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We study the transport properties of particles draining from a silo using imaging and direct particle
tracking. The particle displacements show a universal transition from superdiffusion to normal
diffusion, as a function of the distance fallen, independent of the flow speed. In the superdiffusive
(but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements
have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage
breaking and Péclet numbers of order 100, contrary to the only previous microscopic model (based
on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by
geometry, consistent with long-lasting contacts but not thermal collisions, as in normal fluids.
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Granular flow is an attractively simple and yet surpris-
ingly complex subject [1]. Fast, dilute flows are known to
obey classical hydrodynamics (with inelastic collisions),
but slow, dense flows pose a considerable challenge to
theorists, due to many-body interactions and nonthermal
fluctuations. Beyond their fundamental scientific interest,
such flows have important engineering applications [2],
e.g., to new pebble-bed nuclear reactors [3], whose effi-
ciency and safety depend on the degree of mixing in very
slow granular drainage (<1 pebble/ min).

Although dense granular drainage is very familiar
(e.g., sand in an hourglass), it is far from fully under-
stood. Over the past 40 years, a number of theoretical
approaches have been proposed for steady state flow [4—
8]. Continuum approaches are based on the critical-state
theory of soil mechanics and yield only mean velocity
fields [7,8]. On the other hand, the diffusing void model
[4,5] takes a particle approach, in which ““voids”™ injected
at the orifice cause drainage by diffusing upward and
exchanging position with particles along the way.
Averaging over the void trajectories yields the same con-
tinnum velocity field for particles as the ‘“kinematic
model” [6,8], which provides a reasonable fit to experi-
mental data with only one fitting parameter (the diffusion
length b) [5,6,9,10], although the void model on a regular
lattice (as in Ref. [11]) underpredicts its value [12].
Remarkably, these models depend only on geometry and
not on momentum, energy, etc.

In spite of the success of the kinematic model, however,
its only microscopic basis, the void model, greatly over-
predicts diffusion. To see this, consider the Péclet number,
Pe, = v.d/D,, the dimensionless ratio of advection in
uniform downward flow of speed v, to diffusion with a
horizontal diffusivity D, at the scale of a particle diame-
ter d. In the void model, when a particle falls a distance
Ah, Pe, = (Ah/At)d/({Ax*)/2A1) = Ah2d/{Ax?) is of
the order of 1 for any conceivable packing since Ah =
Ax = d, and therefore it diffuses horizontally by roughly
VAh. This prediction is contradicted by everyday expe-
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rience and our experiments below, which exhibit far less
mixing. An attempt to resolve this paradox with a new
model appears in a companion paper [12].

In this Letter we describe particle-tracking experi-
ments on silo drainage using similar techniques as in a
recent (lower-resolution) study of the velocity field [13].
We focus on the statistical evolution of particle displace-
ments and topological “‘cages,” which should aid in de-
veloping new microscopic models. Our data may also
have implications for recent attempts to apply thermody-
namic approaches from glassy dynamics to granular flows
[14—16]. Although we do not define a “‘granular tempera-
ture,” we observe the presumably related effect of vary-
ing the flow rate in all of our measurements.

Our experimental apparatus involves glass beads
(d=3.0*x0.1 mm) in a quasi-two-dimensional silo
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FIG. 1 (color online). An initially flat, off-center interface
between two regions of differently colored beads (a) stretches
and roughens after draining half of the silo (b), but little
mixing is observed. (c) Contour plot of the average downward
velocity field v, with an orifice width, W = 16 mm = 5.3d.
The white box indicates a region of nearly uniform flow where
all subsequent measurements are made.
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(20.0 X 90.0 X 2.5 cm = 67 X 300 X 8.3d). The par-
ticles are observed near the front wall made of trans-
parent glass, where the slight polydispersity reduces the
tendency for hexagonal packing. (As seen in Fig. 1, there
is no long-range order, although the wall induces some
short-range order that may affect our results.) We find that
varying the thickness of the silo has insignificant effect
on the diffusion properties and therefore we report our
data for a single thickness. We track individual par-
ticles using a high-speed digital camera with a maximum
resolution of 512 X 1280 pixels at 1000 frames/s. Particle
positions are obtained to subpixel accuracy using a cen-
troid technique (=0.003d, d = 15 pixels).

Our first experiment provides a visual demonstration
that particles mix much less than predicted by the void
model. We load the silo with black and white (but other-
wise identical) glass beads, forming two separate col-
umns, as shown Fig. 1(a). From Fig. 1(b), where half of
the particles have drained (in 30 s), it is clear that the
black-white interface has not smeared significantly,
although it has roughened. The small degree of mixing
is consistent with the segregation of bidisperse beads in a
similar apparatus [10].

The mean downward velocity field v, is shown in
Fig. 1(c) throughout the silo, as measured by direct par-
ticle tracking. A distributed filling procedure similar to
that in Ref. [17] was used to add grains to the silo. Then
the orifice was opened and steady state flow was allowed
to develop before acquiring the data used for subsequent
analysis. The flow speed is highest at the center line, with
a maximum near the orifice, and decays to zero toward
the sides. Fairly good agreement with the kinematic
model is obtained with b = 1.3d.

In order to investigate particle dynamics in a simple
setting, we focus on a small 17 X 87d region of nearly
uniform flow [the white box in Fig. 1(c)]. For the mea-
surements below, we track about 1370 particles through
this window for 4 s in steps of 1 ms. The average flow
speed v,, the only control parameter in this study, is
varied by changing the width of the orifice W. The flow
is fairly smooth for W = 8 mm (about 3d) and nearly
continuous for W = 16 mm. For simplicity, we vary W in
the range 8 = W = 32 mm, in increments of 4 mm, to
avoid the complicated regime of intermittent flow [18].
This corresponds to 1.38 = v, = 18.39d/s, and data is
consistent with v, & (W — d)!3. We compile statistics
from all tracked particles in six experiments per flow
speed (except two for W = 32 mm).

From the positions of the particles sampled at 1 ms
intervals, we calculate the horizontal and vertical dis-
placements, Ax and Az, relative to a frame moving with
the mean speed of the flow. A typical trajectory computed
in this way in Fig. 2(a) shows periods of small fluctua-
tions with occasional, much larger steps. This suggests
that the probability density functions (PDFs) for Ax and
Az (for At = 1 ms) should have fat tails compared to a
Gaussian, which is confirmed in Figs. 2(b) and 2(c).
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Fat-tailed PDFs have also been observed in colloidal
glasses and attributed to cage breaking [19], but a special
feature here is the asymmetry of the PDF for Az in
Fig. 2(c). Downward fluctuations (Az <0) are larger
than upward (Az > 0) and horizontal (Ax) fluctua-
tions. We attribute this to the fact that particles are ac-
celerated downward by gravity while being scattered
in other directions by dissipative interactions with
neighbors.

Looking again at Fig. 2(a), it seems that the large
fluctuations in particle displacements would be reduced
by coarse graining in time, perhaps enough to recover
standard Gaussian statistics. Indeed, as shown in Fig. 2(d),
the normalized kurtosis, «, = (Ax*)/3(Ax*)* — 1,
which measures how much the shape of the distribu-
tion of Ax differs from a Gaussian, decreases toward
zero as v, At increases. (The data fluctuates somewhat
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FIG. 2 (color online). (a) A typical particle trajectory
sampled at 1 ms intervals in a frame moving with the average
flow speed v,. (b),(c) Normalized PDFs for the 1 ms particle
displacements, Ax and Az, for various flow speeds v, compared
to a standard Gaussian distribution (dotted line); standard
deviations, o, and o, are of order 1073d. (d) The kurtosis
of Ax versus the mean distance fallen, v,Az.
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for v, = 1.38d/s, presumably due to intermittency.) This
suggests a transition from super to normal diffusion.

As shown in Figs. 3(a) and 3(b), the scaling of the
mean-square displacements does, in fact, change from
superdiffusive, (Ax?) o« At!> and (Az?) o« At"6, to diffu-
sive, (Ax?) = (Az?) « At. The normal diffusion in long
time scales is consistent with previous studies of dense
drainage where particles were tracked with lower time
resolution [20]. Curiously, the superdiffusion is slower
than ballistic transport in fluids, (Ax?) « (Az?) = A,
which has been found in a recent indirect measurement
of granular flow [21], albeit at the scale of surface rough-
ness (<25 nm = d/10000).

Sub-ballistic scaling and non-Gaussian statistics at
short times suggest that dense granular flows differ
from classical fluids, as becomes more clear upon chang-
ing the flow rate. In a fluid, this causes a linear increase in
Pe because the mean flow has no affect on molecular
diffusion due to thermal fluctuations. Here, as shown in
Figs. 3(c) and 3(d), the measured diffusion coefficients,
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FIG. 3 (color online).  (a),(b) Mean-squared horizontal ((Ax?))
and vertical ((Az?)) displacements versus mean distance
dropped, which collapse onto a single curve for different flow
speeds v,, except for the smallest where the flow is intermit-
tent. (¢),(d) Diffusion coefficients (D) and Péclet numbers (Pe)
in the horizontal (x) and vertical (z) directions versus v,.
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e.g., D, =lim,, . (Ax?)/2At, are actually proportional to
the flow speed (with D, =2.1D,, consistent with the dis-
cussion above), so the Péclet numbers, Pe, =v_d/D, =~
321 and Pe, = v.d/D, = 150, are roughly constant. This
suggests that diffusion and advection are caused by the
same physical mechanism, such as a passing void. The
measured Péclet numbers, however, are 2 orders of mag-
nitude larger than predicted by the void model.

Since D,, D, « v,, we plot the mean-square displace-
ments versus the mean distance dropped in the laboratory
frame, v,Ar. Remarkably, as shown in Figs. 3(a) and 3(b),
this collapses all of our data for different flow speeds onto
a single curve, not only in the diffusive regime, but also
in the superdiffusive regime. (The data for the smallest
flow speed again differs somewhat.) A smooth crossover
from super- to normal diffusion occurs after particles
have fallen roughly one particle diameter.

Although advection dominates particle dynamics
(Pe > 1), diffusion causes a gradual rearrangement of
the cage of nearest neighbors. To investigate this mixing
directly, we measure the topological correlation function
C(At) defined as the fraction of nearest-neighbor pairs
preserved from times 7 to ¢t + At, averaged over all t. We
chose the cutoff for a nearest neighbor, 1.5d, as the first
minimum of the radial distribution function (which
yields coordinations near 0.59). As shown in Fig. 4(a),
the data for C(A¢) collapses when plotted versus v_Af, in
the sense that no systematic dependence on v, is observed
(except perhaps for the smallest orifice widths), so in
Fig. 4(b) we plot the average over all experiments in the
continuous-flow regime (W = 16 mm or v, = 5.59d/5s).

The cage correlation function in Fig. 4(b) exhibits a
clear crossover, which closely parallels the crossovers for
mean displacements in Figs. 3(a) and 3(b). In the super-
diffusive regime, C(Ar) decreases fairly quickly (with a
decay length of roughly 20d), but after falling more than
one particle diameter the rate of decrease (neighbor loss)
slows considerably. Since the topology remains more than
90% intact within the observation window, the precise
form of the long-distance decay is uncertain, but a least-
squares exponential fit, (C) ~ 0.976 exp(—v.At/200d),
yields a “cage breaking length’” of 200d. This gives direct
evidence that the flow is characterized by long-lasting
contacts, as is obvious to the naked eye. It also firmly
rejects the void model because any void-particle ex-
change removes roughly half of the neighbors of a particle
as it falls by only one diameter.

To counter the argument that a collisional regime may
exist below the experimental resolution (A7 < 1 ms), we
show that this is inconsistent with the fact that diffusion
and mixing depend only on geometry (Figs. 3 and 4). In
the standard model of a collisional gas, a particle drop-
ping a distance L experiences an average of N collisions
which must dissipate its gravitational potential energy:
mgL = (1/2)N(1 — e?) mv?, where m is the mass, g the
gravitational acceleration, e the restitution coefficient,
and v, the mean relative velocity. To be consistent with
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FIG. 4 (color online). (a) The topological cage correlation
function C(Ar) versus the mean distance fallen v_Az, and (b) the
average over all experiments in the continuous-flow regime
(W = 16 mm), compared with an exponential fit in the diffu-
sive regime (dotted line).

our data, N should depend on L, but not the flow speed v,.
Although v, is unknown, we can make two estimates—
both of which lead to a contradiction. The first starts
from the natural formula, vZ = ((Ax?) + (Az?))/AF
with fixed A7 = 1 ms, which suggests v, = v%% by look-
ing at the initial slope of (Az?) in Fig. 3(b). The second
follows from direct measurements [21] of v, yielding
v, * vg/ 3. In either case, N would not be constant.
[Note that (1 — e?) would typically correlate with v2, so
velocity-dependent restitution cannot compensate for the
changes in v,.]

More generally, in slow granular flows it seems that
granular temperature may not be a useful concept. Fig-
ures 3 and 4 clearly show that fluctuations depend only on
the distance fallen, and yet any notion of temperature
should increase with the flow speed. The fact that the
nearest-neighbor topology persists for distances compa-
rable to the system size also seems to cast doubt on the
assumption of ergodicity.

Instead, our experimental data suggests that cage re-
arrangements are caused by the relaxation of contact
networks, as are believed to occur in Couette cells [22].
Such networks could absorb potential energy via rolling
and sliding neighbors. The breaking of a contact could
cause non-Gaussian fluctuations and small-scale super-
diffusion among the particles in a network, while the
gradual destruction of a network (and reformation of a
new one) as a particle falls farther than its own diameter
could cause the observed transition to normal diffusion.
All of these effects are dominated by the geometry of
random close packings, which is not fully understood,
even without any dynamics [23].

In summary, we have experimentally investigated par-
ticle dynamics in dense granular flows—as they occur in
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silo drainage. Consistent with the void model, we observe
diffusion after drainage by more than a particle diameter
and Péclet numbers which are independent of the flow
rate, suggesting that advection and diffusion have the
same physical source. The Péclet numbers and cage-
breaking lengths, however, are much larger than pre-
dicted, so the question of an appropriate microscopic
model is left open.
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