which shows how the size of bump preimages varies
on the unit circle, at three stages of growth in simulations: n �
103 (dashed line), n � 104 (dash-dotted line), and n � 105 (solid
line). The exact mean-field approximation, �c��� (thick gray
line), obtained from Eq. (4) shows a clear difference with �n���.
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FIG. 2 (color online). (a) The cloud of the sampled points
Gn�ei�� and its mean-field contour hGn�ei��i at n � 105 (dashed
line) displayed with the asymptotic limit hG1�e

i��i and the
steady state shape of the continuous growth Gc�e

i��. (b) The
enlargement of the box in (a). Two contours, hGn�e

i��i, at n �
103 (dotted line) and 104 (dash-dotted line) are added to show the
slow convergence to hG1�e

i��i near the rear stagnation point.
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trapolated, the n � 105 line has not reached the asymptotic
limit yet. The branch point at w � 1 seems to be related to
the slow convergence. Ignoring the unconverged area,
hGn�w�i and Gc�w� are quite similar, and yet clearly not
same. The average, hGn�w�i, better captures the ensemble
morphology reflected by the cloud pattern than Gc�w�, and
the opening angles at the branch point of the two curves are
also different [16].

Next we derive an equation for hGn�w�i in the asymp-
totic regime. For growing aggregates �n ! 0 as n ! 1
[15]. Following Hastings [19], we use Eq. (8) to de-
rive a linearized recursive equation for Gn	1�w� for
jw� ei�n	1 j �

����������
�n	1

p
. Letting ��; �� denote the parame-

ters of the �n	 1�th bump, we obtain

Gn	1�w� � �1� a���Gn�w� 	 a�H��w�G
0
n�w��

�Gn�w� 	 a��H��w�G0
n�w� �Gn�w��; (9)

where H��w� � w�w	 ei��=�w� ei��, and we use
A1�tn	1� � �1	 ��aA1�tn�. Stationarity of the ensemble
of rescaled clusters implies

hGn�w�i �
Z 2�

0
d�p1���hGn	1�w�i: (10)

Our analysis applies for conformally invariant transport-
limited growth from an isolated seed with general angular
probability distributions, although we focus on the case of
ADLA, p1��� � sin��=2�=4.

Using Eq. (9), we get the fixed-point condition:

Z 2�

0
d�p1���h�G1�w�i �

Z 2�

0
d�p1���h�G

0
1�w�iH��w�:

(11)

To facilitate further analysis, we approximate the left-hand
side of Eq. (11) as
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Z 2�

0
d�p1h�G1i �

Z 2�

0
d�p1h�ihG1i (12)

and the right-hand side similarly. We checked the validity
of this assumption by numerical evaluation of these two
quantities for increasing values of n, finding less than 1%
discrepancy for the largest clusters (n � 105). Although
the stronger assumption, h�G1i � h�ihG1i, is not valid,
particularly near the bump center w � ei�, the correlation
seems to vanish in the integration along the angle.

With these assumptions, we arrive at a nonlinear integro-
differential equation for hG1�w�i, the limiting average
cluster shape

hG1�w�i
hG1�w�i

0
�

R
2�
0 d�p1���hjG

0
1�e

i��j�2iH��w�R
2�
0 d�p1���hjG0

1�ei��j�2i
(13)

�
Z 2�

0
d�p1����1���H��w� (14)

where we introduce a conditional probability density,

�n��� �
hjG0

n�e
i��j�2iR

2�
0 d�0p1��

0�hjG0
n�e

i�0 �j�2i
; (15)

proportional to the average local size of a bump’s preimage
(Jacobian factor), h�ni, at angle �. In deriving Eq. (13) we
assume that hA1�tn�jG0

nj
�2i � hA1�tn�ihjG0

nj
�2i as n ! 1

[16]. Notice how randomness is manifested through the
two different averages in Eqs. (14) and (15).

To check the validity of Eq. (14), we obtain �1 from
simulations and solve for hG1�w�i. As shown in Fig. 3, the
measured curves for �n��� for n � 103, 104, and 105 are
nearly identical, so we conclude that �105��� is a good
approximation of �1���. Now we solve Eq. (14) by ex-
panding hG1�w�i by a Laurent series and finding recur-
rence relations for the coefficients, which involve integrals
of �1���. We calculate 200 first coefficients and recon-
struct hG1�w�i. The image of the unit circle under
hG1�w�i, shown in Fig. 2(a) (thick gray line), is in excel-
lent agreement with the converging pattern of hGn�w�i.

The surprising difference between the convergence rates
of the average Jacobian �n��� and the average map itself
hGn�w�i is intimately related to the multifractal distribution
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of the stretching factor (harmonic measure) jG0
n�e

i��j.
Since this factor is very large around the cusp at � � 0,
which is dominant during the growth process, fluctuations
at the cusp do not contribute to negative moments of the
distribution of jG0

n�ei��j and thus negative moments con-
verge much faster than positive ones, and faster than the
average map itself. Since �n��� comes from averaging
jG0

n�e
i��j�2, this observation explains its fast convergence.

This argument illustrates how the two averages interact in
Eqs. (14) and (15) and suggests that the faster convergence
of �n��� dominates the morphology.

With the validity of Eq. (14) established, we may con-
sider its mean-field version, where the ensemble average is
replaced by a single conformal map, given by

Gc�w�
G0

c�w�
�

Z 2�

0
d�p1����c���H��w�; (16)

�c��� �
jG0

c�e
i��j�2R

2�
0 d�0p1��0�jG0

c�ei�
0
�j�2

: (17)

Not surprisingly, the similarity solution for continuous
growth, Eq. (7), is an exact solution of Eqs. (16) and
(17). In fact, it is possible to derive Eqs. (16) and (17)
from a different representation of Eq. (6), which has been
done for the case of DLA, p1��� � 1=2�, in Ref. [19].
Elsewhere [16], we obtain an analytical form for �c��� for
ADLA, which is plotted in Fig. 3 (thick gray line). A small,
but significant, difference between �c��� and �1��� is
apparent, especially at � � �=4 and 7�=4.

The solution in Eq. (7) can be interpreted as a self-
consistent mean-field approximation for the average con-
formal map, hG1�w�i. However, fluctuations in the en-
semble manifest themselves through the different
averages in Eqs. (14) and (15). As long as hjG0

1�w�j�2i is
different from jhG1�w�i

0j�2, �1��� � �c���, and thus the
deviation of hG1�w�i from Gc�w� is inevitable.

We believe that the assumptions leading to Eq. (14) are
quite general, and not specific to ADLA, so the continuous
dynamics should be a mean-field theory (in this sense) for
any stochastic aggregation, driven by conformally invari-
ant transport processes, Eq. (1). We conclude, therefore,
that the solution to the continuous dynamics, although
similar, is not identical to the ensemble-averaged cluster
shape. An exceptional case is DLA in radial geometry,
where isotropy implies the trivial solutions, hG1�w�i �
w and �c��� � 1. Clearly, Gc�w� � w and �c��� � 1
solve Eq. (14) with p1��� � 1=2�.

We expect, however, that this identity between the
mean-field approximation and the average shape of sto-
chastic clusters will be removed with any symmetry break-
ing, either in the model equations (such as ADLA) or in the
boundary conditions. This result is consistent with recent
simulations of DLA in a channel geometry [18], which
show that the average cluster shape, hGn�w�i, is similar, but
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not identical, to any of the Saffman-Taylor ‘‘fingers,’’
which solve the continuous dynamics. We expect that an
analogous equation to Eq. (14), relating hG1�w�i and
hjG0

1�ei��j�2i, will hold in a channel geometry, and
Saffman-Taylor fingers should be exact solutions to the
mean-field approximation of that equation.

We conclude by emphasizing that, although Eq. (14) is a
necessary condition for the average shape of transport-
limited aggregates in the class, Eq. (1), it does not provide
a basis for complete statistical theory. Such a theory would
likely consist of an infinite set of independent equations
connecting a hierarchy of moments of the multifractal
distributions of maps fG1�w�g and derivatives fG0

1�w�g.
Multifractality may speed up convergence, as for Eq. (14),
or slow down convergence of other equations in this set.
The mean-field approximation, Eq. (16), which corre-
sponds to the continuous growth process, can be consid-
ered as leading a hierarchy of closure approximations to
this set.
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