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Motivated by the possibility of electrochemical control of phase separation, a variational

theory of thermodynamic stability is developed for driven reactive mixtures, based on

a nonlinear generalization of the Cahn–Hilliard and Allen–Cahn equations. The

Glansdorff–Prigogine stability criterion is extended for driving chemical work, based on

variations of nonequilibrium Gibbs free energy. Linear stability is generally determined

by the competition of chemical diffusion and driven autocatalysis. Novel features arise

for electrochemical systems, related to controlled total current (galvanostatic

operation), concentration-dependent exchange current (Butler–Volmer kinetics), and

negative differential reaction resistance (Marcus kinetics). The theory shows how

spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with

only a single faradaic reaction. Experimental evidence is presented for intercalation and

electrodeposition in rechargeable batteries, and further applications are discussed in

solid state ionics, electrovariable optics, electrochemical precipitation, and biological

pattern formation.
1 Introduction

This Faraday Discussion‡ focuses on the use of electric elds to control the
dynamical response of materials, such as electroactuation of polymer gels and
electrovariable optics with plasmonic nanoparticles. Although it has not been
widely recognized, these phenomena could be strongly affected by phase separation
of the constituents into domains of different density or chemical identity. Here we
consider the possibility of controlling such phase separation by electrochemical
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reactions. This raises fundamental questions about thermodynamic stability, which
we motivate by rst summarizing the physical picture behind our results.
2 Physical picture
2.1 Thermodynamic stability near equilibrium

Consider a system containing a chemical species A at uniform concentration c,
which is thermodynamically unstable to concentration uctuations. In particular,
attractive inter-particle forces favor phase separation into stable phases of higher
and lower concentration, which correspond to local minima of the homogeneous
Gibbs free energy gh(c). As discussed below, Gibbs himself developed the original
stability criterion for chemical mixture near equilibrium:

Stable :
d2gh

dc2
¼ dmh

dc
. 0 (1)

where mh(c) is the diffusional chemical potential of the homogeneous mixture,
dened as the change in free energy upon adding a particle of species A at
constant temperature and pressure.

The Gibbs criterion eqn (1) has a simple graphical interpretation, shown in
Fig. 1 for a binary mixture with two stable equilibrium states, corresponding to
two local minima of gh(c) or zeros of mh(c)¼ g0h(c). In the “miscibility gap” between
Fig. 1 Thermodynamic stability of an inert, homogeneous binary mixture (described by
the regular solution model).1–3 (a) Homogeneous free energy and (b) diffusional chemical
potential versus dimensionless concentration, showing the common tangent construction
for phase separation in the miscibility gap (red). The secant construction for linear insta-
bility in the chemical spinodal region (dashed blue) is shown in (a).
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the minima, it is favorable to phase separate into a linear combination of the two
stable states having the same average concentration, whose free energy lies on
a common tangent construction. The same principle can be applied to small
concentration uctuations using a local secant construction, which shows that
stable concentrations correspond to a locally convex free energy, g00h(c) > 0, or
increasing chemical potential, m0

h(c) > 0. Within the “chemical spinodal” where
convexity is lost, g00h(c) ¼ m0

h(c) < 0, the system is unstable to spontaneous phase
separation (“spinodal decomposition”).2
2.2 Stability of mixtures with driven chemical reactions

The theory of thermodynamic stability has been extended to include chemical
reaction networks in closed bulk systems with porous boundaries,4 such as bio-
logical cells, but here we focus instead on driven chemical reactions in open bulk
systems. The basic principles are illustrated by driven adsorption,

Mres / M (2)

where a single species M evolves with local chemical potential m(x,t) and
undergoes homogeneous reactions with a reservoir at constant chemical poten-
tial, mres, where it takes the form of (possibly different) species Mres. For bulk
mixtures, this model could describe a reactive species M at low concentration in
a sea of equilibrated molecules, which includes the reaction product Mres, as in
open-system models of self-organization in biological cells.5

The same model also describes a wide variety of adsorption phenomena at
solid or liquid interfaces, such as monolayer adsorption, where attractive lateral
forces can drive pattern formation.3 This tendency for clustering modies the
classical theory of surface adsorption7,8 and sorption hysteresis in porous media.9

Similar phenomena can occur for the solid-state insertion of bulk neutral species,
such as hydrogen into palladium hydride,10–12 or charged species at electrodes,
such as lithium ions into iron phosphate,3,6,13,14 as shown in Fig. 2.

A key result of our general stability analysis below is that a fast driven reaction
can suppress phase separation at constant potential mres if the reaction rate R
decreases with reaction extent,

Stable :

�
dR

dc

�
mres

\0 ðconstant potentialÞ (3)

Electrochemical systems offer the unique capability of controlling the rate of
faradaic relations, and this leads to a new phenomenon of phase separation at
constant current. In the usual case of positive reaction resistance (dened below),
phase separation is suppressed if the reservoir potential increases with reaction
extent:

Stable :

�
dmres

dc

�
R

. 0 ðconstant currentÞ (4)

which is a generalization of the Gibbs criterion eqn (1) for a chemically driven,
open system. This effect is clearly seen in the lithium insertion simulations of
Fig. 2, where the battery voltage becomes monotonically decreasing with
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 425



Fig. 2 Control of coherent phase separation in a binary solid Li-ion battery cathode
(LiXFePO4) by faradaic insertion reactions. (a) Predicted battery voltage versus lithiummetal
(V ¼ VQ � m/e) and (b) surface lithium concentration profiles at X ¼ 0.6 for different applied
currents, scaled to a reference exchange current, I0. [Adapted from Cogswell and Bazant6]
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concentration
�
dm
dc

¼ �e
dV
dc

. 0
�
, as concentration uctuations disappear above

a critical current.
In summary, phase separation is reduced if the reaction is auto-inhibitory (either

slows down or becomes harder to drive), or enhanced if it is auto-catalytic (either
accelerates or becomes easier to drive).
2.3 Solo-autocatalysis

We refer to this nonlinearity for a single reaction in a concentrated mixture as
“solo-autocatalysis” to distinguish it from the traditional concept of “collective
autocatalysis” for chemical reaction networks in dilute mixtures, governed by
mass action kinetics. Solo-autocatalysis is an inescapable feature of adsorption,
intercalation and deposition reactions. Whenever the product (or reactant)
occupies a nite set of sites, it necessarily affects the subsequent reaction rate.
Adsorption reactions are typically solo-autoinhibitory (rate suppressing) at high
concentrations, as product covers the active sites. Since the reaction creates
426 | Faraday Discuss., 2017, 199, 423–463 This journal is © The Royal Society of Chemistry 2017



Paper Faraday Discussions
a particle M while destroying a vacancy V, the vacancy can be viewed as an
adsorption catalyst, Mres + V / M, which slowly disappears as the reaction
progresses. Vacancies can also be viewed as a distinct chemical species in
a reactive binary mixture with the adsorbed particles. The total volume constraint
yields a single concentration variable, cM, cV, or dimensionless coverage, ~c ¼ cM/cs
(where cs ¼ site concentration), which evolves in response to differences in
“diffusional chemical potential”, m ¼ mM � mV, either by diffusion or reac-
tions.2,3,15,16 The same applies to the isomerization reaction, M / V, in a closed
system,17 which corresponds to mres ¼ 0.

In general, it may not be possible to identify vacancies or other catalytic
species, and yet the reaction rate still depends on concentration. In particular,
electrochemical reactions tend to be solo-autocatalytic (rate enhancing) at low
concentration, as redox active molecules increase the exchange rate for electron
transfer,3,18 while remaining auto-inhibitory at high concentration. The result is
a “volcano” shaped exchange current versus concentration, which is usually
assumed to be symmetric, I0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cð1� ~cÞp

, in models of Li-ion batteries19,20 and
fuel cells.21–23 In contrast, the theory of charge transfer based on non-equilibrium
thermodynamics predicts an asymmetric exchange–current volcano favoring
higher rates at low concentrations, considering only site exclusion in the transi-
tion state.3 As we shall see, this turns out to be the key property that enables the
control of phase separation.6,13,14
2.4 Control of phase separation by electro-autocatalysis

The fundamental mechanism for control of phase separation by driven autoca-
talysis is illustrated in Fig. 3, in the case of anodic ion insertion, or adsorption of
a neutral species, at constant current. The externally controlled potential mres is
equal to the internal potential mh(c) (for a homogeneous base state) plus the
affinity, A ¼ mres � mh(c), which controls the reaction rate. In the case of faradaic
reactions transferring n electrons, it is the (anodic) activation overpotential,
h ¼ A/ne, that controls the faradaic (oxidation) current, I ¼ nev. The simplest
autocatalytic model has a separable form, I¼ I0(c)f(neh/kBT), with a concentration-
dependent exchange current, I0(c) and monotonic overpotential dependence
(f0 > 0, f0(0) ¼ 1, f(0) ¼ 0), as in the Butler–Volmer equation18 and various gener-
alizations for concentrated solutions,3 considered below.

The reservoir chemical potential, or cell voltage V, thus depends on concen-
tration and the applied current,

~mres ¼ ~V � ~V 0 ¼ ~mhðcÞ þ f �1
�

I

I0ðcÞ
�

� ~mhðcÞ þ
I

I0ðcÞ (5)

where potential is scaled to kBT and voltage to kBT/ne, V0 is the open circuit voltage
at m ¼ 0, and, for clarity, we linearize the overpotential dependence – but not the
autocatalytic concentration dependence. As shown in Fig. 3(a), for a non-
autocatalytic reaction (I00 ¼ 0), the activation overpotential is constant, so the
shape of the voltage prole and stability of the system cannot be altered by the
reaction.

Autocatalysis is required to alter thermodynamic stability. As shown in
Fig. 3(b), for concentrations where the insertion reaction is auto-inhibitory (I00(c) <
0), the homogeneous state becomes stable (m0

res > 0) above a critical current, even
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 427



Fig. 3 Principles of thermodynamic stability controlled by electro-autocatalysis. Top row:
Dimensionless exchange current vs. product concentration ~I0(~c). Bottom row: Dimen-
sionless electrode voltage versus concentration at different applied currents for insertion
(red) and extraction (blue), where signs are chosen for anodic cation insertion to resemble
neutral-species adsorption (~V ¼ ~mres). (a) A non-autocatalytic reaction (~I00¼ 0) simply shifts
the potential curves up and down by constant activation potential, and thus cannot alter
the spinodal region of instability (negative slope, between dashed lines). (b) An auto-
inhibitory reaction (~I00 < 0) in the spinodal reaction can suppress the instability (positive
slope) leading to “electrochemical freezing” above a critical insertion current, while further
destabilizing the system during extraction. Outside the spinodal, the reaction creates
instability and leads to “electrochemical melting” above a critical current, while further
stabilizing the mixture during extraction. (c) An auto-catalytic reaction in the spinodal
region (~I00 > 0) has the opposite effect of destabilization during insertion and stabilization
during extraction.
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within the spinodal region, which amounts to electrochemical freezing of a ther-
modynamically unstable mixture in a disordered state. The system’s entropy is
increased above its equilibrium value by applying external work to drive the
reaction. This phenomenon is different from rapid quenching of a liquid to
a metastable glass or amorphous solid, because the electrochemically frozen
mixture is stable under the applied current. As soon as the current drops below
the critical value, however, spontaneous phase separation occurs.

Interestingly, when the current is reversed, the opposite phenomena occur.
Phase separation is enhanced in the spinodal region, and the homogeneous
mixture outside the spinodal can be destabilized. The latter corresponds to
electrochemical melting of a thermodynamically stable disordered state to form
two ordered phases. Again this is not a transient phenomenon, but a change of
thermodynamic stability in which the external work driving the reaction makes it
favorable to lower the system’s entropy.

As shown in Fig. 3(c), for concentrations where the reaction is autocatalytic
(I00(c) > 0), the system becomes more unstable with increasing insertion current.
428 | Faraday Discuss., 2017, 199, 423–463 This journal is © The Royal Society of Chemistry 2017
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Above a critical insertion current, phase separation can occur outside the spi-
nodal region, which corresponds to electrochemical melting of a thermodynam-
ically stable mixture. Conversely, extraction currents now stabilize the system and
can lead to electrochemical freezing of the spinodal region below a threshold
negative current.

In summary, the theory predicts the following effects of electro-autocatalysis
on phase separation at constant current:

� During periods of auto-inhibition (I00(c) < 0), the forward reaction (I > 0)
suppresses phase separation (completely for I > Ic), while the backward reaction (I
< 0) enhances it.

� During periods of autocatalysis (I00 > 0), the forward reaction (I > 0) enhances
phase separation, while the backward reaction (I < 0) suppresses it.

These predictions have recently been veried in experiments on Li-ion battery
materials, as discussed below in Section 6.

2.5 Nonequilibrium Gibbs free energy

In the examples above, the applied current appears to act as an independent state
variable, analogous to temperature, pressure and concentration. In hindsight, the
reason is that constant current contributes a well-dened state-dependent excess
energy (the activation overpotential) to the total non-equilibrium Gibbs free energy,
G(c,I) of the driven open system. Comparing eqn (1) and (14), such a state func-
tion could be dened as

DGðc; IÞ ¼
ðc
c0

mresðc; IÞdc ¼ DGeqðcÞ þ DiWdðc; IÞ (6)

where we dene the reversible change in equilibrium free energy, associated with
the transformation at zero current,

DGeq(c) ¼ DG(c,0) ¼ gh(c) � gh(c0) (7)

and the irreversible driving work done on the system at nite current,

DiWdðc; IÞ ¼
ðc
c0

Aðc; IÞdc ¼
ðt
t0

I2R Fðc; IÞdt (8)

For faradaic reactions, the latter is equal to the time-integral of the electrical
power, Pe ¼ I2R F, where R F ¼ –h/I > 0 is the Faradaic resistance. This simple
example will help us generalize the theory of thermodynamic stability for driven
open systems.

2.6 Driven autocatalysis versus chemical diffusion

The preceding simple analysis considers driven autocatalytic reactions which are
fast compared with diffusion (large Damköhler number, Da > 1, dened below).
In the opposite limit of negligible reactions, Cahn pioneered the theory of
diffusion-driven spinodal decomposition.24–26 The instability is controlled by the
chemical diffusivity,2

�D ¼ Dc

kBT

dmh

dc
(9)
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 429
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which enters Fick’s law ðflux ¼ � DVcÞ for a concentrated solution, where D >
0 is the tracer diffusivity in the dilute limit.3 Outside the spinodal, “forward
diffusion” ðD. 0Þ leads to familiar smooth concentration proles, but inside the
spinodal, the system is destabilized by “backward diffusion” ðD\0Þ leading to
phase separation.

Here, we show that thermodynamic stability of reactive mixtures is determined
by the competition of autocatalysis and chemical diffusion. In driven open
systems, such as electrochemical interfaces, this competition can be controlled by
applied potentials and currents. The theory predicts that stable equilibrium
mixtures can be driven to form desired patterns by electrochemical melting, while
unstable mixtures can be driven to remain homogeneous by electrochemical
freezing. These surprising phenomena not only have applications to electro-
actuation, but they also raise profound questions about nonequilibrium ther-
modynamics, as we now explain.

3 Background

In order to analyze the stability of driven open systems, we must rst extend
nonequilibrium chemical thermodynamics4,27 for inhomogeneous systems, as
described by phase-eld models,2,28 using the calculus of variations.29

3.1 Gibbs’ stability theory for inert mixtures

Gibbs pioneered the theory of thermodynamic stability,30 based on the notion
that entropy is maximized in equilibrium.4 As such, any perturbation of a stable
equilibrium must lower its entropy (or increase its free energy) according to

DS ¼ S� Seq ¼ dSþ 1
2
d2Sþ., where the rst and second variations of the

entropy functional with respect to spatial perturbations in concentration,
temperature, etc. must satisfy

Stable equilibrium: dS ¼ 0 and d2S < 0. (10)

For uctuations in temperature or volume, the Gibbs stability criterion implies
positive heat capacity, Cv > 0, and isothermal compressibility, kT > 0.

For concentration uctuations {dci} at constant internal energy and volume,
stable equilibrium requires4

d2S ¼ �
ð
V

X
i;j

dci

�
d

dcj

mi

T

�
dcjdV\0 (11)

where we dene the (diffusional) chemical potential

mi ¼
dG

dci
(12)

as the rst variational derivative of the Gibbs free energy with respect to the
concentration of species i. This is the continuum analog of the familiar denition

from statistical mechanics, mi ¼
�
DG
DNi

�
T;P

, as the change in free energy from

adding a particle of species i, where a “particle” corresponds to a Dirac delta
function added to the concentration prole at a given position.3
430 | Faraday Discuss., 2017, 199, 423–463 This journal is © The Royal Society of Chemistry 2017
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With this generalization, Gibbs’ maximum entropy condition, eqn (11),
implies that the Hessian tensor of second variational derivatives, G00, must be
positive denite in equilibrium,

dmi

dcj
¼ d2G

dcidcj
¼ G00

ij . 0 (13)

(We write Tij > 0 if
P
ij

ð
V
duiTijdujdV . 0 for all dui, duj.) In the limit of long-

wavelength uctuations in a uniform system, this asserts that the homoge-
neous free energy density, gh({ci}), has a positive denite Hessianmatrix of second
partial concentration derivatives,

�G
00
ij ¼ v2gh

vcivcj
. 0 (14)

In order words, in stable equilibrium, the free energy must be locally convex
with respect to concentration, as shown in Fig. 1. The variational formula, eqn
(13), extends this concept to nonuniform systems and arises naturally in our
nonequilibrium stability analysis below.
3.2 Thermodynamics of inhomogeneous systems

In contrast to classical thermodynamic models,4 we allow the Gibbs free energy
functional, G[{ci}], to have explicit dependence on concentration gradients, which
could arise from interfacial tension, elastic coherency strain, electrostatic energy,
or other non-idealities of inhomogeneous systems. In eqn (12) and (13), we
introduce notation for the rst, second, and higher variational derivatives,

DG ¼ dG þ 1

2
d2G þ. ¼

ð
V

X
i

dci

 
dG

dci
þ
X
j

dcj

�
1

2

d2G

dcidcj
þ.

�!
dV (15)

dened by the expansion of the free energy change in response to one, two or
more simultaneous bulk concentration uctuations (which vanish on the
boundary), respectively.

In order to describe the dynamics of phase separation, it is necessary to model
interfacial tension between phases without articially introducing sharp phase
boundaries. In 1893, van der Waals rst proposed adding a quadratic gradient
penalty to the homogeneous free energy,31,32

G½c� ¼
ð
V

�
mQcþ ghðcÞ þ K

2
jVcj2

�
dV (16)

where we include a reference chemical potential,3 mQ. The gradient penalty term,
K
2
jVcj2 ¼ k

2

��V~c��2, is oen written in terms of lling fraction, ~c ¼ c/cs, over sites of

density cs, where k ¼ Kcs
2, and can be adjusted to t the tension and thickness of

phase boundaries. This visionary idea was somehow forgotten for over half
a century, until its rediscovery in physics by Landau and Ginzburg33 (to describe
magnetic ux in type II superconductors) and in materials science by Cahn and
Hilliard1 (to describe phase separation in solid binary alloys).

Led by Cahn,24,25,34–38 this approach paved the way for modern phase-eld
models,2,28 which approximate phase boundaries as localized, but continuous,
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 431
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“diffuse interfaces”. Taking a functional derivative of eqn (18), the diffusional
chemical potential (per site) m and its homogeneous limit mh are given by

m ¼ mh � KV2c and mh ¼ mQ þ dgh

dc
: (17)

Equilibrium concentration proles satisfy the Beltrami equation,

m ¼ dG
dc

¼ constant. Solutions in the miscibility gap describe uniform stable

domains separated by diffuse phase boundaries, whose width, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
k=csU

p
, and

interfacial tension, g ¼ ffiffiffiffiffiffiffiffiffiffi
kcsU

p
, are related to the gradient penalty k and a char-

acteristic energy barrier between the stable concentrations, U, e.g. the regular
solution parameter for pairwise interatomic forces.1,2

For multicomponent, anisotropic, inhomogeneous systems, the Cahn–Hilliard
free energy, chemical potentials, and Hessian tensor are given by

G ¼
ð
V

 X
i

mQ
i ci þ ghðfcigÞ þ 1

2

X
ij

Vci$KijVcj

!
dV (18)

mi ¼ mQ
i þ vgh

vci
�
X
j

V$KijVcj (19)

dmi

dcj
¼ v2gh

vcivcj
þ Vdci

dci
$Kij

Vdcj
dcj

(20)

where the Hessian depends on gradients of the uctuations, according to eqn
(16).

3.3 Linear irreversible thermodynamics of diffusion

Gradients in chemical potential provide thermodynamic forces that drive diffu-
sional uxes, respectively,

Fi ¼ �V
mi

T
and ~Ji ¼

X
j

Lij
~Fj (21)

where we make the ubiquitous approximation of Linear Irreversible Thermody-
namics (LIT),4 which is valid close to local equilibrium. The linear response
matrix must be symmetric, Lij ¼ Lji (Onsager relation), and positive denite, in
order to ensure a positive entropy production rate by diffusion,

diS

dt
¼
ð
V

 X
i

~Fi$~Ji

!
dV ¼

ð
V

 X
ij

~Fi$Lij
~Fj

!
dV . 0 (22)

Mass conservation with LIT uxes yields the (multi-component) Cahn–Hilliard
equation,

vci

vt
¼ V$

X
j

LijV
dG

dcj
(23)

which is the standard model for phase separation by diffusion in a closed
system,2,28 including linear instability and spinodal decomposition.24,25,36 The
Onsager coefficients are related to the mobility tensor (dri velocity per force) via
432 | Faraday Discuss., 2017, 199, 423–463 This journal is © The Royal Society of Chemistry 2017
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Lij¼Mijcj. For a single diffusing species, the tracer diffusivity satises the Einstein
relation, D(c)¼M(c)kBT, and takes the form D¼ D0(1� ~c) or L� ~c(1� ~c) in a binary
mixture,15 to reect the crowding of sites.3

The phase-eld LIT formalism can be extended to electrochemical systems,3

which have long-range Coulomb forces in addition to the short-range forces that
determine gh. The electrochemical potential is dened by adding the electrostatic
energy qif to m, and the associated Nernst–Planck LIT ux (ionic current) includes
contributions from diffusion and electromigration. The mobility matrix Lij is
usually assumed to be diagonal, but this neglects strongly coupled uxes at high
concentrations, where strong Coulomb correlations may yield negative off-
diagonal coefficients.39 The electrostatic potential of mean force, f, is deter-
mined either by electroneutrality or Poisson’s equation.
3.4 Prigogine’s stability theory for reactive mixtures

Let us now consider the effect of chemical reactions,
Mr;m ¼P

i
sr;m;iMr;m;i4

P
j
sp;m;jMp;m;j ¼ Mp;m, where Mr,m and Mp,m are the reactant

and product complexes of the mth reaction with total chemical potentials,
mr;m ¼P

i
sr;m;imr;m;i and mp;m ¼P

j
sp;m;jmp;m;j; and stoichiometric coefficients,

{sr,m,i} and {sp,m,j}, respectively. For electrochemical reactions, the chemical species
{Mi} include both ions and electrons. The thermodynamic driving force for a reac-
tion is the change in Gibbs free energy,4,40 DrGm ¼ mp,m � mr,m, which is equal to the
difference in diffusional chemical potentials.3 For a faradaic reduction reaction
transferring n electrons, the activation overpotential, hm¼DrGm/ne, is the free energy
of the net reduction reaction per charge.3

De Donder pioneered non-equilibrium chemical thermodynamics and related
the free energy of reaction to the chemical affinity,41,42

Am ¼ �
�
vG

vxm

�
T ;P

¼ �DrGm (24)

where G is the total Gibbs free energy, including reactants and products, and xm is
the extent of the reaction. He also argued that the free energy of reaction
contributes to Clausius’ “uncompensated heat”, dQ0 (or irreversible entropy
production, diS, in modern terminology41,43) and introduced the equivalent
denition,

Am ¼
�
dQ

0

dxm

�
P

¼ T

�
diS

dxm

�
P

¼ mr;m � mp;m ¼ �nehm (25)

where we also relate affinity to activation overpotential of a reduction reaction.3

The affinity can be viewed as a thermodynamic force, Fm ¼ Am
T
, whose

conjugate thermodynamic ux, Jm ¼ Rm, is the reaction rate

Rm ¼ 1

V

dxm
dt

¼ �
X
i

sr;m;i

dci

dt
¼
X
j

sp;m;j

dcj

dt
(26)

(In thermodynamics,4,40,44,45 this is “reaction velocity”, vm, but we adopt our
previous notation for “reaction rate”,3 Rm, which also avoids any confusion with
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 433
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uid velocity in liquid systems!) For thermodynamic consistency, the reaction rate
must satisfy only two fundamental constraints:

1. Equilibrium must correspond to detailed balance of the forward and
backward rates

Am ¼ 0 5 Rm ¼ 0. (27)

2. Out of equilibrium, the net reaction must proceed in the direction of the
affinity, which De Donder wrote expressed as positive irreversible entropy
production per volume,41

sm ¼ AmRm ¼ �hmIm

V
. 0: (28)

For faradaic reactions, the integral reaction resistance must be positive, R i ¼
–hm/Im > 0, although the differential resistance, R d ¼ �dhm

dIm
, may have either

sign, as discussed below.
Prigogine40,46 showed that a closed reaction network is stable if the affinities

decrease with each reaction extent,

Stable :

�
dAm

dxn

�
P

¼ T

�
di

2S

dxmdxn

�
P

\0: (29)

or equivalently that the irreversible entropy reaches a maximum in equilibrium,
which follows from Gibbs’ maximum entropy principle, eqn (10), and
De Donder’s denition of affinity, eqn (25).
3.5 Linear irreversible thermodynamics of reactions

For a closed system in equilibrium, the irreversible entropy production vanishes.
Close to equilibrium where LIT applies, Prigogine46 showed that the entropy
production rate Pe decreases and reaches a local minimum for any stationary non-
equilibrium state,4,40,47

Pe ¼ diS

dt
¼
ð
V

 X
a

~Fa$~Ja

!
dV . 0; stable :

dPe

dt
\0 (30)

where the sum is over all pairs of conjugate forces~Fa and uxes~Ja, including each
affinity and reaction rate. The entropy production rate acts as a Lyapunov func-
tional (Pe > 0, _Pe < 0), which can also determine the stability of non-equilibrium
states.4,47

The analog of LIT uxes for chemical reactions is the assumption of linear
kinetics, which we express variationally as

Rm ¼ kmAm ¼ km
X
i

sm;i

dG

dci
(31)

where km > 0 is a constant and Sm,j ¼ Sp,m,j � Sr,m,j (positive stoichiometric coeffi-
cients for products, negative for reactants). Although widely used, linear kinetics
are strictly only valid near equilibrium in dilute mixtures.3,48 Mass conservation
equations take the form,
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vci

vt
¼
X
j

 X
m

kmsm;ism;j

!
dG

dcj
(32)

for a closed chemical reaction network.
In this work, we focus instead on chemical reactions in open systems. The

standard phase-eld model for a driven open system is the Allen–Cahn
equation,2,37

vc

vt
¼ kresAres ¼ kres

�
mres �

dG

dc

�
(33)

where mres is the chemical potential of an external reservoir of species c. The
Allen–Cahn equation is usually applied to non-conserved order parameters,
such as the degree of solid-like order in liquid solidication, but when applied
to chemical reactions, it corresponds to linear kinetics for a driven reaction. As
a result of this assumption, we shall see that the Allen–Cahn equation predicts
the same spinodal region for driven open systems as for closed equilibrium
systems, eqn (14), as shown in Fig. 3(a). This is true even when diffusion is
included in a combined Cahn–Hilliard/Allen–Cahn model.17 As recognized by
Prigogine, nonlinear thermodynamics are required for any departures from the
equilibrium “thermodynamic branch” of stability,4,43–45 and we shall see that
this also holds true for the stability of driven open systems, such as electro-
chemical cells.
3.6 Nonlinear irreversible thermodynamics of reactions

Huberman49 added mass-action kinetics to the Cahn–Hilliard equation as
a model for spinodal decomposition and pattern formation in a reactive mixture,

vc

vt
¼ V$LV

dG

dc
þ RðcÞ: (34)

Similar Ginzburg–Landau-type reaction–diffusion equations have been
studied extensively in chemical physics as generic models of self-organization.50

Glotzer et al. performed simulations and linear stability analysis of eqn (34) and
reached the tantalizing conclusion that reactions could be used to alter the spi-
nodal region and control pattern formation. However, Lefever et al.51 pointed out
that the model is not thermodynamically consistent, since equilibrium (m ¼
constant) is neither stationary

�
vc
vt

¼ 0
�

nor in detailed balance (f ¼ 0), and

equilibrium states depend on the mobility or diffusivity. Instead, the reaction rate
must satisfy the two constraints given above, eqn (27) and (28), and the further
assumption of linear kinetics eqn (31) eliminates any effect on the spinodal
region.

A thermodynamically consistent linear stability analysis for general chemical
reaction networks was performed by Carati and Lefever,16 based on multi-
component Cahn–Hilliard diffusion eqn (23) and (17) and a nonlinear reaction
model converting species i into species j:

Rij ¼ fr(~mi) � fr(~mj), where f 0
r > 0 (35)
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which upholds eqn (27) and (28). Notably, they also considered open reaction
networks with chemostats and predicted the possibility of “chemical freezing” of
phase separation, by two or more collectively autocatalytic reactions.

Hildebrand, Mikhailov and Ertl52 analyzed general stochastic models of
surface adsorption and also concluded that “thermal adsorption and desorption
processes do not prevent macroscopic phase separation”, but “if, on the other
hand, an energetically activated process (such as photo-desorption) is present,
kinetic freezing of phase separation, leading to the formation of stationary
nonequilibrium structures, can occur,” consistent with experiments and simu-
lations on reactive monolayers.53 In other words, the reaction must be driven,
supplying external work. Here, we focus on the possibility of using faradaic
reactions as the driving process.
3.7 Variational electrochemical kinetics

We shall modify some of these conclusions using more general models, based on
transition-state theory for concentrated solutions and electrochemical systems.3

The theory is based on variational denitions of activity, ai ¼ gi~ci, activity coef-
cient gi, and excess chemical potential, mexi ¼ kBT ln gi:

mi ¼
dG

dci
¼ mQ

i þ kBT ln ai ¼ kBT ln ~cþ mex
i (36)

For the reaction, Mi / Mj, the generalized Eyring rate is given by

Rij ¼ k0 exp �mex
‡ � mi

kBT

� �
� exp �mex

‡ � mj

kBT

� �� �
¼

k0

�
KQ

ij ai � aj

	
g‡

(37)

where KQ
ij is the equilibrium constant and g‡ is the activity coefficient of the

transition state, which generally depends on concentration, e.g.
g‡

�1 ¼ ð1�P
l
~clÞs for s excluded sites on a lattice.

As a result, the model is more general than eqn (35) and allows for negative

differential resistance
�
vRij

vmi
\0

�
, as in Marcus kinetics, and solo-autocatalysis�

vRij

vci
s0
�
. The latter includes the important case of Butler–Volmer kinetics:3

I ¼ neR ¼ I0

�
e�a~h � eð1�aÞ~h

	
; ~h ¼ neh

kBT
(38)

I0 ¼ nek0ðaOaeÞ1�a
aR

a

g‡

(39)

for the reduction reaction, O + ne� / R.
Once the reaction model is specied, the thermodynamically consistent set of

reaction–diffusion equations takes the form,3

vci

vt
¼ V$

X
j

LijV
dG

dcj
þ
X
m

si;mRm

�
fcig;



dG

dci

��
(40)
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where we write the mth reaction as Ø/
P
i
si;mMi. This is the most general

mathematical framework for concentration evolution, based on LIT uxes and
nonlinear irreversible thermodynamics for chemical reactions.

For thermodynamic consistency, the reaction rate expression in the last term
of eqn (40) can take any form that upholds detailed balance (eqn (27)) and positive
integral resistance (eqn (28)), including, but not limited to, generalized Eyring
(eqn (37)) and Butler–Volmer (eqn (38) and (39)) kinetics. No further constraints
are imposed on the reaction rate in the general stability analysis below.
3.8 Glansdorff–Prigogine nonequilibrium stability theory

Glansdorff and Prigogine derived a general linear stability condition for
stationary non-equilibrium states of reactive mixtures far from equilibrium,4,45,54

based on variations of irreversible entropy production.44,55 They argued that the

second variation of the entropy acts as a Lyapunov functional, L ¼ �1
2
d2S, which

measures the “distance” from a stationary state, L > 0, and thus decreases with

time if it is stable,
dL
dt

\0. The stability criterion can be expressed as a constraint

of positive excess entropy production,45,54

Stable :
d

dt

d2S

2
¼
ð
V

 X
a

dFa$dJa

!
dV . 0; (41)

for an arbitrary set of conjugate forces Fa and uxes Ja. Besides reactions, there
may also be contributions to excess entropy production from diffusion, electro-
migration, elastic deformation, heat conduction, etc. The same result holds for
any boundary conditions in which either the forces or uxes are held xed,
causing the second variation of the entropy ow to vanish on the boundary.

Although the Glansdorff–Prigogine criterion eqn (41) follows from thermody-
namically consistent mass and energy balances,4 Keizer and Fox rst expressed
“qualms” about its validity56 and triggered a long debate.57–60 They provided
counter-examples of auto-catalytic reaction networks in dilute solutions,56,60

whose non-equilibrium steady states violate eqn (41), and yet could be described
Fig. 4 Three contributions to entropy production in a driven open system: (1) bulk irre-
versible entropy production, DiS, (2) entropy flow due tomass and energy flow through the
boundary, DeS, and (3) driven entropy production, DdS, due to the work, DWd, done on the
system by exchanging mass and energy directly between the external reservoirs and the
interior bulk. The image shows a two-phase lithium iron phosphate nanoparticle driven far
from equilibrium by an applied faradaic current14 from Fig. 7 below.
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by Keizer's stochastic thermodynamics.61–64 Glansdorff, Nicolis and Prigogine
responded that different Lyapunov functions are possible depending on the
choice of conservation laws,57,59 and pointed to Schlögl's earlier derivation of eqn
(41) based on similar stochastic principles,65 rooted in uctuation dissipation
theorems for nonequilibrium states.66

We shall see that the problem has to do with driven, open systems. In the
counter-examples, nonequilibrium stationary states are constructed by xing
certain concentrations or production rates throughout the domain, but such
“chemostats” are neglected in the Glansdorff–Prigogine derivation,4 which
assumes an un-constrained system of reaction–diffusion conservation laws. The
stability criterion cannot be expressed in terms of affinities by summing over all
reactions, if any concentrations or rates are externally controlled.

As shown in Fig. 4, the theory generally does not account for bulk entropy ow
from distributed work done by “active matter” or by the direct exchange of mass
and energy with external reservoirs. Moreover, the traditional focus on reaction
networks in dilute solutions obscures the rich new physics of driven reactions
coupled with phase transformations. Here, we generalize the theory for concen-
trated solutions and show how driven reactions can control thermodynamic
stability.
4 Theory
4.1 Wisdom from stochastic thermodynamics

Any theory of nonequilibrium thermodynamics for concentrated systems should
be consistent with stochastic thermodynamics for the ideal limit of a dilute
system with chemical reaction networks obeying mass action kinetics.64,67–71 Rao
and Esposito recently summarized this “wisdom” and rigorously dened various
forms of the non-equilibrium Gibbs free energy for open systems with driven
chemical reactions,71

G ¼ Geq + kBTL (42)

where Geq is the local equilibrium free energy of a state that would be reached if
the external driving were stopped and the system were allowed to relax under the
imposed constraints and kBL is the “relative entropy” between the equilibrium
and nonequilibrium states. The relative entropy, also known as the Kullback–
Leibler divergence in information theory,72 is a non-negative measure of the
“information gain” between two probability distributions, which acts as a Lya-
punov functional for the relaxation to local equilibrium.

The change in non-equilibrium free energy between two states,

DG ¼ DWd � TDiS (43)

has contributions from external work and internal entropy production of the
opposite sign. The work can be broken into irreversible and reversible parts,
DWd ¼ DiWd + DGeq, where the reversible chemical work is equal to the change in
local equilibrium free energy, as a result of exchanging bulk particles with the
reservoirs. Combining these equations, we arrive at the central result of Rao and
Esposito for irreversible chemical work in dilute mixtures,71
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DiWd ¼ DWd � DGeq ¼ kBTDL + TDiS (44)

The second law (DiS > 0) then implies a “non-equilibrium Landauer prin-
ciple”,71 DiWd$ kBTDL , which provides a lower bound on the irreversible external
work associated with the uctuation (the thermodynamic cost of information
gain 73,74) that vanishes for transitions between equilibrium states (DL ¼ 0).
4.2 Thermodynamic stability of driven, open systems

Let us apply these principles more broadly to concentrated systems experiencing
arbitrary forms of external driving work. Enthalpy from inter-particle forces now
leads to nonlinear chemical diffusion and inuences the enthalpies of reactions,
both internal and external. As a result, the equilibrium free energy may lose
convexity and lead to spinodal decomposition. Thermodynamic stability will then
be inuenced by the driving workDWd done on the bulk system, whichmay include
contributions from heat transfer (e.g. radiation), mass transfer (e.g. chemical
reactions with reservoirs), external forces (e.g.magnetic elds or mechanical work),
or internal energy sources (e.g. swimming particles or other active matter).

These contributions are neglected in the prevailing theory of nonequilibrium
thermodynamics.4 Prigogine and collaborators described the thermodynamics of
closed, internal reaction networks in what could be termed “partially open” systems,
in which entropy or energy exchange with external reservoirs occurs only through
the boundaries. In contrast, we consider “fully open” driven systems, in which
entropy ow and external work can also be distributed across the bulk system.

The key theoretical concept is the nonequilibrium free energy, G. In some
cases, it may be possible to construct G as a local state function in space and time,
which depends on traditional intrinsic variables, such as chemical concentration,
density, pressure and temperature, as well as intrinsic external driving forces or
uxes. We have already discussed examples from the stochastic thermodynamics
of chemical reaction networks.67,71 Nonequilibrium free energies have also been
constructed for active suspensions of swimming particles75–78 and recently con-
nected with stochastic thermodynamics.79 For driven electrochemical systems, we
have already constructed G(c,I) for ion adsorption in a phase-separating electrode
at constant concentration c and constant current I in eqn (6)–(8). Below, we shall
explicitly construct the nonequilibrium free energy (via its variational derivatives)
for a general homogeneous, driven, open, system.

In most cases, it is not possible to express G as a simple state function due to
various non-local, nonlinear processes in space and time, but we can still dene
the rst variation of G, the response to an arbitrary uctuation, as

dG h dWd � TdiS ¼ dGeq + diWd � TdiS (45)

which can be integrated in time to obtain at least a path-dependent free energy,
G(t). We can then identify a nonequilibrium steady state via

Steady state : dG ¼ 00diS ¼ dWd

T
(46)

which extends Gibbs’ condition of thermal equilibrium, diS ¼ 0, to account for
driving work. The canonical example is a driven reaction network in detailed
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 439



Faraday Discussions Paper
balance. We can also write the steady state condition as dStot ¼ 0, where Stot ¼ Si +
Sd, where we dene the change in driving entropy

dSd ¼ �dWd

T
(47)

associated with the external reservoirs, which has the opposite sign of the driving
work, since work creates order and lowers entropy.

In the thermodynamic limit of a continuous system, local uxes and reactions
maintain each innitesimal bulk volume in quasi-equilibrium, leading to our rst
principle:

Local equilibrium: d2G ¼ d2Wd � Tdi
2S > 0 (48)

which generalizes Gibbs’ maximum entropy condition, eqn (10), to account for
driving work. The local equilibrium condition can then be viewed as the Gibbs’
criterion for the total entropy, d2Stot < 0.

The denite sign of d2G allows the second variation of nonequilibrium free energy
to serve as a Lyapunov functional, which implies thermodynamic stability if it
decreases toward steady state (dG ¼ 0) in response to uctuations,

Stable :
d

dt
d2G ¼ d

dt
d2Wd � T

d

dt
di

2S\0 (49)

or
d
dt

d2Stot . 0, which generalizes the Glansdorff–Prigogine criterion of positive

excess entropy production, eqn (41), to account for excess driving entropy

production,
d
dt

d2Sd, or excess driving power,
d
dt

d2Wd. Near equilibrium, this also

generalizes Prigogine’s principle of minimum entropy production, eqn (30).
The general stability criterion, eqn (49), states that the excess entropy

production from internal irreversible processes must exceed the excess driving
power. Each term can take either sign. If the excess driving power is negative, it is
possible to stabilize an ordered “dissipative structure” having negative excess
entropy production.4,41,47 Conversely, an unstable system can be “chemically
frozen” in a disordered state by positive excess driving power. These surprising
phenomena appear to contradict the Duhem–Jougeut theorem, which asserts that
a system that is stable to diffusion is also stable to chemical reactions,4,40 but that
is only true in a partially open systemwithout bulk driving work, under conditions
derived below. Different behavior is possible in fully open, driven systems.
4.3 Variational linear stability analysis

In order to illustrate these principles, we now perform linear stability analysis on
the most general thermodynamically consistent system of isothermal reaction–
diffusion equations, eqn (40), using the calculus of variations. For any concen-
tration uctuations {dci} around a non-equilibrium base state, the simplest Lya-
punov function is the L2-norm of the perturbation,

L c ¼ 1

2

X
i

ð
V

ðdciÞ2dV $ 0 (50)

which must decrease for a stable base state,
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Stable :
dL c

dt
¼
X
i

ð
V

 
Vdci$d~Ji þ

X
n

si;ndcidRn

!
dV\0 (51)

where we use the divergence theorem and assume dci ¼ 0 on the boundary. The
general linear stability result eqn (51) resembles the Glansdorff–Prigogine crite-
rion eqn (41) since it contains products of excess thermodynamic uxes (d~Ji, dRn)
and certain excess forces, but the latter are expressed in terms of concentration
uctuations (Vdci, dci), rather than uctuations in proper thermodynamic forces
(dVmi, dAn), which can only be derived for mass and energy balances in partially
open systems.4

Assuming LIT uxes and nonlinear reactions, eqn (40), we can express the
stability criterion as

dL c

dt
¼
X
ij

ð
V

"
�ðVdciÞ$

X
l

dcl

�
vLij

vcl
Vmj þ LijV

dmj

dcl

�
þ dciA ijdcj

� ðVdciÞ$Dij

�
Vdcj


#
dV\0 (52)

where the rst term involves uctuations in the Onsager matrix,

Lij ¼ Dijci

kBT
(53)

and only applies to inhomogeneous base states with Vmj s 0. The second term
also vanishes for a homogeneous base state. The remaining terms comprise
a difference of two quadratic forms, whose physical meanings we now explain.
4.4 Autocatalytic rate and chemical diffusion tensors

For slow diffusion, the stability of a homogeneous base state requires that the
following tensor be negative denite:

A ij ¼
X
n

si;n
dRn

dcj
¼
X
n

si;n

 
vRn

vcj
þ
X
l

vRn

vml

dml

dcj

!
\0 (54)

We refer to A as the “autocatalytic rate tensor”, since it describes how reaction
rates depend on the extents of both products (Si,n > 0) and reactants (Si,n < 0)
within the system, excluding all reservoir species. For linear stability with slow
diffusion, a driven chemical reaction network must be auto-inhibitory, A < 0.
Prigogine’s stability criterion based on affinities eqn (29) follows in the case of
a closed system with linear kinetics eqn (31), but eqn (54) based on reaction rates
is much more general.

For slow reactions, a homogeneous base state is stable if the “chemical
diffusion tensor” is positive denite:

Dij ¼
X
l

Lil

dml

dcj
. 0 (55)

Since the Onsager tensor, Lij, and the tracer diffusion tensor,Dij, are symmetric
and positive denite, this implies that the Hessian tensor eqn (13) must also be
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positive denite. Therefore, the requirement of a positive denite chemical
diffusion tensor, eqn (55), is equivalent to Gibbs’ convexity criterion for the
homogeneous free energy, eqn (14), which denes the classical chemical spinodal
region for mixtures without external driving. Alternatively, we can prove Onsager’s
reciprocal relations, Lij ¼ Lji, as a consequence of Gibbs’ maximum entropy
principle, eqn (11), and diffusional stability to concentration uctuations, eqn
(52). As usual in thermodynamics, axioms and theorems can oen be inter-
changed, and which is more fundamental is in the eye of the beholder!

With these insights, the general stability criterion eqn (52) clearly shows that
control of phase separation in a homogeneous mixture results from the competition
between auto-catalysis and chemical diffusion. Outside the spinodal region (D > 0),
a stable equilibrium system can undergo “chemical melting” (phase separation) if
the reactions are sufficiently autocatalytic (A has a large enough positive eigen-
value). Inside the spinodal region (D < 0), an unstable mixture can undergo
“chemical freezing” (stabilization) if the reactions are sufficiently auto-inhibitory
(A has a large enough negative eigenvalue).
4.5 Solo-autocatalysis and differential resistance

The autocatalytic rate and chemical diffusion tensors can be further decomposed
to clarify the connection with equilibrium thermodynamics:

A ¼ S � R �1G00 (56)

D ¼ LG00 (57)

where we dene the “solo-autocatalytic rate tensor”,

Sij ¼
X
n

si;n
vRn

vcj
; (58)

and the “differential reaction resistance tensor”,

R ij
�1 ¼ �

X
n

si;n
vRn

vmj

: (59)

If the reaction rates have no explicit concentration dependence (S ¼ 0) and
positive differential resistances (R > 0), then the Duhem–Jougeut theorem
holds: linear stability (A < 0, D > 0) requires a convex equilibrium free energy
(G00 > 0), and the chemical spinodal range remains unchanged by the driven
reaction network. In particular, multicomponent, linear Allen–Cahn reaction
kinetics eqn (32) cannot alter the equilibrium spinodal region. Instead, the
control of phase separation by reactions (in violation of the Duhem–Jougeut
theorem) requires either solo-autocatalysis (S s 0) or negative differential
resistance (R < 0).
4.6 Nonequilibrium Gibbs free energy

The preceding analysis allows us to construct the nonequilibrium free energy for
a certain class of uniform reactive mixtures. In order to achieve stability in the
long-wavelength limit, where reactions dominate diffusion (Da > 1 dened
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below), the constraint of auto-inhibitory reactions, A < 0, motivates the following
denition, using eqn (56):

G 00 ¼ G00 � RS (60)

so that stability corresponds to G00 > 0. We see again that unless the reaction
network is solo-autocatalytic, S s 0, the equilibrium free energy will determine
stability, since G 00 ¼ G00, and the reactions cannot alter the spinodal region. From
eqn (60), the second variation of G is determined by

�R�1(G 00 � G00) ¼ S (61)

X
l;n

si;n
vRn

vml

d2ðG � GÞ
dcldcj

¼
X
n

si;n
vRn

vcj
(62)

which can be used to determine stability.
In some special cases, eqn (62) can be integrated to obtain the nonequilibrium

free energy, or at least its rst variational derivative, the nonequilibrium chemical
potential,

m
noneq
i ¼ dG

dci
(63)

This is indeed possible for the simple faradaic reaction model, I(c,m) ¼
I0(c)(~mres � ~m), for driven adsorption at constant current, considered above. In
that case,

v2G
vc2

¼ v2gh

vc2
þ

vI

vc
vI

v~m

¼ vmh

vc
þ kBT

v

vc

I

I0

vG
vc

¼ mh þ ðmres � mhÞ ¼ mres

(64)

we obtain the same nonequilibrium free energy as before, eqn (6). The reservoir
potential acts as the nonequilibrium chemical potential of the system, mnoneq ¼
mres, and the affinity of the reaction, A ¼ mres � mh, is equal to the difference
between the nonequilibrium and equilibrium chemical potentials.
4.7 Growth of Fourier modes

The variational analysis above holds for all innitesimal uctuations around
a time-dependent base state. Let us now consider the growth of sinusoidal
perturbations, i.e. Fourier modes satisfying Vdci ¼~kidci, which serve as a basis to
represent arbitrary uctuations. The Hessian tensor then takes the form

G00
ij ¼ �G00

ij + ~ki$Kij
~kj (65)

and the Lyapunov functional grows as,

dL c

dt
¼
X
ij

sij

ð
V

dcidcjdV (66)
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where

sij ¼ Sij �
X
l

�
R il

�1� �G00
lj þ ~kl$Klj

~kj


þ ~ki$Lil
�G
00
lj
~kj þ

�
~ki$Lil

~kj


�
~kl$Klj

~kj


�
(67)

is the growth rate matrix,

vdci
vt

¼
X
j

sijdcj 0d~c ¼ estd~cðt ¼ 0Þ (68)

which controls the exponential growth of collective uctuations.
Eqn (67) expresses the general principles above in yet another way. Since L, K >

0, regardless of equilibrium stability (signs of eigenvalues of �G00), the system is
destabilized by negative differential resistance (negative eigenvalues of R�1) or by
solo-autocatalytic reactions (positive eigenvalues of S), while it is stabilized by solo-
auto-inhibitory reactions (negative eigenvalues of S).
4.8 Negative differential resistance

The differential reaction resistances are usually assumed to be positive (like the
integral resistance, R/A), but this need not be the case in electrochemistry. The
most famous example is the “inverted region” of Marcus kinetics for outer-sphere
electron transfer,3,18,80,81 where the differential resistance becomes negative at
large over-potentials. The inverted region is a feature of bulk electron transfer
reactions, although integration over the Fermi distribution of electrons restores
positive differential resistance for faradaic reactions at metallic or semi-
conducting electrodes.82

To the author’s knowledge, this effect has never been considered in thermo-
dynamic stability. From eqn (67), we see that negative differential resistance acts
like backward diffusion with quadratic growth rate scaling as �R �1k2 as k / N,
until it is cutoff by the quartic Cahn–Hilliard gradient penalty term. At long wave-
lengths (k / 0), it also changes the sign of the thermodynamic term �R p

�1�G00,
which promotes stability inside and instability outside the equilibrium spinodal
region.
5 Application to driven adsorption
5.1 Phase eld model

Returning to the physical picture in Section 2, let us consider the simplest case of
driven, solo-autocatalytic adsorption described by a phase-eld model,3

vc

vt
¼ V$LVmþ Rðc;m;mresÞ; m ¼ dG

dc
(69)

with isotropic L, K > 0. From eqn (67), the growth rate of the~k Fourier mode is

s ¼ S � ( �G00 + Kk2)(R p
�1 + Lk2) (70)

where the coefficients are all scalars:

S ¼ vR

vc
; R p

�1 ¼ �vR

vm
; �G

00 ¼ dmh

dc
¼ d2gh

dc2
: (71)
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Let us analyze in detail the possibility of suppression of phase separation (s <
0) as the system is driven by the adsorption reaction through the spinodal region
(�G00 < 0), in the typical case of positive differential resistance (R p

�1 > 0).
The growth rate has a simple dimensionless form,

~s ¼ ~S + (1 � ~k2)(Da + ~k2) (72)

where the wavenumber

~k2 ¼ Kk2�� �G00�� ¼ ð‘kÞ2 (73)

is scaled to a characteristic length scale,

‘2 ¼ K�� �G00�� ¼ k

cskBT

����d~mh

d~c

����
�1

(74)

which is proportional to the phase boundary thickness and diverges at
the spinodal limits (~c ¼ c/cs, ~m ¼ m/kBT). The growth rate and solo-autocatalytic
rate

~s ¼ Ks

Lj �G00j2
¼ ssd (75)

~S ¼ KS

Lj �G00j2
¼ Ssd (76)

are scaled to the characteristic time scale for backward diffusion,
Fig. 5 Control of phase separation by driven adsorption (or electro-autocatalysis). The
band of unstable modes (orange) can be constructed graphically from the intersection of
�~S ¼ ~s0 ¼ (1 � ~k2)(Da + ~k2). For a solo-autocatalytic reaction (a), ~S > 0, the instability is
Allen–Cahn-like for all Da. For a non-autocatalytic reaction (b), ~S ¼ 0, the instability is
Cahn–Hilliard-like for Da � 1 and Allen–Cahn-like for Da [ 1. For a weakly auto-
inhibitory reaction (c) with fast diffusion, Da � 1, a narrow band of modes at finite
wavelength can be selected. For strongly auto-inhibitory reactions, (d) the instability is
Allen–Cahn-like for fast reactions, Da[ 1, or (e) suppressed above a critical reaction rate.
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sd ¼ K

Lj �G00j2
¼ ‘2

j�Dj (77)

where D ¼ LG00\0 is the chemical diffusivity, which vanishes at the spinodal
limits.

As usual in chemical engineering, the relative importance of reactions
compared to diffusion is measured by the Damköhler number,83,84

Da ¼ K

R pL
�� �G00�� ¼ sd

sr
(78)

which is the ratio of the diffusion and reaction time scales, only here diffusion is
backward (D < 0),17 and the characteristic reaction time is

sr ¼ R p�� �G00�� ¼
����dmh

dc

vR

vm

����
�1

(79)

which diverges at the spinodal limits (“critical slowing down”). For a non-
autocatalytic reaction, ~S ¼ 0, the Damköhler number controls the shape of
the growth-rate spectrum, ~s0 ¼ (1 � ~k2)(Da + ~k2), which interpolates between the

Allen–Cahn-like fast-reaction limit, s0sr ¼ ~s0
Da

� 1� ~k2 for Da [ 1, and the

Cahn–Hilliard-like fast-diffusion limit, s0sd ¼ ~s0 � (1 � ~k2)~k2 for Da� 1. Due to
critical slowing down of diffusion, the Allen–Cahn-like instability dominates
near the spinodal limits (Da / 0), while the Cahn–Hilliard-like instability may
arise only deep into the spinodal region. Such phenomena were recently
studied by Lamorgese and Mauri17 for a non-autocatalytic reaction with linear
Allen–Cahn kinetics,3 in which case the spinodal limits of phase separation
cannot be altered.

In contrast, control of phase separation is possible with nonlinear phase-eld
reaction kinetics.3 The most unstable wavenumber is generally given by

~kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�minfDa; 1g

2

r
(80)

The solo-autocatalytic rate shis the growth-rate spectrum by a constant and
selects the band of unstable modes via s0(~k) > �~S, as shown in Fig. 5.
5.2 Critical rate to suppress phase separation

The stability criterion, max~k~s < 0, can be expressed as a bound on the (negative)
solo-autocatalytic rate,

Ssr ¼
~S

Da
\ � ð1þminfDa; 1gÞ2

4minfDa; 1g ¼ �FðDaÞ# 0 (81)

or with dimensions restored,

vR

vc
\ �

����dmh

dc

vR

vm

����FðDaÞ# 0 (82)

where F ¼ 1 for fast reactions (Da $ 1) and F � (4Da)�1 / N for slow reactions
(Da� 1). In the latter limit, chemical diffusion promotes phase separation, so an
446 | Faraday Discuss., 2017, 199, 423–463 This journal is © The Royal Society of Chemistry 2017



Paper Faraday Discussions
increasingly negative (auto-inhibitory) solo-autocatalytic rate is required to
maintain stability.

At constant reservoir potential, eqn (82) implies an upper bound on the total
autocatalytic rate,

A ¼
�
dR

dc

�
mres

¼ vR

vc
þ vR

vm

dmh

dc
\ �

����dmh

dc

vR

vm

���� ð1�minfDa; 1gÞ2
4minfDa; 1g (83)

For fast reactions, Da > 1, we recover the constant-potential stability criterion,
A < 0, discussed in Section 2, eqn (3).

At constant current, the stability criterion can be expressed as a lower bound
on the derivative of reservoir potential with respect to reaction extent (or time),�

vmres

vc

�
R;c

.
R r

R p

����dmh

dc

���� ð1�minfDa; 1gÞ2
4minfDa; 1g (84)

where we dene the reactant differential reaction resistance,

R r
�1 ¼ vR

vmres

(85)

which is positive for driven adsorption on interfaces or electrodes. The reactant
and product differential resistances are equal for Carati–Lefever kinetics eqn (35),
which includes the limit of linear kinetics eqn (31), but for our more general
model eqn (37), which includes Butler–Volmer kinetics,3 they are typically
different, R p s R r. For fast reactions, Da > 1, eqn (84) reduces to the constant-

current stability criterion,
vR
vmres

. 0, discussed in Section 2, eqn (4).
5.3 Control of phase separation by electro-autocatalysis

Finally, we are ready to apply our general stability theory to electro-autocatalysis.
Consider generalized Butler–Volmer kinetics, eqn (39), for symmetric charge

transfer
�
a ¼ 1

2

�
as a model for cation reduction and adsorption or intercalation

from an electrolyte reservoir to a cathode surface:3

I ¼ neR ¼ 2I0 sinh

�
~mres � ~m

2

�
(86)

where the exchange current density

I0 ¼ Ir(1 � ~c)e~m/2 (87)

makes the reaction solo-auto-inhibitory (S < 0) and thus capable of suppressing
phase separation, as a result of lattice crowding, g‡ ¼ (1 � ~c)�1. The prefactor,
Ir ¼ nek0

ffiffiffiffiffiffiffiffiffiffiffiffi
aresae

p
, is constant, if we assume constant chemical activities of the

electrolyte and electrons (xed band structure). The effective reservoir chemical
potential, mres, is then controlled by the cathode potential, since the activation
over-potential is h ¼ (m � mres)/ne. Assuming that the anode is held at constant
potential, the cell voltage is V ¼ V0 � nemres, where V0 is the open circuit voltage
when mres ¼ m ¼ 0.

Using
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vI

v~c
¼ � I

1� ~c
;

vI

v~m
¼ I

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

2 þ
�
I

2

�2
s

(88)

the stability criterion, eqn (82), implies

I .
2Irð1� ~cÞe~mh=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"

1þ 2

�
ð1� ~cÞ

����d~mh

d~c

����FðDaÞ
��1#2

� 1

vuut
(89)

This is an implicit equation for the (positive) critical current Ic(~c) that
suppresses phase separation, since the Damköhler number is current-dependent:

Da ¼
K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2I0Þ2 þ I2

q
� I

�
2nekBT j�Dj (90)

according to eqn (78) and (88).
5.4 Role of diffusion

There are two different regimes of stability, depending on the importance of
diffusion compared to reactions, as dened by the Damköhler number:

Slow diffusion. For relatively fast reactions (Da $ 1), the critical current is
given by the bound in eqn (89) with F ¼ 1. Interestingly, the stability criterion is
independent of the diffusivity for all Da $ 1, not only in the asymptotic limit of
slow diffusion (Da [ 1).

Fast diffusion. Once the diffusivity surpasses a critical value dened by Da > 1,
the critical current increases. Destabilizing chemical diffusion then begins to
dominate over stabilizing electrocatalysis. In the limit of fast diffusion (Da � 1,
F � (4Da)�1), the critical current has the asymptotic form

Ic
�
~c

 � �nekBTD

4K

�
~c
�
1� ~c


�d~mh

d~c

�2

¼ necsð1� ~cÞ
4sd

(91)

which scales with the diffusion current, necs/sd (full capacity per diffusion time).
Although the critical current does not depend on rate-constant prefactor, Ir, in
this limit, it still depends on the concentration-dependence of the reaction rate
(electro-autocatalysis). Indeed, the general stability criterion eqn (82) for Da � 1
can still be expressed as a bound on solo-auto-inhibition

vR

vc
\ � |�D|

4K

����dmh

dc

���� (92)

which takes the form of eqn (91) using eqn (88).
5.5 Regular solution thermodynamics

The critical current, Ic(~c,Da), separates the stable and unstable regions of the
“non-equilibrium phase diagram” of current versus concentration (and
temperature), which are traversed during the dynamics. An example is
shown in Fig. 6(d) for Butler–Volmer kinetics with regular solution
thermodynamics:3,13
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Fig. 6 Electro-autocatalytic control of phase separation in an Allen–Cahn reaction model
for lithium insertion in LFP,13 based on phase-field Butler–Volmer kinetics with regular
solution thermodynamics3 (neglecting coherency strain,6 B¼ 0). (a) Sketch of the insertion
reaction and depth-average concentration. (b) Simulations of the concentration profile
and (c) cell voltage (versus a constant lithium reference) for three different currents, which
are indicated as linear paths in the (d) “nonequilibrium phase diagram” of thermodynamic
stability, ~I > ~Ic(~c), in the plane of applied current ~I ¼ I/Ir and homogeneous concentration
X ¼ ~c. [Adapted from Bai et al.13]
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~mh ¼ ln
~c

1� ~c
þ ~U

�
1� 2~c


þ ~B
�
~c� X



(93)

d~mh

d~c
¼ 1

~cð1� ~cÞ � 2~Uþ ~B (94)

where U is the enthalpy of mixing particles and vacancies. For solid-state
intercalation, the last term derives from the elastic coherency strain energy for
small uctuations,6,25 where X is the average concentration, and ~c ¼ X for
a homogeneous base state. Without strain (~B¼ 0), equilibrium in this model (m
¼ constant) corresponds to the Frumkin isotherm for adsorption with lateral
forces.85

For this reaction model, Fig. 6 shows simulations of the Allen–Cahn reaction
equation, eqn (69) with L ¼ 0, which conrm the predictions of the stability
theory.13 The concentration proles in Fig. 6(b) develop long-wavelength uctu-
ations (set by the geometry) which grow as the system passes through the unstable
region of the nonequilibrium phase diagram in Fig. 6(d), as signied by the

increasing of the battery voltage in Fig. 6(c)
�
dV
dc

� � dmres

dc
. 0
�
. The uctuations

decay as soon as the system re-enters a stable region of Fig. 6(d), and the voltage
begins to decrease again in Fig. 6(c).

The control of phase separation is demonstrated by three currents in Fig. 6: (A) for
small currents, I� Ic, the system overshoots the phase-separated equilibrium voltage
plateau, undergoes spinodal decomposition, and then closely follows the voltage
plateau, offset only by a small activation overpotential, associated with the moving
phase boundary, or “intercalation wave”.13,84 (B) At larger currents, I < Ic, the
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instability is hindered, and the system behaves as a “quasi-solid solution” in the
unstable regions of increasing voltage. (C) Above the critical current, I > Ic, the
homogeneous solid solution is stable, and the voltage decreases monotonically as
a result of the concentration-dependent activation overpotential (yellow arrows in (c)).
6 Experimental evidence
6.1 Lithium iron phosphate intercalation kinetics

Strong experimental support for the present theory has recently been achieved,
aer a decade of research in the eld of Li-ion batteries. Many battery materials
exhibit multiple phases with varying composition, voltage, and temperature,86–88

and our nonlinear phase-eld reaction model, eqn (37) and (40), was rst devel-
oped for this application, starting in 2007.3,84 In the prototypical case of lithium
iron phosphate (LFP), the model led to the surprising prediction that insertion
reactions can suppress phase separation in nanoparticles above a critical
current,13 even in the presence of heterogeneous nucleation13,89 and elastic
coherency strain,6 although the underlying mechanism – electro-autoinhibition –

was not explained until now.
This theoretical prediction helped to explain the dramatic reversal of

fortune of LFP as a battery material. In the original paper on LFP, Goodenough
and co-workers concluded that “this material is very good for low-power
applications; at higher current densities there is a reversible decrease in
capacity that, we suggest, is associated with the movement of a two-phase
interface”.90 Indeed, phase separation is undesirable since it damages the
crystal with coherency strain and lowers the rate capability by storing lithium
in non-reactive stable phases.3,13 Within a few years, however, LFP was refor-
mulated as nanoparticles87 with conductive coatings and demonstrated ultra-
fast (<10 s) discharge without clear signs of phase separation in the voltage
prole,91 despite the assumption of two-phase “shrinking core” particles in
prevailing mathematical models.92,93

The new theory was controversial, however, and competing hypotheses were
made. The existence of a “solid solution pathway” of uniform insertion (and
extraction) in LFP was suggested, on the basis that classical nucleation theory
would prohibit nucleation and growth.94 On the other hand, our phase-eld
model predicted that phase separation can nucleate at surfaces and collapsed
experimental data for the size-dependent nucleation barrier.89 Phase separation
was later observed in situ in LFP porous electrodes,95 and compared with phase-
eld porous electrode simulations.96,97

In 2014, three groups reported the rst experimental evidence for the
suppression of phase separation in LFP at high insertion rates,98–100 although
none could settle the question of the mechanism. Zhang et al.98 and Liu et al.100

used in situ synchrotron diffraction to measure the volume averaged Li+ site
occupation distribution (Fe3+/Fe2+ redox state). Each study found a transition
from two-phase to solid-solution transformation above a critical current98–100 but
could not observe the concentration proles or reaction kinetics. Meanwhile, Niu
et al.99 were the rst to directly observe nonequilibrium solutions in LFP nano-
wires, although the situation was articial and could not shed light on the reason
for their stabilization.
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In 2016, Lim et al.14 achieved a remarkable rst test of the theory by in
operando scanning transmission X-ray microscopy of single LFP nanoparticles
in a microuidic electrochemical cell. The two-dimensional lithium concen-
tration evolution was directly observed with nanoscale resolution over the active
facet of platelet-like nanoparticles, during realistic conditions of battery
cycling. The massive dataset of pixels from many movies of concentration
evolution allowed the team to extract the local current density, and hence the
exchange rate, versus local concentration, and the experimental curve (Fig. 7(a))
is asymmetric and similar to the original phase-eld model of Butler–Volmer

kinetics,3,6,13 and different from the symmetric form, I0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cð1� ~cÞp

, assumed in
traditional diffusion models (Fig. 7(b)). The experimental and phase-eld
insertion reactions are solo-autoinhibitory across the spinodal region, which
leads to suppression of phase separation above a critical insertion current and
enhanced instability during extraction (Fig. 7(c)), as explained in Fig. 1. In
contrast, the symmetric reaction model predicts phase separation at all
currents.

As shown in Fig. 7(d), the data for repeated cycling of single nanoparticles
conrm the theoretical prediction for the asymmetric exchange current. Lithium
Fig. 7 Direct experimental evidence for the control of phase separation by electro-
autocatalysis in single nanoparticles of lithium iron phosphate, obtained by in operando
scanning transmission X-ray microscopy (STXM).14 (a) Exchange current versus local
surface concentration, obtained by pixel-level analysis of STXM movies of lithium evolu-
tion, (b) compared with the exchange current for Butler–Volmer kinetics from our original
phase-field model13 and traditional porous electrode theory.20 (c) Predicted linear stability
diagram versus current and composition for the exchange current curves in (b) from
models and experiment. (d) Typical sequence of STXM images showing the lithium
concentration profile (X ¼ 0, 0.5, 1.0 in LiXFePO4 for green, yellow, red) in an � 1 mm sized
platelet particle (150 nm thick in the depth direction) during cycling at different rates. At
a moderate insertion rate (0.6C ¼ 100 min to full capacity) some phase separation occurs,
which is enhanced significantly during extraction at the same rate (�0.6C). Next, at a high
current (2C ¼ 30 min discharge) above the critical insertion rate, phase separation is
suppressed (“electrochemical freezing”), and uniform, stable insertion is observed.
[Adapted from Lim et al.14]
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insertion at a moderate rate (0.6C ¼ 100 min. discharge) exhibits quasi-solid
solution behavior with non-uniform concentration, while extraction at the same
rate produces clear phase separation. Re-insertion in the same nanoparticle at
a higher rate (2C ¼ capacity in 30 min. discharge) leads to stable, uniform lling,
but high-rate extraction (not shown) still leads to phase separation. When the
current is turned off at intermediate concentrations (not shown), spinodal
decomposition leads to striped equilibrium phase patterns, also predicted by the
model with coherency strain.6 Previous models19,20 could not predict any of these
observations.
6.2 Lithium peroxide electrodeposition kinetics

Our general theory can also be applied to epitaxial surface growth or electrode-
position, where the surface height h(x,t) acts as a surface concentration c(x,t)
integrated over the depth of the deposit.101 In that case, the free energy functional
G[h] contains different physical effects, such as orientation-dependent surface
energy and discrete stable monolayers, but the reaction kinetics can still be
described by phase-eld Butler–Volmer kinetics. In this context, the instability of
a uniformly growing lm to “phase separation” corresponds to the homogeneous
nucleation and growth of islands, which can be controlled by electro-
autocatalysis, according to the same principles revealed by studies of ion
intercalation.

In the case of lithium peroxide deposition in Li–air battery cathodes, themodel
successfully predicted a transition from island growth at low rates to homoge-
neous, random deposition at moderate rates, in good agreement with experi-
mental voltage proles and ex situ observed growth morphologies.101 This is the
surface-growth analog of suppression of phase separation in driven adsorption.
Fig. 8 Control of pattern formation by electro-autocatalysis for lithium peroxide elec-
trodeposition in Li–air battery cathodes,101 predicted by the same general theory. (a)
Phase-field simulations of surface height evolution driven by generalized Butler–Volmer
kinetics, which capture the observed voltage behavior (not shown) and morphological
transitions with increasing current. Homogeneous nucleation and growth of islands at very
low currents leads to the experimentally observed disk-like particles of Li2O2 shown in (b)
on carbon nanotube current collectors. At larger currents, the growth becomes more
random and ultimately uniform layer-by-layer above the predicted critical current, as
observed in (c). [Adapted from Horstmann et al.101]
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Although the local current density and exchange current could not be measured,
this experiment shows the generality of the present theory, which is by no means
limited to adsorption phenomena. Despite the scientic interest of this result,
however, it also reveals a fatal aw for Li–air batteries, since thick uniform lms of
lithium peroxide block electron transfer and lead to inefficient battery cycling.102

7 Outlook
7.1 Solid state ionics

Li-ion batteries. This work opens the possibility of designing interfaces of
intercalation materials to control phase separation,3,14 as well as structural phase
transitions at electrochemical interfaces.103 A key goal to improve the rate capa-
bility and lifetime of Li-ion batteries is to suppress phase separation during ion
insertion, which can be the rate limiting step for both the discharging and re-
charging of the battery, corresponding to ion insertion at the cathode or anode,
respectively. In contrast, ion extraction at the opposite electrode tends to require
less overpotential and might not be affected as much by phase separation. At
either electrode, surface phase separation reduces the active area (to that of the
exposed phase boundary) and causes degradation via mechanical deformation
and side reactions, such as Li metal plating at the anode during recharging
(leading to capacity fade and safety hazards), which become favored once surface
ion concentrations reach stable phases.

The theory provides some guidance for surface modication of the active
materials to achieve these goals. For generalized Butler–Volmer kinetics eqn (39),
the solo-autocatalytic rate is related to the transition state activity coefficient,

Sf
vg‡

�1

vc
, which can be altered by blocking sites to reduce the congurational

entropy or depositing coatings that cause attractive or repulsive forces with
intercalated ions to adjust the enthalpy. These effects may play a role in the
observed (but poorly understood) rate-enhancing effects of phosphate or other
surcial glass lms on LFP and other cathode materials for Li-ion
batteries.91,104

These ideas can be coupled with existing strategies to alter surface chem-
istry. For example, Park et al.105 showed that anion surface modication of LFP
by nitrogen or sulfur adsorption improves the insertion rate capability,
which they attributed the lowering of the barrier for lithium ion insertion
(m‡ ¼ kBTlng‡) by stabilizing the under-coordinated Fe2+/Fe3+ redox couple at
the surface. This chemical bonding effect should be stronger at low lithium
concentrations (as in their ab initio calculations105) due to the lower conduc-
tivity of LiFePO4, which limits the access of electrons to the redox active site. In
that case, our theory predicts that if the exchange current were preferentially
enhanced at low concentrations, then the reaction would become more solo-
autoinhibitory across the spinodal region, thus further suppressing phase
separation and contributing to the observed rate enhancement.

Resistive switching memory. Electro-autocatalysis may also nd applications
in the forming of redox-based resistive random access memories (ReRAM),106

which are non-volatile, low-power alternatives to today's ash memory. Promising
examples include Valence Change Memories (VCM), based on the controlled
dielectric breakdown of transition metal oxide thin lms.107 In the forming cycle
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 199, 423–463 | 453



Faraday Discussions Paper
at high voltage, metal interstitials or oxygen vacancies undergo compositional
instabilities to form conducting laments of valence-changed metal cations,
which are then used to reversibly short circuit the lm as a means of information
storage. In thick lms of perovskite titanates, the forming step has been observed
as a bulk ngering instability of the “virtual cathode” of condensed oxygen
vacancies,108,109 but in ultra-thin lms, faradaic surface reactions may play a more
dominant role. By tuning the solo-autocatalytic electron transfer rate at the
cathode, e.g. by modifying the surface charge and local cation valence as above, it
may be possible to control the most unstable wavelength of the instability during
forming, and thus the size and spacing of the conducting laments.

Hydrogen storage. These effects are not limited to electrodes but also apply to
the intercalation materials for neutral species. Hydrogen insertion in silicon or
palladium nanoparticles has been explored for hydrogen storage and also arises
in catalytic materials. Binary phase separation in PdH nanoparticles has been
observed in situ and manipulated via the hydrogen gas pressure.10–12 It would be
interesting to study the response to sudden, large gas pressure steps to see if
phase separation can be suppressed, leading to faster, more uniform intercala-
tion. Similar surface modication strategies could also be used to manipulate
driven autocatalysis.
7.2 Electrokinetics at liquid interfaces

Electrovariable nanoplasmonics. A major theme of this discussion is electro-
variable optics, based on the reversible deposition of plasmonic nanoparticles at
immiscible liquid interfaces driven by electric elds.110,111 The theory of
Fig. 9 Application of the theory to electrovariable optics with plasmonic nanoparticles
adsorbing on an immiscible liquid interface. (a) Attractive lateral forces Fatt (pink) can result
from depletion forces of surfactants or capillary forces mediated by nano-menisci and
compete with adsorption driven by the normal electric field. (b) For auto-inhibitory
insertion, phase separation can be suppressed (b) above a critical rate, leading to fast,
uniform insertion, but in that case, (c) the reverse autocatalytic extraction would desta-
bilize the monolayer and promote phase separation, leading to slow interfacial extraction
of clusters.
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electrovariable nanoplasmonics focuses on the effective trapping potential in the
normal direction to the interface112 and includes a thermodynamic model for
nanoparticle adsorption and deposition kinetics.113 The model focuses on the
repulsive electrostatic forces between adsorbed nanoparticles, which have the
same charge and polarization in the applied eld, and thus predicts a stable
uniform monolayer, amenable to fast switching.

Although electrostatic repulsionmay dominate, there are other strong forces at
the nanoscale that could lead to lateral attraction and thermodynamic instability
of a nanoparticle monolayer, as shown in Fig. 9(a). Depending on contact angles,
electrostatic forces and transient geometrical constraints, attractive capillary
“dimple” forces can be very strong for nano-menisci and could lead to clustering
(the “cheerios effect”).114 Moreover, attractive entropic depletion forces can be
tuned by adding surfactants to the system, which would cause inter-particle
attraction to reduce the excluded volume for surfactants.

In the presence of attractive lateral forces, the response to an applied electric
eld becomesmore interesting. If the system tends to phase separate into clusters
at the interface, then the present theory predicts that electro-catalytic adsorption
reactions, e.g. obeying generalized Butler–Volmer kinetics eqn (39) with regular
solution thermodynamics eqn (93), would stabilize the interfacial monolayer
during deposition (Fig. 9(b)) and destabilize it during desorption (Fig. 9(c)), if the
adsorption reaction is auto-inhibitory, and vice versa, if it is autocatalytic. Stable
uniform deposition should proceed more quickly than unstable cluster dissolu-
tion, due to the larger active area.3

This prediction should be tested experimentally and any patterns character-
ized, especially with enhanced attractive lateral forces. Since clustering transi-
tions on the interface affect optical properties, it may be possible to exploit these
phenomena in new device designs. For example, switching between a clustered
state and uniform coverage without signicant mass transfer from the bulk
solution could enable faster switching with tolerable resolution.

Electrophoretic displays. Similar issues arise in electrophoretic displays or
“electronic paper”, where colloidal pigments or particles are shuttled between
transparent electrodes in liquid-droplet pixels.115 It is well known that colloidal
dispersion stability is important in the bulk liquid, but there is also ordering on
the surface that can interfere with device operation.116 This clustering contributes
to the inability of electronic paper to switch fast enough to enable the playing of
movies, and perhaps it could be better understood or even controlled using the
ideas in this work.

Ionic liquids and solids. Room temperature ionic liquids exhibit complex
charge oscillations at electried interfaces.117 To some extent, these phenomena can
be understood in terms of ion crowding118 and over-screening due to strong
Coulomb correlations,119,120 but recent models have also included additional short-
range forces that improve predictions of double-layer capacitance121 and promote
the “phase separation” of like-charged domains,39 in the hope of explaining long-
range charge oscillations122,123 and other patterns.117,124

The treatment of attractive short-range forces and lattice repulsion in these
models39,121 is similar to Cahn’s regular solution model for binary solid alloys,1 also
considered here for solid-state ion intercalation,3 eqn (93), although electrostatic
interactions are also considered. As such, the principles of electroautocatalysis and
clustering described heremight be useful in understanding the switching dynamics
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and ordering of ions in applications to electric double layer capacitors. Moreover,
the coupling between double layer structures and faradaic reactions may be
important in understanding the large electrochemical window of “solvent-in-salt”
ionic-liquid-based electrolytes for rechargeable batteries.125,126

It should be emphasized that our analysis here does not explicitly consider
electric elds from diffuse charge or other long-range forces. The stability
analysis is based on a homogeneous free energy for short range forces plus
a gradient correction, and the focus is on electrochemical reactions in neutral
electrolytes with negligible double layer effects. Past mean-eld theories of
solid electrolytes127 and defect dynamics128 accounting for interactions
between space charge and Butler–Volmer kinetics have not found any unusual
effects on phase separation, so care must be take in applying our results to
charged systems.
7.3 Patterns driven by electron transfer reactions

Electron transfer in solution. Electron transfer reactions between donor and
acceptor atoms have mostly been studied by chemists at the molecular level
without considering how quantum mechanical effects might inuence macro-
scopic reaction-diffusion phenomena. An intriguing new prediction of our theory
is the destabilizing effect of negative differential reaction resistance, which is the
dening characteristic of the “inverted region” of Marcus kinetics for outer-
sphere electron transfer.3,18,129 It is interesting to note that it took several decades
aer the pioneering work of Marcus,80,81 until Miller, Calcaterra and Closs130,131

managed to observe the predicted effect of exothermocity (DrG) on the kinetics of
intramolecular electron transfer, aer many inconclusive studies on inter-
molecular electron transfer.

Our results suggest that thermodynamic instability of reactive electrolytes in
the inverted region of inter-molecular electron transfer could have played a role in
these experimental challenges, due to the coupling of reactions with rapid density
uctuations. In order to test this prediction, it would be interesting to revisit the
original experiments,130,131 by measuring density uctuations of the redox species
(e.g. by x-ray or neutron adsorption spectroscopy) following a pulse of solvated
electrons in a reactive liquid electrolyte (e.g. biphenyl anions in acceptor organic
solvents). Using combinations of intra- and inter-molecular electron transfer, it
may be possible to use our theory to control the instability to achieve new types of
nanoscale patterns for materials synthesis or actuation.

Electron transfer at electrodes. Perhaps for similar reasons, it took just as
long aer Marcus' theory of electron transfer on electrodes132 before it was rst
veried experimentally by Chidsey,133 again for intra-molecular electron trans-
fer, across self-assembled monolayers. Recently, the rst evidence of Marcus-
Hush-Chidsey kinetics was reported for solid-solid electron transfer in porous
electrodes of Li-ion batteries, where the rate-limiting step was attributed to
electron transfer between the iron redox site in LFP and the carbon coating of
the active particles.134 While these experiments showed the importance of
coupling electron transfer reactions with compositional dynamics, however,
they did not probe the effects of negative differential resistance, since integra-
tion over the Fermi distribution of electrons eliminates the inverted region for
a metallic electrode.82,135
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Last year, the Marcus inverted region was observed for the rst time on
a semiconductor photo-electrode,136 which, according to our theory, could lead to
novel instabilities and pattern formation in photo-electrochemical devices. Yet
again, the experiments involved intra-molecular electron transfer, from single-
walled carbon nanotubes to acceptor molecules in fullerene derivatives. Besides
photo-electrochemistry and photovoltaics, functionalized carbon nanotubes and
graphene sheets are also increasingly used for dynamical processes, such as
thermopower waves for electrical energy generation,137 where our theory could
shed light on the stability of heat andmass transfer coupled with electron transfer
reactions.
7.4 Electro-autocatalytic control of microstructure

Hydration and precipitation of cement paste. One of the most important
examples of electrochemical pattern formation is the hydration of tricalcium
silicate (the main mineral component of portland cement) and precipitation of
calcium-silica-hydrate (C-S-H) gels to form cement paste.138,139 This multi-step
reaction is known to be autocatalytic.139 Microstructural evolution, leading to the
unique strength of cement paste, proceeds by spinodal decomposition of
precipitating C-S-H particles, as shown in recent molecular simulations.140,141

The hardening of cement paste is a natural candidate for continuum modeling
with our reactive phase-eld model, eqn (37) and (40). Our general stability analysis
may help explain how electroautocatalytic precipitation reactions drive spinodal
decomposition to determine the nal microstructure. The theory may also provide
insights into how the paste microstructure could be controlled by varying the initial
mixture composition or by applying electrical current during curing, since electric
elds are already known to induce microstructural changes in hardened cement.142

More generally, models of driven precipitation may nd applications in other
electrochemical systems, such as aqueous Li-air batteries.143

Electrodeposition. We have already discussed how electroautocatalysis
enables morphological control of lithium peroxide electrodeposits,101 and there
are many other possible applications in electro-deposition/dissolution. For
example, nanostructured redox-polymer electrodes for super capacitors have been
made by simultaneous electropolymerization of pyrrole and electro-precipitation
of polyvinylferrocene,144 and the microstructure depends on the applied current
and electrolyte composition.

Corrosion. A more direct application of our theory arises in the corrosion of
binary metallic solids.145,146 The de-alloying of a Ag/Au solid solution by selective
dissolution of the more electrochemically active metal (Ag) can leave behind
three-dimensional nano-porous structures of the more noble metal (Au), which
result from modulation of the corrosion rate by surface spinodal decomposition.
It was found that simulations based on the regular-solution Cahn-Hilliard
equation could reproduce the experimental microstructure with irreversible
(Tafel regime) Butler-Volmer kinetics only for a certain choice of the concentra-
tion-dependent exchange current,145 I0 f e�~c/c*, rather than the usual assumption
of mass action kinetics, proportional to the silver adatom concentration, I0f (1�
~c). In hindsight, this appears to be another phenomenon of phase-separation
control by electro-autocatalysis, which could be tailored to achieve a desired pore
size guided by our theory.
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7.5 Control of phase separation in biology

Bacteria and active matter. Here we have focused on open chemical systems
driven by externally controlled reactions, but there are other types of driving work
that could t into our general theoretical framework. For example, active Brow-
nian suspensions of swimming particles, such as E. coli bacteria, exert “swimming
stress” on their surroundings,75 which leads to phase separation that can be
described by a nonequilibrium free energy.75–79 Eqn (49) implies that, at least near
a nonequilibrium steady state, active diffusion is generally destabilizing, while
passive diffusion is stabilizing. Introducing reactions among active swimmers
with environmental chemicals could provide an interesting means of tuning their
pattern formation.

Protein phase separation in cells. Over the past decade, there has been
growing appreciation of phase separation in biology,147,148 stimulated by the
discovery of liquid–liquid protein phase separation inside the cytoplasm of
embryonic cells, leading to cell division.149 Although it is known that reactions
such as RNA/protein binding play a role in controlling phase separation,150 most
experiments and models have focused either on applied protein concentration
gradients without reactions151 or on the evolution of already formed droplets,152

regulated by autocatalytic reactions,153 including suppression of Ostwald
ripening.154

The present theory could be useful in understanding how driven autocatalytic
reactions can stabilize the homogeneous mixture or trigger the onset phase
separation and control the nascent patterns that lead to liquid organelles. The
general notion of pattern formation by chemically driven phase separation has
a long history in biology relating to the origins of life.152 This possibility also
fascinated Prigogine155 and motivated much of his own work in nonequilibrium
thermodynamics.4
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G. Vaughan and J. Campo, J. Am. Ceram. Soc., 2002, 85, 631–635.

143 B. Horstmann, T. Danner and W. G. Bessler, Energy Environ. Sci., 2013, 6,
1299–1314.

144 W. Tian, X. Mao, P. Brown, G. C. Rutledge and T. A. Hatton, Adv. Funct. Mater.,
2015, 25, 4803–4813.

145 J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001,
410, 450–453.

146 X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher and K. Sieradzki,
Nano Lett., 2014, 14, 2569–2577.
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