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Abstract
We measure the flow of granular materials inside a quasi-two-dimensional silo
as it drains and compare the data with some existing models. The particles inside
the silo are imaged and tracked with unprecedented resolution in both space
and time to obtain their velocity and diffusion properties. The data obtained
by varying the orifice width and the hopper angle allow us to thoroughly test
models of gravity driven flows inside these geometries. All of our measured
velocity profiles are smooth and free of the shock-like discontinuities (‘rupture
zones’) predicted by critical state soil mechanics. On the other hand, we find
that the simple kinematic model accurately captures the mean velocity profile
near the orifice, although it fails to describe the rapid transition to plug flow
far away from the orifice. The measured diffusion length b, the only free
parameter in the model, is not constant as usually assumed, but increases with
both the height above the orifice and the angle of the hopper. We discuss
improvements to the model to account for the differences. From our data, we
also directly measure the diffusion of the particles and find it to be significantly
less than predicted by the void model, which provides the classical microscopic
derivation of the kinematic model in terms of diffusing voids in the packing.
However, the experimental data are consistent with the recently proposed spot
model, based on a simple mechanism for cooperative diffusion. Finally, we
discuss the flow rate as a function of the orifice width and hopper angles. We
find that the flow rate scales with the orifice size to the power of 1.5, consistent
with dimensional analysis. Interestingly, the flow rate increases when the funnel
angle is increased.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Granular materials display a surprisingly complex range of properties which make them appear
solid- or liquid-like depending on the applied conditions [1, 2]. Because the interaction
between the grains is dissipative and the thermal energy scale is small compared with the
energy required to move grains, such materials quickly come to rest unless external energy
is supplied constantly. Although vibro-fluidization and tumbling [3] is frequently used to
excite granular materials, flows driven purely by gravity can occur in nature as well. Typical
granular flows are dense and a fundamental statistical theory is not available to describe their
properties. One reason for this situation is the lack of quantitative data which can be used to
test and develop models of dense granular flow. In this paper, we focus on flows inside silos and
hoppers in order to elucidate the nature of the flow and to test existing models. Such systems
are ubiquitous due to the need to store and process granular materials in devices ranging from
simple hour glasses to sophisticated nuclear pebble reactors [4, 5].

Several aspects of granular drainage have been studied over the years. Beverloo thoroughly
investigated the relation between the orifice size and the mass flow rate in cylindrical silos
and proposed a formula describing the observed dependence [6]. Using radiography, Baxter
et al observed the density wave in the hopper flow and showed various patterns of the wave
depending on the particle roughness and the hopper angle [7].

The velocity field of the flow inside a silo has been described by two different approaches.
One is based on the critical-state theory of soil mechanics which relates stress and density
to predict velocity field or mass flow rate [8, 9]. Although this approach has the appeal of
starting from mechanical considerations, some questionable assumptions are made to resolve
indeterminacy in the stress tensor, and the resulting equations are mathematically ill posed
and can lead to violent singularities [10, 11]. The solutions available for hoppers possess
shock-like velocity discontinuities (‘rupture zones’) [9], which are not seen in our experiments
(see below).

The second approach ignores the stress field and attempts a purely kinematic description
of the velocity profile, starting from an empirical constitutive law. A theory of this type was
first discussed by Litwiniszyn, who introduced a stochastic model in which particles perform
random walks through available ‘cages’ [12–14]. Later, Mullins independently proposed an
equivalent stochastic model of the flow in terms of ‘voids’ and extensively developed the
continuum limit, where a diffusion equation arises [15, 16]. Decades later, Caram and Hong
revisited the void model and implemented it explicitly in computer simulations on a triangular
lattice (where the voids are simply crystal vacancies) [17].

As an alternative to the microscopic void picture, Nedderman and Tüzün derived the same
continuum equation starting from a constitutive law relating horizontal velocity and downward
velocity gradient [18, 19]. Regardless of its derivation, the kinematic model predicts velocity
fields with only one free parameter. In light of its simplicity, early experiments on silo drainage
were viewed as successes of the model [19–21], even though it has since fallen from favour
in engineering [9]. Although the free parameter has been observed to be proportional to
grain diameter in all experiments, the constant of proportionality does not agree [19, 20, 22].
Furthermore, Medina et al [23] have reported that the kinematic parameter varies within a silo
when the flow is analysed in detail by particle image velocimetry.

In addition to the studies of the flow pattern, the diffusion of particles has been investigated
as well. Hsiau and Hunt [24] and Natarajan et al [25] imaged tracer particles in a dense flow
inside a vertical channel with various boundary wall condition to investigate the concept of
‘granular temperature’. From an analysis of velocity fluctuations, they found that particles
shows normal diffusion and that the diffusivity in the stream-wise direction is higher than
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in the transverse direction. Later, Menon and Durian used diffusing-wave spectroscopy to
measure the dynamics of 100 µm glass beads inside a three-dimensional flow with improved
temporal resolution, albeit at rather small length scales [26]. They reported that the particles
show ballistic flight between collisions over a short timescale, and normal diffusion over a
longer timescale, although the collision distance of 28 nm (1/10 000 of a grain diameter)
could perhaps be associated with sliding or rotating asperities in frictional contacts. In any
case, the randomizing gas-like collisions assumed in kinetic theories [27–29] have not been
confirmed in any experiments on dense flows.

With rapid advances in high-speed digital imaging technology, it is now possible to
simultaneously record thousands of individual particle positions with high spatial and temporal
resolution. In a recent experiment by our group using this technique, the dynamics of 3 mm
glass beads near a transparent wall in a three-dimensional silo was observed to be sub-ballistic
but super-diffusive over short time intervals, and diffusive over long time intervals [30]. The
data were argued to be consistent with slow cage rearrangement with particles remaining in
long-lasting contacts by showing that the diffusion scaled only with distance travelled.

Therefore, inconsistencies can be noted in reported results which need to be resolved
with thorough investigations. In the next section, we introduce the kinematic description of
granular flow in silos and hoppers in detail. Since the stress field is not measured by imaging
techniques, we do not assess critical-state mechanical models, aside from seeking the presence
of the predicted shocks in the velocity field. Then, we outline the experimental set-up in
section 3, and compare the prediction of models with our experiments in section 4. We discuss
the implications of the comparison in section 5 and finally summarize the results in section 6.

2. Models for the mean velocity profiles

A simple kinematic description of the mean velocity profile in silos and hoppers has been
developed since the 1950s, from a variety of theoretical perspectives [9]. The continuum
kinematic model starts from an empirical constitutive law relating velocity components [18],
which can be derived as a continuum limit of the (earlier) void model [12, 15]. The latter is
a more complete theory, because it provides a microscopic mechanism for flow, which can
be checked by experiments on diffusion and mixing. Recent experiments, however, have
firmly rejected the void hypothesis. On the other hand, an alternative stochastic description,
the spot model [31, 32], which starts from a cooperative mechanism for random-packing
rearrangements, roughly preserves the mean flow profile of the kinematic model, with much
less diffusion and slow cage breaking, consistent with experiments [30].

2.1. The kinematic model

Nedderman and Tüzün [18, 19] proposed a model based on the following constitutive law
relating velocity components:

u = b
∂v

∂x
, (1)

which states that the horizontal velocity u is proportional to the horizontal gradient (i.e. the
shear rate) of the downward velocity v. This assumption is based on the fact that particles
tend to drift horizontally towards a region of faster downward flow as they are likely to find
more space to move in that direction. Assuming that the density fluctuation is small in dense
granular regimes, they combined equation (1) with the incompressibility condition,

∂u

∂x
− ∂v

∂z
= 0, (2)
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and obtained an equation for the downward velocity,

∂v

∂z
= b

∂2v

∂x2
. (3)

Equation (3) has the form of a diffusion equation, where time is replaced by the vertical
coordinate z. When an ‘initial condition’ is given for v at the bottom of the silo at z = 0,
the velocity diffuses upward. The boundary condition assumed at the side walls of the silo is
that the velocity is parallel to the wall. Although the authors did not discuss this situation, the
condition can be naturally generalized to the case where the side walls are not vertical. It is
written as

unx − vnz = 0 at (x, z) on the side wall, (4)

where (nx , nz) is the normal vector at the boundary.
For a semi-infinite quasi-two-dimensional system (−∞ < x < ∞) with a point-like

orifice at z = 0 which acts as a source of velocity, a similarity solution exists:

v(x, z) = Q√
4πbz

e−x2/4bz, (5)

where Q is the flow rate per unit thickness of the silo. We refer to the constant of proportionality
b in equation (1), as the ‘diffusion length’, as it is has units of length. We provide a microscopic
understanding of b in section 2.2.

The kinematic model has been tested experimentally, and the parameter b has been
measured by various groups. Nedderman and Tüzün observed b ≈ 2.24d for various particle
sizes [19]. Experiments by Mullins with monodisperse iron ore particles imply b ≈ 2d [20].
Medina et al used the particle image velocimetry (PIV) technique to obtain the velocity field
and found that the diffusion length increases from b ≈ 1.5d to ≈4d as the height increases
to fit the field [23]. Samadani et al reported b ≈ 3.5d for monodisperse glass beads using
difference imaging to find velocity contours [22]. All the groups claimed that the prediction of
the kinematic model qualitatively agreed with their experiment. The fact that a single fitting
parameter b suffices to reproduce the entire flow field should be viewed as a major success of
the kinematic model.

In order to test the kinematic model more thoroughly, we use numerical methods to
solve the kinematic model subject to the same dimensions used in our experiments. For this
purpose, we define the stream function, ψ(x, z) = ∫ x

0 v(s, z) ds and solve for ψ(x, v) rather
than v(x, z). Formulated in terms ofψ , the boundary condition turns into a Dirichlet one from
a rather complicated one given by equation (4). Furthermore, it is more convenient for the
hopper geometry with inclined boundaries. If the width of the system is given by L(z) and
the silo is symmetric about its centre (e.g. −L(z)/2 � x � L(z)/2), the equation and the
boundary condition for ψ are given by

∂ψ

∂z
= b

∂2ψ

∂x2
and ψ(0, z) = 0, ψ

(

± L(z)

2
, z

)

= ± Q

2
. (6)

We numerically integrate equation (6) from z = 0 using the Crank–Nicholson method to obtain
the prediction of the kinematic model.

Due to its continuum formulation, the kinematic model cannot predict grain-level diffusion
and mixing, so we now turn to statistical kinematic models for the velocity profile, which
postulate mechanisms for random-packing dynamics.

2.2. The void model

Since equation (3) has the form of a diffusion equation, where the vertical distance z plays the
role of ‘time’, it is clear that any microscopic justification for the kinematic model should be
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based on independent random walks. In fact, this is how the model was first derived decades
earlier, based on statistical considerations. Although the continuum approach is more general,
in the sense that it is not tied to any specific microscopic mechanism, it lacks a clear physical
basis, so it is important to consider what kind of microscopic mechanisms might support it.

Litwiniszyn first suggested the idea that particles are confined to a fixed array of
hypothetical ‘cages’ as they perform random walks from one available cage to another during
drainage [12–14]. Then, Mullins [15, 16] independently proposed an equivalent model in
terms of ‘voids’ rather than particles, which is analogous to vacancy diffusion in crystals. In
his model, particles move passively downward in response to the passage of voids, and the
voids take directed random walks upward after emerging from the orifice.

Assuming that voids diffuse by non-interacting random walks, it is straightforward to
show that in the continuum limit, at scales larger than the grain diameter, the concentration (or
probability density) of voids, ρv, satisfies the diffusion equation,

∂ρv

∂z
= b

∂2ρv

∂x2
. (7)

Since downward velocity v is proportional to the frequency of the void passage, this implies
equation (3) of the kinematic model. However, the equivalence of the two model assumes that
voids can be superimposed without interaction.

The void model also gives us an interpretation for the kinematic parameter, b. If a void
undergoes a random horizontal displacement, �xv, while it climbs up by �zv, the parameter
b is given by

b = Var(�xv)

2�zv
, (8)

which is the characteristic length of the void diffusion. However, it is very difficult to determine
b directly from equation (8). �xv and�zv cannot be measured from an experiment, nor does
any a priori choice produce the measured value of b. Mullins also deduced b ≈ 2d from the
velocity profile for round particles (b ≈ d/4 for irregular particles) without specifying the
value of �xv and �zv. By contrast, Caram and Hong [17] assumed a void makes an one-to-
one exchange with particles on a regular lattice when they later revisited the void model. It is
noteworthy that any regular lattice of hard-sphere packing under-predicts b (b � d) [31].

The void model faces more serious problems when it is used to predict diffusion and
mixing, which was not done by its proponents. If a tracer particle is placed in a uniform flow
driven by voids, the particle makes a directed random walk downward with precisely the same
diffusion length as the voids moving up. Thus particles are easily mixed before they drop by
a few particle diameters, which goes against our everyday experience and experiments (see
below).

2.3. The spot model

To address these contradictions, Bazant et al [31, 32] proposed the spot model, which starts
from a mechanism for cooperative diffusion in a dense random packing. It has roughly the
same mean flow as in the kinematic model, because it also assumes that particles move in
response to upward diffusing free volume, but this excess volume is carried in extended ‘spots’
of slightly enhanced interstitial volume, not in voids.

The kinematic parameter, b, is now set by the diffusion length for spots,

b = Var(�xs)

2�zs
, (9)
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where �xs and �zs are spot displacements in x and z directions, respectively. Unlike a void,
which is a vacancy capable of being filled by an entire particle, however, a spot carries small
fraction of interstitial space spread across an extended region and causes all affected particles
to move (on average) as a block with the same displacement in the opposite direction to the
spot.

Of course, there are more complicated internal rearrangements, which can be taken into
account to achieve accurate spot-based simulations [33], but the simplest mathematical model
already captures many essential features of dense drainage [31, 32]. For example, it is easy to
see that the spot mechanism greatly reduces the diffusion length of particles, compared to the
diffusion length of free volume. Suppose that a spot carries a total free volume Vs, and causes
equal displacements (�xp,�zp), among Np particles of volume Vp. The particle displacement
can be related to the spot displacement (�xp,�zp) by an approximate expression of total
volume conservation,

NsVp(�xp,�zp) = −Vs(�xs,�zs), (10)

which ignores boundary effects at the edge of the spot. From this relation, we can compute
the particle diffusion length,

bp = Var(�xp)

2�zp
= w2 Var(�xs)

2w�zs
= wbs (11)

which is smaller than the spot diffusion length by a factor w = Vs/NpVp. This can in turn be
related to the change,�φ, in local volume fraction, φ, caused by the presence of the spot,

w = bp

b
= Vs

NpVp
≈ �φ2

φ
. (12)

It is well known from simulations and experiments that the volume fraction fluctuates on the
order of 1% in a dense flow, so the spot model thus predicts w = bp/b = O(10−2). (In
our experiments, the local area fraction of glass beads near the viewing wall varies by less
than three per cent.) The estimate of w is further reduced by noting that spots occur in large
numbers and overlap, so that each spot contributes only a small part of the change in local
volume fraction. We will test this prediction in our experiments.

3. Experimental procedure

3.1. Experimental set-up

Our experimental apparatus and procedure is similar to that used in our previous report [30].
We use black glass beads (d = 3.0 ± 0.1 mm) in a quasi-two-dimensional silo with length
L = 20.0 cm (67d), height H = 90.0 cm (300d), and thickness D = 2.5 cm (8.3d).
The particles near the front wall of the silo are measured through the transparent glass. The
slight polydispersity reduces the tendency for hexagonal packing to occur near the wall. The
thickness of the silo D is large enough that finite-size effects are not significant. We obtain
similar results for both mean velocity and diffusion when we increase D [30]. A distributed
filling procedure was used to fill the silo with the grains. The orifice is opened and steady state
flow is allowed to develop before acquiring the images used for determining particle positions.

We view a rectangular region of 20.0 cm × 50.0 cm above the orifice with a resolution
of 256 × 1280 pixels. Therefore, each particle diameter corresponds to d = 7.7 pixels. The
images are acquired at a rate of 125 frames per second. The camera memory allows 2048
consecutive images to be stored at this resolution and therefore the maximum interval over
which we can track a particle is about 16.4 s.
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Figure 1. (a) A raw image of the glass beads acquired with the high-speed camera, and (b) the
preprocessed image along with the position of the centroid of the identified particle (×).

For the funnels in the hopper, Plexiglass wedges are placed on top of the bottom plate. The
surface property of wedge boundaries is identical to the side walls. We use wedges with three
different angles, θ = 30◦, 45◦ and 60◦. The orifice size W = 18 mm is fixed for the hopper
experiments while it is varied to W = 12, 16 and 20 mm for the silo. To gain good statistics,
three experiments are conducted for each funnel angle and orifice size. We also use data from
a wider range of orifice sizes than acquired during our previous study [30] in section 4.2.

3.2. Particle tracking
To identify the locations of particles from images, we employ the algorithm proposed by
Crocker and Weeks [34]. In this algorithm, the raw images are preprocessed to reduce the
noise and the background. This involves convolving the image with a Gaussian filter and then
an average filter of roughly d pixels respectively. The particle location is then identified with
the centroid around the local maximum brightness pixel in the modified image. To optimize
the particle tracking for our experiment, the algorithm was also further customized. Because
the glass beads are circular, we use a circular shaped filter. We also set an intensity cut-off to
discard the blur images of particles located far away from the front wall. A sample of an image
before and after the processing is shown in figure 1. The position of the located particles is
also superposed.

After particles are located frame by frame, their trajectories should be retrieved by
‘connecting’ their positions in time. We associate a particle in a frame with another in the
next frame which is within a radius of 0.66d pixels around the original position. This simple
method works well, avoiding more complicated multiple associations except very near the
orifice where the particles move more than 0.66d pixels per frame. The particles can be
tracked there by using a faster frame rate, but we do not do so here since bulk flow, and not
orifice dynamics, is the focus of our study.

4. Analysis of the experimental results

4.1. Comparison of the measured velocity profiles with the kinematic model

We first compare the data from the flat-bottom silo with the model. Figure 2(a) shows the
contour plot of the average downward velocity v. The mean velocity is obtained by dividing



S2540 J Choi et al

–30 –20 –10 0 10 20 30

0

5

10

15

20

25

30

x / d

v 
(d

⋅s–
1 )

Kinematic (b=1.3)
Kinematic (b=2.3)
Experiment

–20 0 20
0

20

40

60

80

100

120

140

160

x / d

z 
/ d

v (d⋅s–1)
0

5

10

15

20

25

30
(a) (b)

Figure 2. (a) Contour plot of the average downward velocity field, v, in a flat-bottomed silo with an
orifice width, W = 16 mm. (b) v as a function of x at the two heights, z1 = 9.1d and z2 = 29.1d
indicated with grey dotted lines in (a). The result from the kinematic model in the same geometry
fits best with b = 1.3d for the z1 profile, and b = 2.3d for the z2 profile. The result from the model
for the z2 profile with b fitted at z1 (narrow solid curve) is also shown.

the observation window into square cells of size 1.6d × 1.6d . Then in each cell the average
is performed over the displacements of all the particles passing through the cell. We again
take the average of the field from three experiments. The data across experiments show little
variation, which confirms that the velocity field is well defined and stationary. Thus we do
not show the error bar in the plots of this paper unless the concerned quantity has visible
fluctuations.

The contour plot shows that v is a maximum right at the orifice and appears to ‘diffuse’
upward, in qualitative agreement with the models discussed above. The regions in the left and
right corners made by the side walls and the bottom plate remain stagnant, and the boundary of
the mobile region has a parabolic shape. In figure 2(b), we show the profiles v(x) at two cross
sections z1 = 9.1d and z2 = 29.1d (dotted lines in figure 2(a)) with the fit to the kinematic
model. The diffusion length, b = 1.3d , was the best fit for the profile at z1. However, b
becomes larger when z increases as some previous reports have also shown [9, 23]. The profile
at z2 is best fitted with b = 2.3d , but it has a flattened shape at the centre with a thinner tail
indicating further obvious deviations from the model.

The velocity profiles from the experiments with different orifice widths turn out to coincide
when they are normalized by the flow rate as is commonly observed in other dense granular
flows [35]. Thus the best fitting value of b is independent of the flow rate. The dependence of
the flow rate on the orifice width will be discussed in the next subsection.

We performed similar analysis of the experiments with the hoppers. The contour plots
along with the profiles at z = z1, z2 for the angles 30◦, 45◦ and 60◦ are presented in figures 3–5
respectively. As the angle is increased, the stagnant region is diminished as the particles slip
on the wedge. At z1 the critical angle over which slip occurs is between 30◦ and 45◦, and at z2

it is between 45◦ and 60◦. However the shape of equi-velocity contours well above the funnel
is not affected significantly by the funnel’s detailed shape.

The value of b to obtain the best fit depends on the angle of the hopper as well. It increases
from 2.1d to 2.8d for z1, and from 2.6d to 4.5d for z2 as the angle is increased.
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Figure 3. (a) Contour plot of the average downward velocity field, v, in a hopper with angle,
θ = 30◦ , and W = 18 mm. (b) v as a function of x at the two heights, z1 = 9.1d and z2 = 29.1d,
indicated with grey dotted lines in (a). The result from the kinematic model fits best with b = 2.1d
for the z1 profile and b = 2.6d for the z2 profile. The result from the model for the z2 profile with
b fitted at z1 (narrow solid curve) is also shown.
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Figure 4. (a) Contour plot of the average downward velocity field, v, in a hopper with angle,
θ = 45◦, and W = 18 mm. (b) v as a function of x at the two heights, z1 = 9.1d and z2 = 29.1d,
indicated with grey dotted lines in (a). The result from the kinematic model fits best with b = 2.1d
for the z1 profile and b = 2.6d for the z2 profile. The result from the model for the z2 profile with
b fitted at z1 (narrow solid curve) is also shown.

Although we observe some quantitative discrepancies with the simple kinematic model
with a constant coefficient, b, the flow is at least qualitatively consistent. This appears not to be
the case with continuum models from critical-state soil mechanics [9], which generally predict
sharp, shock-like discontinuities in velocity (and stress, which we do not measure) within the
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Figure 5. (a) Contour plot of the average downward velocity field, v, in a hopper with angle,
θ = 60◦ , and W = 18 mm. (b) v as a function of x at the two heights, z1 = 9.1d and z2 = 29.1d,
indicated as grey dotted lines in (a). The result from the kinematic model fits best with b = 2.6d
for the z1 profile and b = 3.2d for the z2 profile. The result from the model for the z2 profile with
b fitted at z1 (narrow solid curve) is also shown.

silo, especially near corners. We see no such abrupt jumps in velocity in the silo, only rather
smooth velocity profiles.

4.2. Flow rate dependence on the orifice size and the funnel angle

The mass flow rate in a silo during discharge was an important subject of early research. Using
drainage experiments in cylindrical silos with a circular orifice, Beverloo et al [6] reported a
relation known as the Beverloo correlation

Q ∝ ρ
√

g(W − kd)2.5, k = 1.4 (13)

where Q is the mass flow rate, ρ is the bulk density of packing, g is the gravitational constant
and W is the diameter of the orifice. It is usually argued that Q ∝ ρ

√
g(W − d)2.5 is the only

form which can be deduced from the dimensional analysis as (W −d) is the effective diameter
(or width) where particle centres can be placed within the orifice, but arching and other effects
could also introduce the particle diameter d and thus another dimensionless parameter, d/W .
Instead, the Beverloo correlation includes a somewhat controversial factor W − kd , where the
empirical factor k is claimed to derive from the region near the orifice rim which obstructs the
passage of particles. This picture could be consistent with the concept of an ‘empty annulus’
proposed by Brown and Richards [36].

For a slit orifice with a quasi-two-dimensional silo as in our experiment, the dependence
can be obtained to be

Q ∝ ρ
√

g(D − d)(W − kd)1.5, (14)

because the flow rate is linear with system depth D − d .3 We investigated the flow rate
dependence on orifice width using our data. Although the discharged mass flux is not directly
measured, we use the overall average velocity, v∗ = Q/L, to obtain the flow rate.

3 It should be noted that the orifice in our system is entirely open from front to back surface. Thus the ‘empty annulus’
argument is difficult to apply in the direction of silo depth. We cannot find the exact dependence on D because we fix
D = 2.5 cm.
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Figure 6. The dependence of flow rate on (a) the effective orifice width, W/d−1, in a flat-bottomed
silo (log–log scale), and (b) the funnel angle θ in a hopper with a fixed orifice width. The flow rate
is measured averaging the downward velocity in the plug-flow region. The fitting of (a) validates
the result of a dimensional analysis, Q ∝ (W − d)1.5.

Figure 6(a) shows the relation between the flow rate and orifice size in a log–log scale.
When k = 1, the data fit to a power law scaling with an exponent of 1.48. Although k = 0.94
gives the exact exponent of 1.5, we do not attach much importance to the deviation as our
flow rate measure is indirect. However, it is sufficient to check that the Beverloo correlation
(dimensional analysis) holds in a 2D silo.

We also investigated how the funnel angle affects the flow rate. In order to compare the
rate at a fixed orifice width, we interpolate the rate with W = 18 mm from data with W = 16,
20 and 24 mm for the silo experiment. Figure 6(b) shows a consistent increase in the flow rate
as the angle increases. The flow rate in the 60◦ funnel turns out to be about 33% more than
that in the flat-bottom silo. This dependence is consistent with the data from [37], although the
reported increase of the flow rate is smaller than our data. We believe the increased flow rate
largely comes from the fact that the smooth rigid boundary facilitates the passage of particles.
As seen clearly from figures 2(b) to 5(b), the stagnant zone present in the corners of the flat-
bottom silo is replaced by wedges. Thus the slip velocity at the boundary increases as the
angles increase, which makes the out-going flow at the orifice (z = 0) more uniform and shear
free. This effect appears to allow the particles to exit the orifice more easily.

4.3. Diffusion of particles in an uniform flow

As explained in section 2, particle diffusion is a key property to distinguish between different
possible microscopic mechanisms for dense granular flow. The void model and the spot model
predict quite similar mean flow profiles (given by the kinematic model scales much larger than
the grain size), but the former predicts bp/b = O(1) while the latter predicts bp/b = O(10−2).
In this section, we briefly discuss measurements of particle diffusion in our experiments, as
also previously reported in [30].

To measure diffusion, the random component of particle displacement is obtained by
subtracting the average component:

�x = �x ′ − u�t and �z = �z′ + v�t, (15)

where �x ′ (or �z′) is the observed displacement in the x (or z) direction, �x (or �z) is the
random displacement in the same direction, and �t is the time gap between two consecutive
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frames and can be increased by any integer multiple. The observation window is in a nearly
plug-flow region far from the orifice, where u is negligible and v is almost uniform (and set
by varying the orifice width).

The probability density distributions of �x and �z are observed to display fat tails
compared to a Gaussian distribution. The statistics of �z also show an anisotropy due to
gravitational acceleration and inelastic collisions. When the width of the distributions is
examined as a function of �t , the scaling shows a crossover from super-diffusion, 〈�x2〉 ∝
�t1.5 and 〈�z2〉 ∝ �t1.6, to diffusion, 〈�x2〉 ∝ 〈�z2〉 ∝ �t . A significant observation is that
the lines of 〈�x2〉 and 〈�z2〉 for different v collapse into a single line when they are plotted
against the distance dropped, v�t , allowing us to characterize the dynamics only by distance
moved, independent of the flow rate, v. We found that this dynamical crossover occurs after
a particle falls roughly by its diameter irrespective of the flow rate.

The fact that the dynamics only depends on geometry strongly suggests that advection
and diffusion have the same physical source (such as a the passage of a void or spot). It
also suggests that structural rearrangements with long-lasting contacts dominate diffusion in
dense granular flows, as opposed to ballistic collisions, which are central to the kinetic theory
of gases. Direct evidence is that the cage-breaking length is estimated to be of the order of
100d from the rate of the nearest neighbour loss [30]. Our results suggest that the concept of
‘granular temperature’ based on thermodynamic, randomizing collisions is of dubious value
in slow, dense granular flows.

Since the free volume models correctly predict the geometry dominated diffusion, we can
proceed to evaluate them quantitatively. We compute the Péclet number, the dimensionless
ratio of advection to diffusion, defined as

Pex = lim
�t→∞

2V d�t

〈�x2〉 = d

bp,x
and Pez = lim

�t→∞
2V d�t

〈�z2〉 = d

bp,z
(16)

are interpreted as the distances (in units of d) for a particle to fall before it diffuses by a
diameter in the x or z direction, respectively. The large measured values, Pex = 320 and
Pez = 150, indicate that advection dominates diffusion. Since b/d ≈ 2, we also find
wx = bp,x/b ≈ 1/600 and bp,z/b ≈ 1/300, which is consistent with the simple prediction
of the spot model, w ≈ 10−3–10−2. Of course, the data firmly reject the void model, which
predicts w ≈ 1, and cage breaking at the scale of one particle diameter.

5. Discussion

In section 4.1, we observed that the kinematic model with a constant parameter b is not
consistent with the experiments. It was found that b depends on the height and the funnel
angle. In this section, we investigate the validity of two important assumptions of the kinematic
model, namely the constitutive law (1), and the generalized boundary condition (4) for the
funnel geometry.

First, we directly check the constitutive law (1) using the results from our experiments.
In each cell that was used for averaging the velocity, we measure the horizontal velocity u,
the downward velocity gradient ∂v/∂x , and therefore the diffusion length b. Figure 7 shows
the distribution of the locally measured values of b. As expected, it shows a wide fluctuation
scattered from b = d to 3d . When b is associated with v, we find b increases up to 3.4d and
decreases as v increases. In other words, we observe higher b moving away from the stagnant
zone and towards the fast flow regions at the centre. However, for the fastest-flow regions close
to the orifice, b decreases. A reasonable implication of the increase in b is that the slightly
lower density in the fast-flow region due to dilation makes horizontal movements easier. The
decrease in b at higher v is perhaps related to the fact that particles undergo collisional flow
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Figure 7. The locally measured diffusion length, b, as a function of the normalized velocity, v/v∗.

in the fast flowing regions near the orifice. Since the particles are less locked to neighbours
than in the dense bulk away from the orifice, the shear in the downward velocity results in less
horizontal movement, therefore smaller b.

A few further comments about figure 7 are in order. To collect meaningful statistics for b,
we ignore shear-free zones (e.g. stagnant zone and plug-flow regions where the gradient of v
is negligible), where b is likely to have large errors. We accomplish this by only considering
cells where gradient is larger than 5% of the characteristic magnitude, v∗/d , where v∗ is overall
average velocity in the plug region. Although we only discuss b for the silo experiments in
figure 7, a similar trend is also found for the hoppers as well.

The correlation between v and b gives some clues to explain the discrepancies in
section 4.1. The kinematic model with constant b fails to capture the development of a more
plug-like plateau in the velocity profile even with larger values of b. However, if higher b is
applied to the region around the centre (where v is high), and lower b is applied to the region
close to walls (where v is low), the model would come into closer agreement with experiment.

In an effort to understand the universality of this pattern, we use the overall average
velocity, v∗, to normalize the downward velocity, v, from different flow rates (or orifice size).
As shown in figure 7, pairs of (v/v∗, b) for three different flow rates fall into nearly the same
pattern. This is consistent with the trends observed in [30] that increasing the flow rate merely
fast-forwards the entire dynamics, without changing the geometrical sequence of events.

Our way to describe our experimental results a posteriori is via a modified constitutive
law with a variable diffusion length, b, which depends on the (scaled) local velocity:

u = b
∂v

∂x
and b = b∗�

(
v

v∗

)

, (17)

where b∗ is an effective diffusion length and � is a dimensionless scaling function. Note
that the velocity field satisfying equation (17) is still linear with respect to rescaling the total
magnitude of the velocity (by changing the total flow rate) since v/v∗ is invariant when v is
rescaled. However, the velocity profile in space is governed by a nonlinear diffusion equation,

∂v

∂z
= b∗ ∂

∂x

[

�

(
v

v∗

)
∂v

∂x

]

. (18)

It is well known that spreading solutions to this equation (analogous to a concentration-
dependent diffusivity) are flatter in the central region (compared to a Gaussian) when � is
an increasing function of its argument [38].
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Figure 8. The variance (squared effective width) of the downward velocity profile, 〈x2〉v , as a
function of the vertical coordinate, z for different funnel angles.

We should consider what might be the microscopic reason for a nonlinear diffusion length
in the kinematic model. In general, it would arise from interactions between different spots,
which are neglected as a first approximation. It makes sense that spots of free volume should
diffuse less when they find themselves in a more slowly flowing, less dense, region, with
fewer other nearby spots. This could explain why b appears to grow with velocity (or spot
concentration). On the other hand, the flow in the upper part of the silo becomes more plug-like
and should exhibit less diffusion than the lower region of greater shear near the orifice, so it
remains unclear whether the nonlinear model (17) can be given a firm microscopic justification.
Further comparison with theory and experiment is needed to settle this question.

The next issue to test is the boundary condition at the side walls. Specifically, it is important
to test if the model can be simply extended from open silos to hoppers by using equation (4). It
is interesting to note that the curvature of the profile at z = z1 around x = 0 remains the same
for the different funnel angles (see figures 2(b)–5(b)). In fact, it is b that should increase from
b = 1.3d to 2.8d in order to reproduce the same curvature as the hopper angle is increased.
For a more quantitative argument, we show in figure 8 the variance of the downward velocity
profile (a measure of its squared width),

〈x2〉v =
∫

x2v(x) dx
∫
v(x) dx

(19)

as a function of height, z. From equation (9), the slope of the linear regime near the orifice is
equal to 2b, and the value of the implied b does not significantly vary from b = 1.9d for the
silo, as can be seen in the inset to figure 8.

We conclude, therefore, that extending the kinematic model to a hopper with non-vertical
walls does not seem to be successful with the naive idea of equation (4), which assumes the
same bulk constitutive law holds all the way to the boundary.

It may be that a nonlinear constitutive law as in equation (17) can improve the situation
because particles slip more on a funnel wall and b thus tends to be higher than in the silo.
However, there may still be problems higher in the tank where the flowing region meets the
vertical side walls. The boundary condition (4) requires that the strain rate (horizontal gradient
of vertical velocity) vanishes at a vertical wall, and yet small velocity gradients are observed
near the walls in the upper region in figures 2–5. We plan to compare the nonlinear kinematic
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model, as well as other continuum models from critical-state mechanics and hourglass theory,
more closely with the experimental flow profiles in future work.

6. Summary

In summary, we have used high-speed imaging techniques to track the positions of granular
materials draining inside silos and hoppers. We compared our data with the continuum
kinetic model and two possible microscopic theories which predict similar mean flow, the
void model and spot model. These models are appealing due to their mathematical simplicity
and completeness, which allows direct application to various geometries. The models also
predict smooth velocity profiles, free of shock-like discontinuities, quite consistent with the
experiments. Systematic deviations are observed, implying various assumptions, such as a
constant diffusion length, are too simple to capture all aspects of the flow profile, but it may
be that modifications can be made to improve the agreement. For example, we infer that the
kinematic parameter, b, increases with the local velocity, which would imply that the spot
diffusion length increases in the presence of other spots. Still, it is clear that further work is
also needed to develop boundary conditions for both discrete and continuous models of slow,
dense granular flows.
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[19] Tüzün U and Nedderman R M 1979 Powder Technol. 24 257
[20] Mullins J 1974 Powder Technol. 9 29
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