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Abstract

The diffusion and flow of amorphous materials, such as glasses and granular materials, has resisted a simple micro-
scopic description, analogous to defect theories for crystals. Early models were based on either gas-like inelastic collisions
or crystal-like vacancy diffusion, but here we propose a cooperative mechanism for dense random-packing dynamics, based
on diffusing “spots” of interstitial free volume. Simulations with the Spot Model can efficiently generate realistic flowing
packings, and yet the model is simple enough for mathematical analysis. Starting from a non-local stochastic differential
equation, we derive continuum equations for tracer diffusion, given the dynamics of free volume (spots). Throughout the
paper, we apply the model to granular drainage in a silo, and we also briefly discuss glassy relaxation. We conclude by
discussing the prospects of spot-based multiscale modeling and simulation of amorphous materials.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Professor Torquato has made pioneering contri-
butions to the characterization of random packings
and their relation to properties of heterogeneous
materials (Torquato, 2002). His recent work rejects
the classical notion of “random close packing” of
hard spheres and replaces it with the more precise
concept of a “maximally random jammed state”
(Torquato et al., 2000; Torquato and Stillinger,
2001; Kansal et al., 2002; Donev et al., 2004b). In
these studies and others investigating the “‘jamming
transition” (O’Hern et al., 2002, 2003), however, the
focus is on the statistical geometry of static pac-
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kings, and not on the dynamics of nearly jammed
packings in flowing amorphous materials.

Dense random-packing dynamics is at the heart
of condensed matter physics, and yet it remains
not fully understood at the microscopic level. This
is in contrast to dilute random systems (gases),
where Boltzmann’s kinetic theory provides a suc-
cessful statistical description, based on the hypothe-
sis of randomizing collisions for individual particles.
Similar single-particle theories can also be applied
to molecular liquids at typical experimental time
and length scales, where kinetic energy is able to
fully disrupt local packings (Hansen and McDon-
ald, 1986). The difficulty arises in describing liquids
at very small (atomic) length and time scales, over
which the trajectories of neighboring particles are
strongly correlated—the so-called cage effect.
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This difficulty is extended to much larger length
and time scales in supercooled liquids (Go6tze and
Sjogren, 1992), glasses (Angell et al., 2000), and
dense granular materials (Jaeger et al., 1996), where
kinetic energy is insufficient to easily tear a particle
away from its cage of neighbors. As a result, one
must somehow describe the cooperative motion of
all particles at once. In dense ordered materials
(crystals), cooperative relaxation and plastic flow
are mediated by defects, such as interstitials, vacan-
cies, and dislocations, but it is not clear how to
define ““defects” for homogeneous disordered
materials.

The challenge in describing random-packing
dynamics is related to the concept of “hyper-uni-
form” point distributions, recently introduced by
Torquato and Stillinger (2003). In a dilute gas, par-
ticles undergo independent random walks and thus
have the “uniform” distribution of a Poisson pro-
cess (Hadjiconstantinou et al., 2003), where the var-
iance of the number of particles, N, scales with the
volume, V: Var(N) = (N) = pV, where p is the mean
density. In a condensed phase, the particle distribu-
tion must be “hyper-uniform”, with much smaller
fluctuations, proportional to the surface area:
Var(N) x 4=/ where d = 3 is the spatial dimen-
sion, so it is clear that particles cannot fluctuate
independently. In a crystal, hyper-uniformity is a
property of the ideal lattice, which is preserved dur-
ing diffusion and plastic flow by the motion of
isolated defects. For dense disordered materials,
however, no simple flow mechanism has been iden-
tified, which preserves hyper-uniformity.

Eyring (1936) was perhaps the first to suggest a
microscopic mechanism for viscous flow in liquids,
analogous to vacancy diffusion in crystals. He pro-
posed that the packing evolves when individual par-

()

Fig. 1. Eyring’s mechanism for flow in viscous liquids: a single
particle jumps from one available ‘“cage” to another by
exchanging with a “void” moving in the opposite direction.

ticles jump into available cages, thus displacing pre-
existing voids, as shown in Fig. 1. Much later, the
same hypothesis was put forth independently in the-
ories of the glass transition (Cohen and Turnbull,
1959; Turnbull and Cohen, 1970), shear flow in
metallic glasses (Spaepen, 1977), granular drainage
from a silo (Litwiniszyn, 1958; Mullins, 1972), and
compaction in vibrated granular materials (Bou-
treux and de Gennes, 1997), although it is not clear
that all of these authors intended for the model to
be taken literally at the microscopic level. Since par-
ticles and voids simply switch places, it seems the
Void Model can only be simulated on a single, fixed
configuration of particles, but real flows are clearly
not constrained in this way. This difficulty is appar-
ent in the work of Caram and Hong (1991), who
neglected random packings and simulated the Void
Model on a lattice in an attempt to describe granu-
lar drainage.

By now, free volume theories of amorphous
materials (based on voids) have fallen from favor,
and experiments on glassy relaxation (Weeks
et al.,, 2000) and granular drainage (Choi et al.,
2004) have demonstrated that packing rearrange-
ments are highly cooperative and not due to
single-particle hops. In a recent theory of granular
chute flows down inclined planes, Ertas and Halsey
(2002) have postulated the existence of coherent
rotations, called “granular eddies” to motivate a
continuum theory of the mean flow. Although the
theory successfully predicts Bagnold rheology and
the critical layer thickness for flow, Landry and
Grest (2003) have failed to find any evidence for
granular eddies in discrete-element simulations of
chute flow (Landry et al., 2003).

In glass theory, Adam and Gibbs (1965) intro-
duced the concept of regions of cooperative relaxa-
tion, whose sizes diverge at the glass transition.
Modern statistical mechanical approaches are based
on mode-coupling theory (Gotze and Sjogren,
1992), which accurately predicts density correlation
functions in simple liquids (Kob, 1997), although a
clear microscopic mechanism, which could be used
in a particle simulation, has not really emerged.
Cooperative rearrangements have also long been
recognized in the literature on sheared glasses. Oro-
wan (1952) was perhaps the first to postulate local-
ized shear transformations in regions of enhanced
atomic disorder. Argon (1979) later developed the
idea of “intense shear transformations’™ at low tem-
perature, which underlies the stochastic model of
“localized inelastic transformations” (Bulatov and
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Argon, 1994). A similar notion of “‘shear transfor-
mation zones” (STZ) has also been invoked by Falk
and Langer (1998) in a continuum theory of shear
response, which has recently been extended to
account for free-volume creation and annihilation
in glasses (Lemaitre, 2002b) and granular materials
(Lemaitre, 2002a). This phenomenology seems to
capture many universal features of amorphous
materials, although the microscopic picture of “+”
and “—”" STZ states remains vague.

In this paper, we propose a simple model for the
kinematics of dense random packings. In Section 2,
we introduce a general mechanism for structural
rearrangements based on the concept of a diffusing
“spot” of free volume. In Section 3, we apply the
Spot Model to granular drainage. In Section 4, we
analyze the diffusion of a tracer particle via a non-
local, nonlinear stochastic differential equation, in
the limit of an ideal gas of spots. In Section 5, we
derive equations for tracer diffusion in granular
drainage, which depend on the density, drift, and
diffusivity of spots (or free volume). We close by dis-
cussing possible applications to glasses in Section 6
and spot-based multiscale modeling and simulation
of amorphous materials in Section 7.

2. The Spot Model
2.1. Motivation

Our intuition tells us that a particle in a dense
random packing must move together with its near-
est neighbors over short distances, followed by
gradual cage breaking at longer distances. In simple
liquids, this transition occurs at the molecular scale
(<nm) over very short times (<ps) compared to typ-
ical experimental scales. In supercooled liquids and
glasses, the time scale for structural relaxation effec-
tively diverges and is replaced by slow, power-law
decay (Angell et al., 2000; Kob, 1997; Hansen and
McDonald, 1986), although the length scale for
cooperative motion remains relatively small (Weeks
et al., 2000). In granular drainage, cage breaking
occurs slowly, over time scales comparable to the
exit time from the silo, so that cooperative motion
is important throughout the system at the macro-
scopic scale (Choi et al., 2004).

Another curious feature of granular drainage is
the importance of geometry: all fluctuations in a
dense flow seem to have a universal dependence
on the distance dropped for a wide range of flow
rates (Choi et al.,, 2004). In a sense, therefore,

increasing the flow speed in this regime is like fast-
forwarding a film, passing through the same
sequence of configurations, only more quickly.
The only existing theory to predict this property
(as well as the mean flow profile in silo drainage)
is the Void Model, since increasing the flow speed
simply increases the injection rate of voids, but
not their geometrical trajectories. However, the
model incorrectly predicts cage breaking and mixing
at the scale of individual particles. This “paradox of
granular diffusion” is a fruitful starting point for a
new model of random-packing dynamics.

2.2. General formulation

Let us suppose that the cage effect gives rise to
spatial correlations in particle velocities, with corre-
lation coefficient, C(r), for two particles separated
by r. More generally, when there is broken symme-
try, e.g. due to gravity in granular drainage, there is
a correlation coefficient, C;“f (ry, 1), for the a veloc-
ity component of a particle at r; and the § velocity
component of a particle at r,. Perhaps the simplest
way to encode this information in a microscopic
model is to imagine that particles move coopera-
tively in response to some extended entity—a
spot—which causes a particle at r, to move by

AR, = —w(rp, 15) AR (1)

when it moves by AR; near r,. Although the spot
is not a “defect” per se, like a dislocation in an
ordered packing, it is a collective excitation which
allows a random packing to rearrange.

In principle, the spot influence, w, could be
a matrix causing a smooth distribution of local

Fig. 2. The spot mechanism for cooperative diffusion: a group
of neighboring particles makes small correlated displacements in
response to a diffusing “spot” of excess interstitial volume.
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translation and rotation about the spot center r, but
a reasonable first approximation is that it is simply
a collective translation the opposite direction from
the spot displacement, as illustrated in Fig. 2. In this
case, w is a scalar function, whose shape is roughly
that of the velocity correlation function. More pre-
cisely, under some simple assumptions, we show
below that ((r) is the overlap integral of two spot
influence functions separated by r. Since the spot
influence is related to the cage effect, we expect that
w and C will decay quickly with distance, for sepa-
rations larger than a few particle diameters. Due to
the local statistical regularity of dense random pac-
kings, we might expect a spot to retain its “shape”
as it moves, in which case w depend only on the sep-
aration vector, rl) —rl), although this assumption
might need to be relaxed in regions of large gradients
in density or velocity.

Physically, what is a spot? Since particles move
collectively in one direction, a spot must correspond
to some amount of free interstitial volume (or “miss-
ing particles”’) moving in the other direction. If par-
ticles are distributed with number density p,(r,) and
a spot at ry carries a typical volume, V(r;), then an
approximate statement of volume conservation is

VARg = —/drpp(rp)w(rp,rs)ARp(rp). (2)

For particles distributed uniformly at volume frac-
tion, ¢, this reduces to a simple expression for the
local volume carried by a spot,

Vi) = o / dryw(ry, 1), (3)

which can thus be interpreted as a measure of the
spot’s “total influence”.

A very simple, spot-based Monte Carlo simula-
tion proceeds as follows. Given a distribution of
(passive) particles and (active) spots, the random
displacement, ARV, of the jth spot centered at r")
induces a random displacement, AR](;), of the ith
particle centered at r{)

AR = —w(x0, 1 + ARY) ARV )

Each spot undergoes an independent random walk,
with an appropriate drift and diffusivity for free vol-
ume, which leaves in its trail a thick chain of parti-
cles reptating in the opposite direction, as shown in
Fig. 3. In Eq. (4), we choose to center the spot influ-
ence on the end of its small displacement, but it is
also reasonable to use the midpoint of the displace-

Fig. 3. The trails of spots correspond to transient, reptating
chains of particles.

ment (Rycroft et al., 2005) or its beginning. In the
infinitesimal limit, discussed below, these choices
are analogous to different (Stratonovich vs. 1to) def-
initions of stochastic differentials (Risken, 1996).

In principle, the drift velocity, diffusivity, and
influence function of spots could depend on local
variables, such as stress, and temperature (or rather,
some suitable microscopic quantities related to con-
tact forces and velocities, respectively). Spots could
also interact with each other, undergo creation and
annihilation, and possess a statistical distribution
of sizes (or influence functions). The simplest kine-
matic assumption, however, which captures the
basic physics of the cage effect, is that spots are
identical and maintain their properties while under-
going independent (non-interacting) random walks.
In particular, the constant influence function,
w(|rp, —1s), is chosen to be translationally invariant
in space and time. It turns out that this model
allows rather realistic multiscale simulations, while
remaining analytically tractable.

2.3. Multiscale model

The simple spot mechanism above gives a reason-
able description of tracer diffusion and slow cage
breaking in random packings, but it does not strictly
enforce packing constraints (or, more generally,
inter-particle forces). As such, particles perform
independent random walks in the long-time limit,
which eventually leads to uniform density fluc-
tuations with Poisson statistics. For a complete
microscopic model, we must somehow preserve
hyper-uniform packings.

This may be accomplished by adding a relaxation
step to the spot-induced displacements, as shown in
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Fig. 4. Multiscale simulation of densely packed (nearly) hard spheres with the Spot Model: (a) a block of neighboring particles translates
opposite to the displacement of a spot of free volume; (b) the block and a shell of neighbors are allowed to relax under soft-core repulsive
forces; (c) the net cooperative rearrangement combines these two steps. (Particle displacements are greatly exaggerated for clarity.)

Fig. 4. First in (a), a spot displacement causes a sim-
ple correlated displacement, as described above, e.g.
using Eq. (4) with some short-ranged choice of w(r)
with a finite cutoff. Next in (b), the affected particles
and a shell of their nearest neighbors are allowed to
relax under appropriate inter-particle forces, with
more distant particles held fixed. For simulations
of (nearly) hard grains, the most important forces
come from a soft-core repulsion, which pushes par-
ticles apart only if they begin to overlap.

Although it is not obvious a priori, the net
spot-induced cooperative displacements, shown in
Fig. 4(c), easily produce very realistic flowing
packings, while preserving the physical picture of
the model (Rycroft et al., 2005). In practice, the
correlated nature and small size of the spot-induced
block displacements results in very small and
infrequent particle overlaps, only near the edges of
the spot, where some shear occurs with the back-
ground packing. As a result, it seems the details of
the relaxation are not very important, although this
issue merits further investigation. In any case,
the algorithm is interesting in its own right as a
method of multiscale modeling, since it combines a
macroscopic simulation of simple extended objects
(spots) with localized, microscopic simulations of
particles.

3. Application to granular drainage
3.1. Experimental calibration and testing

The classical Kinematic Model for the mean
velocity in granular drainage (Nedderman, 1991),
which compares fairly well with experiments (Tiiziin
and Nedderman, 1979; Samadani et al., 1999; Choi
et al., 2005), postulates that the mean downward
velocity, v, satisfies a linear diffusion equation,

ov

P bV v, (5)
where the vertical distance z plays the role of ““time”
and the horizontal dimensions (with gradient, V)
play the role of “‘space”. The microscopic justifica-
tion for Eq. (5) is the Void Model of Litwiniszyn
(1958, 1963) and Mullins (1972, 1974), where parti-
cle-sized voids perform directed random walks up-
ward from the orifice. As discussed above, this
microscopic mechanism is firmly contradicted by
particle-tracking experiments (Choi et al., 2004),
but, as shown below, a similar macroscopic flow
equation can be derived from the Spot Model,
where spot diffuse upward with a (horizontal) diffu-
sion length,

_ Var(Ax)

b= 2d,Azg (6)

where Ax; is the random horizontal displacement of
a spot as it rises by Azg and dj, = 2 is the horizontal
dimension. A typical value for 3 mm glass beads is
b =~ 1.3d, where d is the particle diameter.

The shape of the spot influence function can be
inferred from measurements of spatial velocity cor-
relations in experiments (Bazant et al., 2005) or sim-
ulations by the discrete-element method (DEM)
with frictional, visco-elastic spheres (Rycroft et al.,
2005). The simplest assumption is a uniform spher-
ical influence with a finite cutoff,

o w r<ds/2,
W(F){o r>dy)2, )

where experiments and simulations find d; ~ 5d.
This is consistent with our interpretation of the spot
mechanism in terms of the cage effect, where a par-
ticle moves with its nearest neighbors. The typical
number of particles affected by a spot,
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N=¢(§)i (8)

is thus N = 72, for ¢ ~ 0.58.
For a uniform spot, the condition of volume con-
servation, Eq. (2), reads

Vi(AXs, Az,) = —NV,(AX,, Az,). 9)
Using Eq. (1), this provides an expression for the
spot influence,
Ve A

w= ~N—
NV,

(10)

in terms of A¢, the change in local volume fraction
due to the presence of a single spot. In DEM simu-
lations of granular spheres in silo drainage (Rycroft
et al., 2005), the local volume fraction varies in the
range, ¢ = 0.565-0.605, within the rough bounds of
jamming, ¢ = 0.63 (Torquato et al., 2000; Kansal
et al., 2002; O’Hern et al., 2002, 2003), and random
loose packing, ¢ = 0.55 (Onoda and Liniger, 1990).
If we attribute A¢p/¢p = 1% to a single spot, then we
find w = 0.017, but, if many spots, say Ny = 10, can
overlap, then this estimate is reduced by 1/N,. We
thus expect, w = 107°-102.

This prediction can be tested against experiments
and DEM simulations. We can use Egs. (9) and (10)
to infer w from a measurement of the horizontal
particle diffusion length

Var(Ax,) w?Var(Ax)

b: = = b. 11
P T2, Az | 2dwAz, (1)

DEM simulations (Rycroft et al., 2005) and par-
ticle-tracking experiments (Choi et al., 2004) for
similar flows yield w = b,/b =0.00286d/1.14d =
0.00250 and w = d/bPe, = d/(1.3d)(321) = 0.0024,
respectively (where Pe, is a Péclet number). These
values are consistent with the model, thus providing
some support for its microscopic hypothesis.

A spot’s influence is related to the free volume it
carries by Eq. (3). In the case of a uniform spot of
diameter, d;, its total free volume is given by

3

v, = M’ (12)
6

which is related to the particle volume, V,,, by

Vs i\’

= =) =wN. 13

y=wb(G) =w (13)

For dense granular drainage, the typical values
N =72 and w=0.0025 imply V;=0.18V,.

In summary, by comparing the model to experi-
ments and DEM simulations, we reach a quantita-
tive description of spots in granular drainage: a
spot carries around one fifth of a particle volume,
spread out over a region of roughly five particle diam-
eters. This delocalized picture of free volume diffu-
sion is rather different from that of the classical
Void Model, which is the (unphysical) limit,
Vi=Voand N=w=1.

3.2. Simple Monte Carlo simulations

We have seen that the Spot Model can be suc-
cessfully calibrated for granular drainage, so it pro-
vides a reasonable starting point for Monte Carlo
simulations. First, we discuss simple simulations
by Bazant et al. (2005) using the basic mechanism
in Fig. 2 and Eq. (4) applied to granular drainage
in a quasi-two-dimensional silo, as in the experi-
ments of Samadani et al. (1999) and Choi et al.
(2004). The silo has a narrow orifice (not much big-
ger the a spot) and is very wide, with little influence
from the side walls.

For simplicity, we simulate the model in two
dimensions (d, = 1) using uniform, circular spots
with the parameters inferred from experiments
above: w=0.0024, d; = 5d, b = 1.3d. (Very similar
results may be obtained with a Gaussian influence
function.) We make no attempt to describe the
dynamics of the orifice which controls the rate
of introduction of spots and (for volume conser-
vation) their vertical drift velocity. Instead, we
seek to describe the steady velocity distribution,
up to a constant proportional to the flow rate,
as well as the random trajectories of tracer
particles.

Since spots do not interact, we allow spots to
pass through the system one at a time, following
directed random walks with vertical displacements,
Az =0.1d, and random horizontal displacements,
Ax, = +v2bAz = +0.51d. After each spot displace-
ment, (Ax,, Azg), all particles within a distance
0.5d; =2.5d of the spot center undergo a tiny
block displacement, (Axp,Azp) = —w(Ax,,Azg) =
(—0.00024d,70.00124). Within the block, the pack-
ing is preserved during motion, but at the edge
there is some shear, unconstrained by inter-particle
forces.

The simulation begins with a random packing of
identical disks, colored with horizontal stripes (104
thick) to aid in visualizing the subsequent evolution.
A snapshot of the spot simulation at a later time is
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- B
(c) (d)

Fig. 5. Simulations of granular drainage in a quasi-two-dimensional silo. Top: two-dimensional simulations using (a) the Spot Model
without packing constraints and (b) the Void Model (Bazant et al., 2005). Bottom: three-dimensional simulations using (c) the Spot Model
with multiscale relaxation and (d) the Discrete Element Method for frictional, visco-elastic spheres (Rycroft et al., 2005). Particles are
colored according to their initial positions in horizontal stripes, 10d thick.
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shown in Fig. 5(a). For comparison, a simulation of
the same situation with the Void Model on a two-
dimensional lattice, following Caram and Hong
(1991), is shown in Fig. 5(b), along with the central
slice of a DEM simulation by Rycroft et al. (2005)
in three dimensions (154 thick) in Fig. 5(d), which
is similar to the experiment. All snapshots are taken
after roughly the same amount of drainage has
occurred.

Although the mean flow profile is similar in the
spot and void simulations and reasonably close to
experiment, the void simulation displays far too
much diffusion and mixing, since the initial horizon-
tal stripes are completely mixed down to the single
particle level inside the flow region. In contrast,
the interfaces between the colored layers remain
fairly sharp in the spot simulation, as in experiments
and the DEM simulation. The diffusion of individ-
ual tracer particles is also described fairly well, thus
justifying the mathematical analysis below. Without
packing constraints, however, hyper-uniformity is
gradually lost, as particles begin to overlap and
open gaps, which is most apparent in the regions
of highest shear near the orifice.

3.3. Multiscale spot simulations

Next, we discuss simulations by Rycroft et al.
(2005) using the multiscale algorithm in Fig. 4
(with an internal relaxation step) applied to a
three-dimensional drainage simulation, starting
from the same initial condition and geometry as
the DEM simulation in Fig. 5(d). The basic spot-
induced particle dynamics is the same as before,
only in three dimensions (with uniform spherical
spots) in order to avoid the strong tendency for hard
disks to crystalize in two dimensions. A minor
change is that the spot influence is centered on the
midpoint of each spot displacement (rather than
the end).

We employ the simplest possible relaxation
scheme, where each pair of overlapping particles
in a relaxation zone (a sphere of diameter, ds + 4d)
is pushed apart by a displacement, a«(d — r) propor-
tional to the overlap, d — r, while keeping particles
fixed outside a sphere of diameter, ds + 2d. It turns
out that the particle displacements in the relaxation
step (Fig. 4(b)) are typically at least four times smal-
ler than those in the basic spot step (Fig. 4(a)).
Therefore, the mean cooperative motion (Fig. 4(c))
is quite consistent with the simple picture of original
model.

A spot simulation with similar parameters as
above, including such a relaxation step with o =
0.8, is shown in Fig. 5(c). The rate of introducing
spots at the orifice and their upward drift velocity
has also been calibrated for comparison to the
DEM simulation, at the same instant in time.
Clearly, the simple relaxation is able to preserve
realistic random packings, and in many ways the
spot simulation in Fig. 5(c) is indistinguishable from
the much more computationally demanding DEM
simulation in Fig. 5(d). Not only are the mean
velocity profile and diffusion length reproduced,
but so are various microscopic statistics of the pack-
ing geometry, such as the two-body and three-body
correlation functions (Rycroft et al., 2005).

These surprising results seem quite insensitive to
the details of the relaxation step, although this issue
requires further study. The robust behavior of the
multiscale algorithm seems due to the cooperative
(block-like) nature of spot-induced displacements,
which causes particle overlaps to be extremely small
and infrequent. Another, deeper reason may be that
the geometry of dense flowing random packings has
universal features, which may be achieved by the
totally different dynamics of spot and DEM simula-
tions. In any case, the ability to simulate flowing
dense random packings by an efficient algorithm
(at least 100 times faster than DEM) could have
broad applicability for disordered materials, not
just granular flow.

4. Mathematical analysis of diffusion
4.1. A non-local, nonlinear SDE

In this section, we return to the general formu-
lation of the Spot Model and analyze tracer
diffusion in the continuum limit. It is clear from
the simulations in Fig. 5 that the basic model in
Fig. 2 gives a reasonable description of the
dynamics of a single particle tracer, even though
the multiscale relaxation step in Fig. 4 is needed
to preserve realistic packings. The relatively small
size of the relaxation displacements makes it rea-
sonable to regard them a small additional “noise”
in a mathematical analysis of tracer diffusion. Here,
we will neglect this small (but complicated) noise
and view its average effect as incorporated statisti-
cally into the spot influence function, w(rp,r;), in
Eq. (4).

We begin by partitioning space as shown Fig. 6,
where the nth volume element, AV", centered at r("
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Fig. 6. Sketch of a particle interacting with passing spots,
showing some the quantities in Eq. (15).

contains a random number, AN, of spots at time
(typically one or zero). In a time interval, Az, sup-
pose that the jth spot in the nth volume element
makes a random displacement, ARY" (which could
be zero). According to Eq. (4), the total displace-
ment, AR, of a particle at r,, in time At is then given
by a sum of all the random displacements induced
by nearby moving spots,

AN
=33  wirp,r" + ARVV)ARYY. (14)
n Jj=1

Note that the spatio-temporal distribution of spots,
AN g”), is another source of randomness, in addition
to the individual spot displacements, AR?””, so that
each particle displacement is given by a random sum
of random variables.

In the limit of infinitesimal displacements, we
arrive at a non-local, nonlinear stochastic differen-
tial equation (SDE)

/dN rs, w(r, (1), 1s
+ dR(r, ))dRy(rs, 1), (15)

where the stochastic integral is defined by the usual
limit (infinitely refined partition of space) of the
random Riemann sum in Eq. (14). This equation
differs from standard nonlinear SDEs (Risken,
1996) in two basic ways: (i) the tracer trajectory,

0= [ ary(o) (16)

is passively driven by a stochastic distribution of
moving influences (spots), dN(rs, ), which evolves
in time and space, rather than by some internal
source of independent noise, and (ii) the stochastic
differential, dR(¢), is given by a non-local integral
over other stochastic differentials, dRy(rs, ), associ-
ated with these moving influences, which liec at
positions, rs, at finite distances away from the
particle at r,.

4.2. The continuum limit

In general, the various stochastic differentials in
Eq. (15) are correlated, which significantly compli-
cates analysis. Here, we will make the reasonable
first approximation of an ideal gas of spots, where
the tracer particle sees an independent, random
configuration of non-interacting spots at each infin-
itesimal time step. As in an ideal gas (Hadji-
constantinou et al., 2003), spots are thus distributed
according to a Poisson process with a given mean
density, p4(rs,?). In addition to neglecting correla-
tions caused by interactions between spots, we disre-
gard the following facts: (i) the distribution of spots
in space, {dNy(r, )}, at time ¢ depends explicitly on
the distribution and displacements at the previous
time, ¢ — d¢, via the spot random walks; (ii) each
spot, due to its finite range of influence, affects the
same particle for a finite period of time, so any per-
sistence (autocorrelation) in the spot trajectory is
transferred to the particles, in a nonlinear fashion
controlled by w(r,ry).

In the spot-gas approximation, the tracer particle
performs a random walk with independent (but
non-identically distributed) displacements, which
depend non-locally on a Poisson process for find-
ing spots. Therefore, the propagator, Py(r,tro, %),
which gives the probability density of finding the
particle at r at time ¢ after being at ry at time ¢, sat-
isfies a following Fokker—Planck equation (Risken,
1996), which takes the following form:

0P,
6—+V (u,Pp) = VV: (D,Py) (17)
with drift velocity,
_ (dRy(r,0)) _ (AR (r, 1))
up(r, ) = A A (18)
and diffusivity tensor,
(dR* dR?)
o _
DY (r, 1) = —_B (19)

2d¢



726 M.Z. Bazant | Mechanics of Materials 38 (2006) 717731

(Here VV: A denotes >_,>, ai?gf}.) The Fokker—
Planck coefficients may be calculated by taking the
appropriate expectations using Eq. (14) in the limits
AV — 0 and At — 0 (in that order), which is
straightforward since we assume that spots do not
interact. Here, the spot displacements, ARV (r("),
and the local numbers of spots, AN g”), are indepen-
dent random variables in each time interval, and
they are independent of the same variables at earlier
times.

In order to calculate the drift velocity, we need
only the mean spot density, p4(rs,?), defined by
(AN™Y = p (s, t)AV™. The result,

Uy (. 1) = — / AV (. 1) [p, (e (55, 1)
- 2Ds(r57 t) ' Vps(rs, t)] (20)

exhibits two sources of drift. The first term in the
integrand is a particle drift velocity, which opposes
the spot drift velocity,

(dRq(r, 7))
dt

as in Eq. (9). The second term, which depends on

the spot diffusion tensor,

@ qp\)
(i) _ <dRs dRs >
D (r ) 2dr

contains some ‘“‘noise-induced drift”, typical of non-
linear SDEs (Risken, 1996), which causes particles
to climb gradients in the spot density. This extra
drift is crucial to ensure that particles eventually
move toward the source of spots, e.g. the orifice in
granular drainage. Both contributions to the drift
velocity in Eq. (20) are averaged non-locally over
a finite region, weighted by the spot influence func-
tion, w(rp,rs).

In order to calculate the diffusivity tensor, we
also need information about fluctuations in the spot
density. From the spot-gas approximation, we have
(ANVYAN™) = 6,,,,((AN()) = O((AV)"),

S

u(r, 1) = (21)

(22)

where v =1 for a Poisson process and v <1 for a
hyper-uniform process (Torquato and Stillinger,
2003). It turns out that such fluctuations do not con-
tribute to the diffusion tensor (in more than one
dimension), and the result is

Dy(r,, 1) = / AV oty 1) 0. (0 DT ). (23)

Note that the influence function, w, appears squared
in Eq. (23) and linearly in Eq. (20), which causes the

Péclet number for tracer particles to be of order w
smaller than that of spots (or free volume), as in
Eq. (11).

Higher-order terms a Kramers—Moyall expan-
sion generalizing Eq. (17) for finite independent dis-
placements, which do depend on fluctuations in the
spot density, are straightforward to calculate, but
beyond the scope of this paper. Such terms are usu-
ally ignored because, in spite of improving the
approximation, they tend to produce small negative
probabilities in the tails of distributions (Risken,
1996). In granular materials, however, velocity gra-
dients can be highly localized, so the correction
terms could be useful.

4.3. Spatial velocity correlation tensor

For any stochastic process representing the
motion of a single particle, it is well-known that
transport coefficients can be expressed in terms of
temporal correlation functions via the Green—Kubo
relations (Risken, 1996). For example, the diffusiv-
ity tensor in a uniform flow is given by the time inte-
gral of the velocity auto-correlation tensor,

D;ﬁ = /OC dt(Ug(t)U€(0)>, (24)

where U,(¢) ={U;} =dR,/d¢ is the stochastic
velocity of a particle. (A similar relation holds for
spots.)

In the Spot Model, nearby particles move coop-
eratively, so the transport properties of the collec-
tive system also depend on the two-point spatial
velocity correlation tensor,

() UB(r))
VAU ) UL r))

which is normalized so that C;ﬁ (r,r)=1. We
emphasize that the expectation above is conditional
on finding two particles at r; and r, at a given
moment in time and includes averaging over all pos-
sible spot distributions and displacements. Substi-
tuting the SDE (15) into Eq. (25) yields

Ch(ry,rs) = / AV, (ks )w(rs, £ )w(rs, 1) D2 (r,)

/ D (1) D (ry) (26)

assuming independent spot displacements.
Eq. (26) is an integral relation for cooperative dif-
fusion, which relates the spatial velocity correlation

; (25)

Coh(ry,m) =
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tensor to the spot (or free volume) diffusivity tensor
via integrals of the spot influence function, w(r,ry).
If the statistical dynamics of spots is homogeneous
(in particular, if Dy is constant), then the relation
simplifies

JdVpy(rs)w(ry,rg)w(r,xy)
desps(IS)W(rl7r8)2de;ps(rg)W(r27r;)2
(27)
if also the tensor is diagonal, D* o J, . If the statis-
tical dynamics of particles is also homogeneous, as

in a uniform flow (ps = constant), then it simplifies
even further

_ JdVw(r — r)w(-r,)
Jdvow(r,)’

where we have assumed that the spot influence
function, and thus the correlation tensor, is transla-
tionally invariant (r =r; — r3). In this limit, as men-
tioned above, the velocity correlation function is
simply given by the (normalized) overlap integral
for spot influences separated by r.

C;ﬁ(rl,rz) =

Cch(r) , (28)

4.4. Relative diffusion of two tracers

The spatial velocity correlation function affects
many-body transport properties. For example, the
relative displacement of two tracer particles, r =
r; — I», has an associated diffusivity tensor given by

D“ﬁ(rl s 1‘2) = D;’B(l'l) + Dg/}(rz) — ZCf,ﬁ(r] s 1'2)

X ,/Dg“(rl)Dgﬁ(rz). (29)

In a uniform flow, the diagonal components take
the simple form

D™ (r) = 2D7(1 — C(1)), (30)

which may be used above to estimate the cage-
breaking time, as the expected time for two particles
diffuse apart by more than one particle diameter. A
more detailed calculation of the relative propagator,
P(r,t]rg, tp), neglecting temporal correlations (as
above) would start from the associated Fokker—
Planck equation,

w =VV: (D(r)P(r,?)) (31)
with a delta-function initial condition. (In a non-
uniform flow, one must also account for noise-
induced drift and motion of the center of mass.)

This analysis does not enforce packing constraints,
so it allows for two particles to be separated by less
than one diameter. A hard-sphere repulsion may be
approximated by a reflecting boundary condition at
Ir| =d when solving equations such as (31), but
there does not seem to be any simple way to enforce
inter-particle forces exactly in the analysis.

5. Tracer diffusion in granular drainage
5.1. Statistical dynamics of spots

The analysis in the previous section makes no
assumptions about spots, other than the existence
of well-defined local mean density, mean velocity,
and diffusion tensor, which may depend on time
and space. As such, the results may have relevance
for a variety of dense disordered systems exhibiting
cooperative diffusion (see below). In this section, we
apply the analysis to the specific case of granular
drainage, in which spots diffuse upward from a silo
orifice, as in Fig. 5. Our goal here is simply to show
how to derive continuum equations from the Spot
Model in a particular case, but not to study any
solutions in detail.

For simplicity, let us assume that each spot
undergoes mathematical Brownian motion with a
vertical drift velocity, us = vsz, and a diagonal diffu-
sion tensor,

D 0 0
D;=| 0 D& o0 [, (32)
0o o Dl

which allows for a different diffusivity in the hori-
zontal (L) and vertical (||) directions due to symme-
try breaking by gravity. In that case, the propagator
for a single “spot tracer”, Py(X,z, |Xo, Zo, ), satisfies
another Fokker—Planck equation,

oP, GR
P =V DR S 0P). ()
The coefficients may depend on space (e.g. larger
velocity above the orifice than near the stagnant re-
gion), as suggested by the shape of some experimen-
tal density waves (Baxter et al., 1989).

The geometrical spot propagator, Z(x | z, Xo, o),
is the conditional probability of finding a spot at
horizontal position x once it has risen to a height
z from an initial position (X,zp). For constant v
and Dy, the geometrical propagator satisfies the dif-
fusion equation,
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0P
0z

where b = D} vy is the kinematic parameter. If spots
move independently, this equation is also satisfied
by the steady-state mean spot density, py(X, z), anal-
ogous to Eq. (5) of the Kinematic Model. However,
the mean particle velocity in the Spot Model, Eq.
(20), is somewhat different, as it involves non-local
effects (see below).

The time-dependent mean density of spots,
ps(X,z,1), depends on the mean spot injection rate,
O(X0,z0,1) (number/area X time), which may vary
in time and space due to complicated effects such
as arching and jamming near the orifice. It is natural
to assume that spots are injected at random points
along the orifice (where they fit) according to a
space-time Poisson process with mean rate, Q. In
that case, if spots do not interact, the spatial distri-
bution of spots within the silo at time ¢ is also a
Poisson process with mean density,

=bVi P, (34)

(X, z,t) = /dxo/dzo dtyQO(x0, 29, t)
to<t
X PS<X,Z7t ‘ XQ,Zo,to). (35)

For a point-source of spots (i.e. an orifice roughly
one spot wide) at the origin with flow rate, Qy(7)
(number/time), this reduces to

ps(X,Z, [) = / dtOQO([O)PS(va;t | 0;0;[0)7 (36)
o<t

where Pg is the usual Gaussian propagator for Eq.
(33) in the case of constant u; and Ds. In reality,
spots should weakly interact, but the reasonable
description by the Kinematic Model suggests that
spots diffuse independently as a first approximation
in granular drainage (Choi et al., 2005).

5.2. Statistical dynamics of particles

Integral formulae for the drift velocity and diffu-
sivity tensor of a tracer particle may be obtained by
substituting the spot density which solves Eq. (35)
into the general expressions (20) and (23), respec-
tively. For example, if spots only diffuse horizon-
tally (D! =0), then the mean downward velocity
of particles is given by

0y (r, 1) = / AV vty 1) pu (e £)0(Ees ). (37)

Note that the mean particle velocity is a non-local
average of nearby spot drift velocities.

For simplicity, let us consider a bulk region
where the spot density varies on scales much larger
than the spot size. In this limit, the integrals over the
spot influence function reduce to the following
“interaction volumes”:

Vi(r) = / drow(r,r)* (38)

for k=1,2. (Note that V'; = V above.) The equa-
tion for tracer-particle dynamics (17) then takes
the form,

oP, 0 1 9ps
E_a_zli(vsps_zDs . VIPp —ZVJ_

2

0
: (DSL(VLPS) VIPp) @ (D!psVZPP)

£V (DEp VaPy). (39)

Again, it is clear that rescaling the spot density is
equivalent to rescaling time.

When the spot dynamics is homogeneous (i.e. u
and Dy are constants), Eq. (39) simplifies further

1 0P 0 1wr, O
USVSailp: (62+pr +bp@ (pst)

0 op
_9hly. _pll 2 s
2b~V - (P,Vp,) —2b % (Pp 62)7

(40)

where b* = b = D! /v, and bl = Dl /v, are the spot
diffusion lengths and b; =b,V,/V, and b‘rl) =
B! V,/V, are the particle diffusion lengths. In this
approximation, the latter are given by the simple
formula,

ﬁ—b_l_ deSW(r’rS)z (41>
bt bl [dVaw(r,r)

which generalizes Eq. (11) for a uniform spot with a
sharp cutoff. The physical meaning of the diffusion
lengths becomes more clear in the limit of uniform
flow, ps = constant. In terms of the position in a
frame moving with the mean flow, (=t —z,

where v, = v, Vp,, we arrive at a simple diffusion
equation,

oP o
a—c" = (bgvi +b) @> Py, (42)

where {, the mean distance dropped, acts like time,
consistent with the experimental findings of Choi
et al. (2004).
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6. Possible application to glasses

We have seen that the Spot Model, in its simplest
form, accurately reproduces the kinematics of bulk
granular drainage, so it is tempting to speculate that
it might be extended to flows in other amorphous
materials. In this section, we briefly consider evi-
dence for spot-like dynamics in glasses, but we leave
further extensions of the Spot Model for future
work.

Experiments have revealed ample signs of
“dynamical heterogeneity” in supercooled liquids
and glasses (Hansen and McDonald, 1986; Kob,
1997; Angell et al., 2000), but the direct observation
of cooperative motion has been achieved only
recently. Rather than compact regions of relaxation,
Donati et al. (1998) have observed “string-like”
relaxation in molecular dynamics simulations of a
Lennard-Jones model glass. The strength and length
scale of correlations increases with decreasing tem-
perature, consistent with the Adam—Gibbs hypothe-
sis. Such cooperative motion would be difficult to
observe experimentally in a molecular glass, but
Weeks et al. (2000) have used confocal microscopy
to reveal three-dimensional clusters of faster-mov-
ing particles in a dense colloids. In the supercooled
liquid phase, clusters of cooperative relaxation have
widely varying sizes, which grow as the glass transi-
tion is approached. In the glass phase, the clusters
are much smaller, on the order of ten particles,
and do not produce significant rearrangements on
experimental time scales.

These observations suggest that the Spot Model
may have relevance for structural rearrangements
in simple glasses. String-like relaxation is reminis-
cent of the trail of a spot, in Fig. 3. An atomically
thin chain might result from the random walk of a
spot, roughly one particle in size, but carrying less
than one particle of free volume. Larger regions of
correlated motion might involve larger spots and/
or collections of interacting spots. Some key fea-
tures of the experimental data of Weeks et al.
(2000) seem to support this idea: (i) correlations
take the form of “neighboring particles moving in
parallel directions”, as in Fig. 2; and (ii) the large
clusters of correlated motion tend to be fractals of
dimension two, as would be expected for the ran-
dom-walk trail of a spot, as in Fig. 2(b). For a com-
plete theory of the glass transition, however, one
would presumably have to consider interactions
between spots and thermal activation of their crea-
tion, motion, and annihilation.

7. Conclusion

In this paper, we have introduced a mechanism
for structural rearrangements of dense random pac-
kings, due to diffusing spots of free volume. Even
without inter-particle forces, the Spot Model gives
a reasonable description of tracer dynamics, which
is trivial to simulate and amenable to mathematical
analysis, starting from a non-local stochastic differ-
ential equation. With a simple relaxation step to
enforce packing constraints, the Spot Model can
efficiently produce very realistic flowing packings,
as demonstrated by the case of granular drainage
from a silo. The spot mechanism may also have rel-
evance for glassy relaxation and other phenomena
in amorphous materials.

Regardless of various material-specific applica-
tions, the ability to easily produce three-dimensional
dense random packings is interesting in and of itself.
Current state-of-the-art algorithms to generate
dense random packings are artificial and computa-
tionally expensive, especially near jamming (Torqu-
ato et al., 2000; Kansal et al., 2002; O’Hern et al.,
2002, 2003). A popular example is the molecular
dynamics algorithm of Lubachevsky and Stillinger,
1990, which simulates a dilute system of interacting
particles, whose size grows linearly in time until
jamming occurs. For each random packing gener-
ated, however, a separate molecular dynamics simu-
lation must be performed. In contrast, the Spot
Model produces a multitude of dense random
packings (albeit with some correlations between
samples) from a single simulation, which is more
efficient than molecular dynamics, since it does not
require the mechanical relaxation of all particles at
once. It would be interesting to characterize the
types of dense packings generated by the Spot
Model and compare with the results of other algo-
rithms. The sensitivity of the results to the choices
of spot influence function, relaxation procedure,
and parameters should also be studied syste-
matically.

The Spot Model (with relaxation) also provides a
convenient paradigm for multiscale modeling and
simulation of amorphous materials, analogous to
defect-based modeling of crystals. The iteration
between global “mesoscopic” simulation of spots
and local “microscopic” simulation of particles
leads to a tremendous savings in computational
effort, as long as the spot dynamics is physically
realistic for a given system. For example, a simple
extension of the multiscale simulations of granular
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spheres by Rycroft et al. (2005) would be to different
particle shapes, such as ellipsoids, which have been
shown to pack more efficiently than spheres (Donev
et al., 2004a). The only change in the simulation
would be to modify the inter-particle forces in the
relaxation step for a soft-core repulsion with a dif-
ferent shape.

A more challenging and fruitful extension would
be to incorporate mechanics into the multiscale sim-
ulation, beyond geometrical packing constraints.
One way to do this may be use the information
about inter-particle forces in the spot relaxation step
to estimate local stresses, which could then affect the
dynamics of spots. Perhaps discrete spot dynamics
could also be connected to classical continuum
models of granular materials, such as Mohr—Cou-
lomb plasticity theory (Nedderman, 1991). It may
also be necessary to move particles directly in
response to mechanical forces, in addition to the
random cooperative displacements caused by spots.
Such extensions seem necessary to describe forced
shear flows in granular and glassy materials. For
now, at least we have a reasonable model for the
kinematics of random packings.
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