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Conformal mapping has been applied mostly to harmonic functions, i.e. solutions
of Laplace’s equation. In this paper, it is noted that some other equations are also
conformally invariant and thus equally well suited for conformal mapping in two
dimensions. In physics, these include steady states of various nonlinear diffusion
equations, the advection—diffusion equations for potential flows, and the Nernst—
Planck equations for bulk electrochemical transport. Exact solutions for complicated
geometries are obtained by conformal mapping to simple geometries in the usual
way. Novel examples include nonlinear advection—diffusion layers around absorbing
objects and concentration polarizations in electrochemical cells. Although some of
these results could be obtained by other methods, such as Boussinesq’s streamline
coordinates, the present approach is based on a simple unifying principle of more
general applicability. It reveals a basic geometrical equivalence of similarity solutions
for a broad class of transport processes and paves the way for new applications of
conformal mapping, e.g. to non-Laplacian fractal growth.
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1. Introduction

Complex analysis is one of the most beautiful subjects in mathematics, and, despite
involving imaginary numbers, it has remarkable relevance for ‘real’ applications. One
of its most useful techniques is conformal mapping, which transforms planar domains
according to analytic functions, w = f(z), with f’(2) # 0. Geometrically, such
mappings induce upon the plane a uniform, local stretching by | f/(z)| and a rotation
by arg f’(z). This ‘ampli-twist’ interpretation of the derivative implies conformality:
the preservation of angles between intersecting curves (Needham 1997).
The classical application of conformal mapping is to solve Laplace’s equation:

V24 =0, (1.1)

i.e. to determine harmonic functions in complicated planar domains by mapping to
simple domains. The method relies on the conformal invariance of equation (1.1),
which remains the same after a conformal change of variables. Before the advent of
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computers, important analytical solutions were thus obtained for electric fields in
capacitors, thermal fluxes around pipes, inviscid flows past airfoils, etc. (Needham
1997; Churchill & Brown 1990; Batchelor 1967). Today, conformal mapping is still
used extensively in numerical methods (Trefethen 1986).

Currently in physics, a veritable renaissance in conformal mapping is centering
around ‘Laplacian-growth’ phenomena, in which the motion of a free boundary is
determined by the normal derivative of a harmonic function. Continuous problems of
this type include viscous fingering, where the pressure is harmonic (Saffman & Taylor
1958; Bensimon et al. 1986; Saffman 1986), and solidification from a supercooled
melt, where the temperature is harmonic in some approximations (Kessler et al.
1988; Cummings et al. 1999). Such problems can be elegantly formulated in terms of
time-dependent conformal maps, which generate the moving boundary from its initial
position. This idea was first developed by Polubarinova-Kochina (1945a,b) and Galin
(1945) with recent interest stimulated by Shraiman & Bensimon (1984) focusing on
finite-time singularities and pattern selection (Howison 1986, 1992; Tanveer 1987,
1993; Dai et al. 1991; Ben Amar 1991; Ben Amar & Brener 1996; Ben Amar & Poiré
1999; Feigenbaum et al. 2001).

Stochastic problems of a similar type include diffusion-limited aggregation (DLA)
(Witten & Sander 1981) and dielectric breakdown (Niemeyer et al. 1984). Recently,
Hastings & Levitov (1998) proposed an analogous method to describe DLA using
iterated conformal maps, which initiated a flurry of activity applying conformal map-
ping to Laplacian fractal-growth phenomena (Davidovitch et al. 1999, 2000; Barra
et al. 2002a,b; Stepanov & Levitov 2001; Hastings 2001; Somfai et al. 1999; Ball
& Somfai 2002). One of our motivations here is to extend such powerful analytical
methods to fractal growth phenomena limited by non-Laplacian transport processes.

Compared with the vast literature on conformal mapping for Laplace’s equation,
the technique has scarcely been applied to any other equations. The difficulty with
non-harmonic functions is illustrated by Helmholtz’s equation,

Vi =g, (1.2)

which arises in transient diffusion and electromagnetic radiation (Morse & Feshbach
1953). After conformal mapping, w = f(z), it acquires a cumbersome, non-constant
coefficient (the Jacobian of the map):

[/'PV?6 = o. (1.3)
Similarly, the biharmonic equation,
V2iVvie =0, (1.4)

which arises in two-dimensional viscous flows (Batchelor 1967) and elasticity (Mus-
khelishvili 1953), transforms with an extra Laplacian term (see below):

PPV = 4|2V, (15)

In this special case, conformal mapping is commonly used (e.g. Chan et al. 1997,
Crowdy 1999, 2002; Barra et al. 2002b) because solutions can be expressed in terms
of analytic functions in Goursat form (Muskhelishvili 1953). Nevertheless, given the
singular ease of applying conformal mapping to Laplace’s equation, it is natural

Proc. R. Soc. Lond. A (2004)



Conformal mapping of some non-harmonic functions 1435

w-plane /-’—\

z-plane

w=f(2)

¢ (w, w) o (£ F@)

Figure 1. Conformal mapping, w = f(z), of a solution, ¢, to a conformally invariant
equation from a complicated domain, {2,, and a simple domain, {2,.

to ask whether any other equations share its conformal invariance, which is widely
believed to be unique.

In this paper we show that certain systems of nonlinear equations, with non-
harmonic solutions, are also conformally invariant. In §2, we give a simple proof of
this fact and some of its consequences. In §3, we discuss applications to nonlinear
diffusion phenomena and show that single conformally invariant equations can always
be reduced to Laplace’s equation (which is not true for coupled systems). In §4, we
apply conformal mapping to nonlinear advection—diffusion in a potential flow, which
is equivalent to streamline coordinates in a special case (Boussinesq 1905). In §5,
we apply conformal mapping to nonlinear electrochemical transport, apparently for
the first time. In § 6, we summarize the main results. Applications to non-Laplacian
fractal growth are a common theme throughout the paper (see §§2, 4 and 6).

2. Mathematical theory
(a) Conformal mapping without Laplace’s equation?

The standard application of conformal mapping is based on two facts.

(i) Any harmonic function, ¢, in a singly connected planar domain, {2,,, is the real
part of an analytic function, @, the ‘complex potential’ (which is unique up to
an additive constant): ¢ = Re ®(w).

(ii) Since analyticity is preserved under composition, harmonicity is preserved
under conformal mapping, so ¢ = Re®(f(z)) is harmonic in £2, = f~1(§2,,).

Presented like this, it seems that conformal mapping is closely tied to harmonic func-
tions, but fact (ii) simply expresses the conformal invariance of Laplace’s equation:
a solution, ¢(w), is the same in any mapped coordinate system, ¢(f(z)). Fact (i),
a special relation between harmonic functions and analytic functions, is not really
needed. If another equation were also conformally invariant, then its non-harmonic
solutions, ¢(w,w), would be preserved under conformal mapping in the same way,

¢(f(2), f(2)) (see figure 1).

In order to seek such non-Laplacian invariant equations, we review the transfor-
mation properties of some basic differential operators. Following Argand and Gauss,
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it is convenient to represent two-dimensional vectors, @ = a,Z + a,y, as complex
numbers, a = a, + a,i. We thus express the gradient vector operator in the plane as
a complex scalar operator:t

V::f:—ﬂj/2 — V:g+ 0

which has the essential property that Vf = 0 if and only if f is analytic, in which
case, Vf = 2f" (Needham 1997). Since a - b = Re ab, the Laplacian operator can be
expressed as V-V =ReVV = VV (if mixed partial derivatives can be taken in any
order). Similarly, the ‘advection operator’, which acts on two real functions ¢ and c,
takes the form V¢ - Ve = Re(V¢)Ve.

Under a conformal mapping of the plane, w = f(z), the gradient transforms as
V. = f'V,. This basic fact, combining the ampli-twist property and the chain rule,
makes it easy to transform differential operators (Needham 1997). The Laplacian
transforms as

vzvz = (vzf/>ﬁw + |f/|2vwﬁw = |f/‘2vwﬁwa (2-2)

where V, f/ = 0 because f’ is also analytic. This immediately implies the conformal
invariance of Laplace’s equation (1.1), and the non-invariance of Helmholtz’s equa-
tion (1.2). The transformation of the biharmonic equation (1.4) in equation (1.5) is
also easily derived with the help of Needham'’s identity, A|f|? = 4| f/|2, applied to f’.

Everything in this paper follows from the simple observation that the advection
operator transforms just like the Laplacian:

Re(Vz¢)V.c = | f'|* Re(Vid) Ve (2.3)

Each operator involves a ‘dot product of two gradients’, so the same Jacobian factor,
|f'|?, appears in both cases. The transformation laws, equations (2.2) and (2.3), are
surely well known, but it seems that some general implications have been overlooked,
or at least not fully exploited in physical applications.

(b) Conformally invariant systems of equations

The identities (2.2) and (2.3) imply the conformal invariance of any system of
equations of the general form

N

N
> (ai(@v%m + 2 ai( @)V V@) =0, (24)

=1

where the coefficients a;(¢) and a;;(¢) may be nonlinear functions of the unknowns,
¢ = (¢1,P2,...,0N), but not of the independent variables or any derivatives of the
unknowns. Thus we arrive at our main result.

Theorem 2.1 (conformal mapping theorem). Let ¢(w,w) satisfy equation
(2.4) in a domain (2,, of the complex plane, and let w = f(z) be a conformal mapping
from {2, to £2,,. Then ¢(f(z), f(2)) satisfies equation (2.4) in §2,.

t Although 0/0z = %V is more common in the mathematical literature, we prefer V for applications
in transport theory because gradients play a central role.
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Whenever the system (2.4) can be solved analytically in some simple domain, the
theorem produces a family of exact solutions for all topologically equivalent domains.
Otherwise, it allows a convenient numerical solution to be mapped to more compli-
cated domains of interest. This is an enormous simplification for free boundary prob-
lems, where the solution in an evolving domain can be obtained by time-dependent
conformal mapping to a single, static domain.

Conformal mapping is most useful when the boundary conditions are also invariant.
Dirichlet (¢; = const.) or Neumann (7 - V¢; = 0) conditions are typically assumed,
but here we consider the straightforward generalizations

N
bi(¢) =0 and Zbij(qb)(ﬁ V)% =0, (2.5)

respectively, where b;(¢) and b;;(¢) are nonlinear functions of the unknowns, a; is
a constant, and 7 is the unit normal. The conformal invariance of the former is
obvious, so we briefly consider the latter.

It is convenient to locally transform a vector field F' along a given contour as
F = tF, so that Re F and Im F are the projections onto the unit tangent, t = dz/|dz|,
and the (right-handed) unit normal, n = —it, respectively. Since the tangent trans-
forms as t,, = t.f'/|f’|, and the gradient as VZ = f'V, we find that V, = |f'|V,.
The invariance of equation (2.5) follows after taking the imaginary part on the bound-
ary contour.

(¢) Gradient-driven fluzx densities

Generalizing V¢ for Laplacian problems, we define a ‘flux density’ for solutions of
equation (2.4) to be any quasilinear combination of gradients:

N
F, =) cij(¢)Ve;, (2.6)
j=1

where ¢;;(¢) are nonlinear functions. The transformation rules above for the gradient
apply more generally to any flux density:

F.=fF, and F.=|f'|F,. (2.7)

These basic identities imply a curious geometrical equivalence between solutions to
different conformally invariant systems.

Theorem 2.2 (equivalence theorem). Let qb(l) and ¢(2) satisfy equations of
the form (2 4) with corresponding flux densities F() and F?) of the form (2, 6 If
FZ( ) — aF on a contour C, for some complex constant a, then F =aly (2
the image C,, = f(C,) after a conformal mapping w = f(z).

An important corollary pertains to ‘similarity solutions’ of equations (2.4) and (2.5)
in which certain variables {¢;} involved in a flux density depend on only one Carte-
sian coordinate, say Rew, after conformal mapping: ¢; = G;(Re f(2)). (Our exam-
ples below are mostly of this type.) Such special solutions share the same flux lines
(level curves of Im f(z)) and iso-potentials (level curves of Re f(z)) in any geometry
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attainable by conformal mapping. They also share the same spatial distribution of
flux density on an iso-potential, although the magnitudes generally differ.

An important physical quantity is the total normal flux through a contour, often
called the ‘Nusselt number’, Nu. For any contour C, we define a complex total flux

I(C’)—/CF|dz|—/CFdz,

such that ReI(C) is the integrated tangential flux and ImI(C) = Nu(C). From
equation (2.7) and dw = f’dz, we conclude that I(C,) = I(Cy). Therefore, flux
integrals can be calculated in any convenient geometry.

This basic fact has many applications. For example, if F,, is constant on a contour
Cw = f(C}), then for any conformal mapping, we have I(C,) = I(Cy) = {(Cy)Fy,
where £(C),) is simply the length of C\,. For fluxes driven by gradients of harmonic
functions, this is the basis for the method of iterated conformal maps for DLA,
in which the ‘harmonic measure’ for random growth events on a fractal cluster is
replaced by a uniform probability measure on the unit circle (Hastings & Levitov
1998).

More generally, a non-harmonic probability measure for fractal growth can be
constructed for any flux law of the form (2.6) for fields satisfying equation (2.4).
According to the results above, the growth probability is simply proportional to the
normal flux density on the unit circle for the same transport problem after conformal
mapping to the exterior of the unit disc. A non-trivial example is given below in §4 c.
This allows the Hastings—Levitov method to be extended to a broad class of non-
Laplacian fractal-growth processes (Bazant et al. 2003).

(d) Conformal mapping to curved surfaces

The conformal mapping theorem is even more general than it might appear from
our proof. The domain {2, may be contained in any two-dimensional manifold. This
becomes clear from the recent work of Entov & Etingof (1991, 1997), who solved
viscous fingering problems on various curved surfaces by conformal mapping to the
complex plane, e.g. via stereographic projection from the Riemann sphere. They
exploited the fact that Laplace’s equation is invariant under any conformal mapping,
w = f(z), from the plane to a curved surface because the Laplacian transforms as
V2 = JV2, where J(f(z)) is the Jacobian. The system (2.4) shares this general
conformal invariance because the advection operator transforms in the same way,
V.-V ,c= JV,¢- Ve The application of these ideas to non-Laplacian transport-
limited growth phenomena on curved surfaces is work in progress with J. Choi and
D. Crowdy; here we focus on conformal mappings in the plane, described by analytic
functions.

3. Physical applications to diffusion phenomena

Conformally invariant boundary-value problems of the form (2.4) and (2.5) com-
monly arise in physics from steady conservation laws,
aCi
ot

—V.F =0, (3.1)
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for gradient-driven flux densities (equation (2.6)) with algebraic (b(¢;) = 0) or zero-
flux (7 - F; = 0) boundary conditions, where ¢; is the concentration and F; the flux
of substance i. Hereafter, we focus on flux densities of the form

E = C;u; — DZ'(C,')VC,', u; X V(ﬁ, (32)

where D;(c¢;) is a nonlinear diffusivity, u; is an irrotational vector field causing advec-
tion, and ¢ is a (possibly non-harmonic) potential. Examples include advection—
diffusion in potential flows and bulk electrochemical transport.

Before discussing these cases of coupled dependent variables, it is instructive to
consider nonlinear diffusion in only one variable. The most general equation of the
type (2.4) for one variable is

a(c) Ve =|Ve|’. (3.3)

This equation arises in the Stefan problem of dendritic solidification, where ¢ is the
dimensionless temperature of a supercooled melt and a(c) is Ivantsov’s function,
which implicitly determines the position of the liquid-solid interface via a(c) = 1
(Ivantsov 1947). In two dimensions, Bedia & Ben Amar (1994) prove the conformal
invariance of equation (3.3) and then study similarity solutions, ¢(&¢,n) = G(n), by
conformal mapping, w = £ 4 in, to a plane of parallel flux lines:

a(Q)G" = (G')?, (3.4)

where an ordinary differential equation is solved.

More generally, reversing these steps, it is straightforward to show that any mono-
tonic solution of equation (3.4) produces a nonlinear transformation ¢ = G(¢) from
equation (3.3) to Laplace’s equation (1.1), which implies conformal invariance. There
are several famous examples. For steady concentration-dependent diffusion,

V - (D(¢)Ve) =0, (3.5)
it is Kirchhoff’s transformation (Crank 1975): ¢ = G~'(c) = [; D(z) dz. For Burg-
ers’s equation in an irrotational flow (v = —Vh),

%—1‘ +\u- Vu =vV3u, (3.6)

which is equivalent to the Kardar—Parisi-Zhang equation without noise (Kardar et
al. 1986),
Oh _ g2y, + 2AVA|?, (3.7)
ot
it is the Cole-Hopf transformation (Whitham 1974): ¢ = G~ (h) = e*/?", which
yields the diffusion equation 0¢/0t = vV?2¢, and thus Laplace’s equation in steady
state.

In summary, the general solutions to equation (3.3) are simply nonlinear functions
of harmonic functions, so, in the case of one variable, our theorems can be easily
understood in terms of standard conformal mapping. For two or more coupled vari-
ables, however, this is no longer true, except for special similarity solutions. The
following sections discuss some truly non-Laplacian physical problems.
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Figure 2. Concentration profiles (contour plots) and potential-flow streamlines (yellow) for
steady, linear advection—diffusion layers around various absorbing surfaces (grey) at Pe = 1.
All solutions are given by equation (4.3), where w = f(z) is a conformal map to the upper
half-plane (a). The colour scale applies to all panels in figures 2 and 3.
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Figure 3. The steady linear advection—diffusion layer around a cylindrical rim
on a flat plate at Pe = 0.1 (a) and Pe = 10 (b).

4. Steady advection—diffusion in a potential flow

We begin with a well-known system of the form (2.5), the only one to which conformal
mapping has previously been applied (see below), albeit not in the present, more-
general context. Consider the steady diffusion of particles or heat passively advected
in a potential flow, allowing for a concentration-dependent diffusivity. For a charac-
teristic length L, speed U, concentration C, and diffusivity D(C'), the dimensionless
equations are

V2 =0 and PeV¢-Ve=V-(b(c)Ve), (4.1)
where ¢ is the velocity potential (scaled to UL), ¢ is the concentration (scaled to C),
b(c) is the dimensionless diffusivity, and Pe = UL/D is the Péclet number. The
latter equation is a steady conservation law for the dimensionless flux density, F' =
PecV¢ — b(c)Ve (scaled to DC/L). For b(c) = 1, these classical equations have
been studied recently in two dimensions, e.g. in the contexts of tracer dispersion in
porous media (Koplik et al. 1994, 1995), vorticity diffusion in strained wakes (Eames
& Bush 1999; Hunt & Eames 2002), thermal advection—diffusion (Morega & Bejan
1994; Sen & Yang 2000), and dendritic solidification in flowing melts (Kornev &
Mukhamadullina 1994; Cummings et al. 1999).

(a) Similarity solutions for absorbing leading edges

Let us rederive a classical solution in the upper half-plane, w = £ + in (n > 0),
which we will then map to other geometries. As shown in figure 2a, consider a
straining velocity field, ¢ = Re®, & = w?, u = &' = 2w = 2¢ — 2in, which advects a
concentrated fluid, ¢(§, 00) = 1, toward an absorbing wall on the real axis, ¢(§,0) = 0.
Since the n-component of the velocity (toward the wall) is independent of &, as are
the boundary conditions, the concentration depends only on 7. The scaling function,

c(&,m; Pe) = S(V/Pen) = S(7), satisfies
—2nS" = (b(S)S")’, S(0)=0, S(c0)=1, (4.2)
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which is straightforward to solve, at least numerically. For b(S) = 1, equation (4.2)
has a simple, analytical solution, S(7) = erf(7) (e.g. Cummings et al. 1999).

If extended to the entire w-plane, where two fluids of different concentrations
flow towards each other, this solution also describes a Burgers vortex sheet under
uniform strain (Burgers 1948). In that case, (0¢/9¢,0¢/0n, c) plays the role of a
three-dimensional velocity field satisfying the Navier—Stokes equations, and Pe plays
the role of the Reynolds number. Inserting a boundary, such as the stationary wall on
the real axis, however, is not consistent with Burgers’s solution because the no-slip
condition cannot be satisfied. The wall is crucial for conformal mapping to other
geometries because it enables singularities to be placed in the lower half-plane.

For every conformal map to the upper half-plane, w = f(z), we obtain a solution

¢=Ref(z)> and c=S(VPeImf(z)) for Imf(z) >0, (4.3)

which describes the nonlinear advection—diffusion layer in a potential flow of concen-
trated fluid around the leading edge of an absorbing object. For a linear diffusivity
S(n) = erf 7, various examples are shown in figure 2. The choice f(z) =+/z —a in
part (c) describes a parabolic leading edge, = (y/2a)? — a2, where a = Ima > 0.
The limit of uniform flow past a half plate (a = 0) in part (b) is a special case that
is discussed below.

Another classical map, f(z) = 2™/ (?7=8) describes a wedge of opening angle £3,
as shown in part (d) for 3 = 7/2 (after a rotation by m/4). The half plate (3 = 0)
and the flat wall (8 = 7) discussed above are special cases. The diffusive flux on the
surface from equation (4.8), |V¢| x vV Per~", is singular for acute angles 8 < w. The
geometry-dependent exponent v = (m — (3) /(2w — (3) is the same for pure diffusion to
the wedge, ¢q o< Im f(z) (Barenblatt 1995). This insensitivity to Pe is a signature of
the equivalence theorem, as explained below.

The less familiar mapping f(z) = 2%/2 + z='/2, which plays a crucial role in
non-Laplacian growth problems (see below) places a cylindrical rim on the end of
a semi-infinite flat plate, as shown in part (e). The solution has a pleasing form in
polar coordinates:

¢ = (r + i) cos 0, (4.4)
c=erf [\/ﬁ(\f - \};) sin ;9} , (4.5)

where we have shifted the velocity potential, ® = f(2)? —2 = z + z~!. Far from the
rim, we recover the half-plate similarity solution, since f(z) ~ \/z as |z| — oo, but
close to the rim, as shown in figure 3, there is a non-trivial dependence on Pe. For
Pe > 1, a boundary layer of O(Pe~1/2) thickness forms on the front of the rim and
extends to within a distance of O(Pe~'/?) from the rear stagnation point.

The flux density is easily calculated in the w-plane and then mapped to the z-plane
using equation (2.7):

F, = 2P (2)f(z) Pe SWPeIm f(2)) — P2 )VPe S/ (VPeIm f (=), (4.6)

where the first term describes advection and the second diffusion. The lines of advec-
tive flux and diffusive flux, which are level curves of Im f(2)? and Re f(z), respec-
tively, are independent of Pe and b(c), as required by the equivalence theorem. In
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particular, the diffusive flux lines have the same shape for any flow speed or nonlinear
diffusivity, as in the case of simple linear diffusion (Pe = 0, b(c) = 1, ¢ &< Im f(2)),
even though advection and nonlinearity affect the lines of total flux.

The lines of total flux, called ‘heatlines’ in thermal advection—diffusion, are level
curves of the ‘heat function’y (Kimura & Bejan 1983), which we define in complex
notation via VH = iF'. For a linear diffusivity, we integrate equation (4.6) to obtain
the heat function for any conformal mapping:

H = 2Re f(2) | Pe(Im f(2)) erf(vPeIm f(2)) + \/?exp(—Pe(Im N3], @1

which shows how the total-flux lines cross over smoothly from fluid streamlines out-
side the diffusion layer (H ~ Pelm f(2)?, PeIm f(z) > 1) to diffusive-flux lines near
the absorbing surface (H ~ 2y/Pe/m Re f(z), Pelm f(z) < 1).

On the absorbing surface Im f(z) = 0, the flux density is purely diffusive and is
in the normal direction. Its spatial distribution is determined geometrically by the
conformal map,

[E.| = VPeS'(0)[f'(=)] on Im f(z) =0, (48)

and only its magnitude depends on Pe, as predicted by the equivalence theorem. (For
a linear diffusivity, S’(0) = 2/4/m.) What appears to be the only previous result of this
kind is due to Koplik et al. (1994, 1995) in the context of tracer dispersion by linear
advection—diffusion in porous media. In the case of planar potential flow from a dipole
source to an equipotential absorbing sink, they proved that the spatial distribution
of surface flux is independent of Pe. Here we see that the same conclusion holds
for all similarity solutions to equation (4.1), even if (i) diffusive flux is not directed
along streamlines; (ii) the diffusivity is a nonlinear function of the concentration; and
(iii) the domain is on a curved surface.

(b) Streamline coordinates

In proving their equivalence theorem, Koplik et al. (1994, 1995) transform equa-
tion (4.1) in the linear case, b(c) = 1, to ‘streamline coordinates’:

Oc 0% %

Pege = 555+ gun (4.9)

where & = ¢ + iy is the complex potential, ¢ is the velocity potential, and 1 is
the stream function. Because the independent and dependent variables are inter-
changed, this is a type of hodographic transformation (Whitham 1974; Ben Amar &
Poiré 1999). The physical interpretation of equation (4.9) is that advection (the left-
hand side) is directed along streamlines, while diffusion (the right-hand side) is also
perpendicular to the streamlines, along iso-potential lines. In high-Reynolds-number

t Sen & Yang (2000) have recently shown that the heat function satisfies Laplace’s equation, V2H =
0, in certain potential-dependent coordinates, V = e V. This might seem to be related to our
theorems, but it does not provide a basis for conformal mapping of the domain because the coordinate
transformation is not analytic. Its value is also limited by the fact that the boundary conditions on H are
not known a priori. For example, on a surface where the concentration is specified, the unknown flux is
also required. These difficulties underscore the fact that the solutions of equation (4.1) are fundamentally
non-harmonic.
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fluid mechanics, this is a well-known trick due to Boussinesq (1905) that is still in
use today (Hunt & Eames 2002). Streamline coordinates are also used in Maksimov’s
method for dendritic solidification from a flowing melt (Cummings et al. 1999).

Boussinesq’s transformation is simply a conformal mapping to a geometry of uni-
form flow. Any obstacles in the flow are mapped to line segments (branch cuts of
the inverse map) parallel to the streamlines. Among the solutions (4.3), streamline
coordinates correspond to the map f(z) = y/z from a plane of uniform flow past an
absorbing flat plate on the positive real axis (the branch cut), as shown in figure 2b.
In this geometry, we have the boundary-value problem

Oc 9

Pe— =V<c, c¢(z>0,00=0, c(-00,y)=1,

Ox
which Carrier et al. (1983) have solved using the Wiener—Hopf technique. More
simply, Greenspan has introduced parabolic coordinates (as in Greenspan 1961) to
immediately obtain the similarity solution derived above, ¢(x, y) = erf(v/Pen), where
2n%? = —x + /22 + y2. The reason why this solution exists, however, only becomes
clear after conformal mapping to non-streamline coordinates in the upper half-plane
(see also Cummings et al. 1999).

As this example illustrates, streamline coordinates are not always convenient, so
it is useful to exploit the possibility of conformal mapping to other geometries. For
similarity solutions, it is easier to work in a plane where the diffusive flux lines are
parallel. Streamline coordinates are also often poorly suited to numerical methods
because stagnation points are associated with branch-point singularities. This is espe-
cially problematic for free boundary problems: for flows toward infinite dendrites, it
is easier to determine the evolving map from a half-plane (Cummings et al. 1999);
for flows past finite growing objects, it is easier to map from the exterior of the unit
circle (Bazant et al. 2003).

(¢) Non-similarity solutions for finite absorbing objects

It is tempting to try to eliminate the plate from the cylindrical rim in figure 3 by
conformal mapping from the exterior of a finite object to the upper half-plane. Any
such mapping in equation (4.3), however, requires a quadrupole point source of flow
(mapped to 0o) on the object’s surface. This is illustrated in figure 2f by a Mdbius
transformation from the exterior of the unit circle, f(z) = (1 + 2)/i(1 — z), where a
source at z = 1 ejects concentrated fluid in the 41 direction and sucks in fluid along
the =i directions. Thus we see that, due to the boundary conditions at co, uniform
flow past an absorbing cylinder (or any other finite object) is in a different class
of solutions, where the diffusive flux lines depend non-trivially on Pe. In streamline
coordinates, this includes the problem of uniform flow past a finite absorbing strip,
which requires solving Wijngaarden’s integral equation (Cummings et al. 1999).

Here, we study only the high-Pe asymptotics of advection—diffusion layers around
finite absorbing objects. Consider again the example of flow past a cylindrical rim on
a flat plate (figure 3). Because disturbances in the concentration decay exponentially
upstream beyond a distance of O(Pe_l/ 2), removing the plate on the downstream
side of the cylinder has no effect in the limit Pe — 0o, except on the plate itself
(the branch cut), so the solution (4.4), (4.5) is also asymptotically valid near a finite
absorbing cylinder (without the plate).
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More generally, if z = h(q) is the conformal map from the exterior of any singly
connected finite object to the exterior of the unit circle, then the non-harmonic
concentration field has the asymptotic form

c(q,q) ~ erf {\/Felm (WJr \/%ﬂ (4.10)

as Pe — oo everywhere except in the wake near the pre-image of the positive real
axis, a branch cut corresponding to the ‘false plate’. The convergence is not uniform,
since the false plate always spoils the approximation sufficiently far downstream,
for a fixed Pe > 1. The validity of equation (4.10) near the surface of the object,
however, allows us to calculate the normal flux density using equation (4.8):

P
R Ve~ 21/ — sin(36) (4.11)
™

as Pe — oo for all 8 = arg h(q) > Pe=1/2 away from the rear stagnation point 8 = 0.
The limiting Nusselt number, Nu ~ 8,/ Pe/w, is also easily calculated by mapping
the rim (with the false plate) to the upper half-plane where the normal flux density
is uniform, 24/ Pe/m, on a line segment of length four (from —2 to 2).

As explained in § 2 ¢, equation (4.11) describes the non-harmonic probability mea-
sure for fractal growth by steady advection—diffusion in a uniform potential flow in
the limit Pe — oo. This model, ‘advection—diffusion-limited aggregation’ (ADLA), is
perhaps the simplest generalization of the famous DLA model of Witten & Sander
(1981) allowing for more than one bulk transport process. The resulting compe-
tition between advection and diffusion produces a crossover between two distinct
statistical ‘phases’ of growth. Consistent with renormalization-group theory (Gold-
enfeld 1992), the crossover connects ‘fixed points’ of the growth measure, which
correspond to self-similar dynamics. For small initial Péclet numbers, Pe(0) < 1,
the growth measure of ADLA is well approximated by the uniform harmonic mea-
sure of DLA and the concentration by the similarity solution, ¢(g,q) « Imlogh(q),
but this is an unstable fixed point. Regardless of the initial conditions, the Péclet
number diverges, Pe(t) = UL(t)/D — oo, as the object grows, so the concentra-
tion eventually approaches the new similarity solution in equation (4.10). At this
advection-dominated stable fixed point, the growth measure obeys equation (4.11).
The sin#/2 dependence causes anisotropic fractal growth at long times, favouring
the direction of incoming, concentrated fluid, # = 7, and the total growth rate (Nu)
is proportional to \/Pe(t). Such analytical results serve to illustrate the power of
conformal mapping applied to systems of invariant equations.

5. Electrochemical transport
(a) Simple approximations and conformal mapping

Conservation laws for gradient-driven fluxes also describe ionic transport in dilute
electrolytes. Because the complete set of equations and boundary conditions (below)
are nonlinear and rather complicated, the classical theory of electrochemical systems
involves a hierarchy of approximations (Newman 1991). Conformal mapping has long
been applied in the simplest case where the current density, J, is proportional to the
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gradient of a harmonic function, ¢, the electrostatic potential (Moulton 1905; Hine
et al. 1956).

This approximation, the ‘primary current distribution’, describes the linear
response of a homogeneous electrolyte to a small applied voltage or current, as well as
more general conduction in a supporting electrolyte (a great excess of inactive ions).
The assumptions of Ohm’s law, J = ¢E = —0V¢ (with a constant conductivity,
o), and no bulk charge sources or sinks, V - J = 0, are analogous to those of poten-
tial flow and incompressibility describe above. Each electrode is assumed to be an
equipotential surface (see below), so the potential is simply that of a capacitor: har-
monic with Dirichlet boundary conditions. Naturally, classical conformal mapping
from electrostatics (Churchill & Brown 1990; Needham 1997) has been routinely
applied, but it seems that conformal mapping has never been applied to any more
realistic models of electrochemical systems.

The ‘secondary current distribution’ introduces a kinetic boundary condition, 7 -
J = R(¢), which equates the normal current with a potential-dependent reaction
rate, e.g. given by the Butler—Volmer equation (see below). In this case, conformal
mapping could be of some use. Although the boundary condition acquires a non-
constant coefficient, |f’|, from equation (2.7), Laplace’s equation is preserved.

A more serious complication in the ‘tertiary current distribution’ is to allow the
bulk ionic concentrations to vary in space (but not time). Ohm’s law is then replaced
by a nonlinear current—voltage relation. Our main insight here is that conformal
mapping can still be applied in the usual way, even though the equations are nonlinear
and the potential is non-harmonic.

(b) Dilute-solution theory

In the usual case of a dilute electrolyte, the ionic concentrations, {c1,ca,...,cn},
and the electrostatic potential, ¢, satisfy the Nernst—Planck equations (Newman
1991), which have the form of equations (3.1) and (3.2), where the ‘advection’ veloc-
ities, u; = —z;eu; V¢, are due to migration in the electric field, E = —V ¢. Here, z;e
is the charge (positive or negative) and p; the mobility of the ith ionic species. The
diffusivities are given by the Einstein relation, D; = kgl u;, where kg is Boltzmann’s
constant and T is the temperature. Scaling concentrations to a reference value, C,
potential to the thermal voltage, kT /e, length to a typical electrode separation, L,
and assuming that D;, T and € are constants, the steady-state equations take the
dimensionless form:

V2¢i + 2V - (¢;V¢) = 0. (5.1)

The ionic flux densities are F; = —V¢; — z;¢; V¢ (scaled to D;C/L).

Because dissolved ions are very effective at charge screening, significant diffuse
charge can only exist in very thin (1-100 nm) interfacial double layers, where bound-
ary conditions break the symmetry between opposite charge carriers. The ‘bulk’
potential (outside the double layers) is then determined implicitly by the condition
of electroneutrality (Newman 1991),

N
E Zi;C; = 0,
i=1
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which is trivially conformally invariant. Therefore, the most common model of steady
electrochemical transport, equation (5.1), satisfies the assumptions of the confor-
mal mapping theorem for any number of ionic species (N > 2). Although the equa-
tions differ from those of advection—diffusion in a potential flow, we can still map
to electric-field coordinates (the analogue of streamline coordinates), or any other
convenient geometry.

Although the equations are conformally invariant, the boundary conditions are so
only in certain limits. General boundary conditions express mass conservation, either

n - F; = 0 for an inert species or
n - VF; = Ri(c;, ¢) (5.2)

for an active species at an electrode, where R;(c;, ¢) is the Faradaic reaction-rate
density (scaled to D;C/L). It is common to assume Arrhenius kinetics,

Ri(ci, ¢) = k+ciez1:a+(¢*¢e) _ k_crefzm—w*tﬁe)’ (5.3)

where ky and k_ are rate constants for deposition and dissolution, respectively
(scaled to D;/L), ax are transfer coefficients, ¢, is the concentration of the reduced
species (scaled to C'), and ¢, is the electrode potential (scaled to kT'/e). Taking diffuse
interfacial charge into account somewhat modifies R(c;, ¢), but the basic structure
of equation (5.2) is unchanged (Newman 1991; Bonnefont et al. 2001). Conformal
mapping introduces a non-constant coefficient, |f’|, in equation (5.2), but conformal
invariance is restored in the case of ‘fast reactions’ (k4 > 1, k_c¢; > 1), in which
equilibrium conditions prevail, R = 0, even during the passage of current. For a
single active species (say i = 1), the bulk potential at an electrode is then given by
the (dimensionless) Nernst equation:

log(keq)
z(ay +a)’

¢ - ¢e = A9256q = - (54)

where k = ky /k_c, is an equilibrium constant.}

(¢) Conformal mapping with concentration polarization

The voltage across an electrochemical cell is conceptually divided into three parts
(Newman 1991):

(i) the ‘ohmic polarization’ of the primary current distribution,
(ii) the ‘surface polarization’ of the secondary current distribution, and

(iii) ‘concentration polarization’, the remaining voltage attributed to bulk-concen-
tration gradients.

Although concentration polarization can be significant, especially at large currents
in binary electrolytes, it is difficult to calculate. Analytical results are available only
for very simple geometries (mainly in one dimension), so our method easily produces
new results.

1 Expressing equation (5.3) in terms of the ‘surface overpotential’, ns = ¢ — ¢e — Adpeq, yields the
more familiar Butler—Volmer equation (Newman 1991).
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Figure 4. Similarity solutions for the electrostatic potential (contour plot) and current/
electric-field lines (yellow) in a binary electrolyte at 90% of the limiting current (k = 1). The
simple solution for parallel-plate electrodes (a) is conformally mapped to semi-infinite plates (b)
and misaligned coaxial cylinders (c).

For example, consider a symmetric binary electrolyte (N = 2) of charge number
z = z4 = —z_, where the concentration, ¢ = ¢y = c_, and the potential satisfy

Vic=0 and V-(cV¢)=0. (5.5)

(The concentrations are harmonic only for N = 2.) Assuming that anions are chemi-
cally inert yields an invariant zero-flux condition at each electrode, n-(¢V¢p—Ve¢) = 0,
and (to break degeneracy) a constraint on the integral of ¢, which sets the total num-
ber of anions (Bonnefont et al. 2001). In the limit of fast reactions, the bulk potential
at each electrode is given by the Nernst equation, ¢ = ¢ — log kc, where we scale ¢
to kgT'/ze and assume that oy —a_ = 1.

A class of similarity solutions is obtained by conformal mapping, w = f(2), to a
strip, —1 < Imw < 1, representing parallel-plate electrodes, as shown in figure 4a.
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We set ¢ = 0 at the cathode (Imw = —1) and ¢, = V, the applied voltage (in
units of kpT/ze), at the anode (Imw = 1). We then solve ¢’ = 0 and (¢¢’) = 0
with appropriate boundary conditions to obtain a general solution for any conformal
mapping to the strip:

(5.6)

c=1+JIm f(z), gb:log(HHW),

k(1 —J)2

where J = tanh(V/4) is the uniform current density in the strip, scaled to its limiting
value, Jiim = 2zeDC/L. As J — 1, strong concentration polarization develops near
the cathode, as shown in figure 4 for J = 0.9. At J = 1, the bulk concentration at
the cathode vanishes, and the cell voltage diverges due to diffusion limitation.

The classical conformal map, z = f~!(w) = 7w + €™ (Churchill & Brown 1990),
unfolds the strip like a ‘fan’ to cover the z-plane and maps the electrodes onto two
half plates (Imz = 7, Rez < —1). As shown in figure 4b, this solution describes
the fringe fields of semi-infinite, parallel-plate electrodes. The field and current lines
are cycloids, z,(n) = ma+inmn+e™@e™ as in the limit of a harmonic potential at low
currents, ¢ ~ JIm f(z) —logk. At high currents, the magnitude of the electric field
is greatly amplified near the cathode (the lower plate) by concentration polarization,
but the shape of the field lines is always the same. This conclusion also holds for
all other conformal mappings to the strip, such as the Mobius-log transformation,
w = f(z) = i(1 + log(5z — 3)/(5 — 32)), in figure 4c from the region between two
non-concentric circles.

It is interesting to note that the equivalence theorem applies to some physical situ-
ations and not others. Similarity solutions like the ones above can only be derived for
two equipotential electrodes by conformal mapping to a strip, where the current is
uniform. In all such geometries, the electric field lines have the same shape as in the
primary current distribution. For three or more equipotential electrodes, however,
this is no longer true because conformal mapping to the strip is topologically impos-
sible, and thus similarity solutions do not exist. When the bulk potential varies at
the electrodes according to equation (5.2), the electric field lines generally differ from
both the primary and secondary current distributions, even for just two electrodes.

6. Conclusion

We have observed that the nonlinear system of equations (2.4) involving ‘dot products
of two gradients’ is conformally invariant. This has allowed us to extend the classical
technique of conformal mapping to some non-harmonic functions arising in physics.
Examples from transport theory are steady conservation laws for gradient-driven
fluxes (equation (3.2)). For one variable, the equations in our class (including some
familiar examples in nonlinear diffusion) can always be reduced to Laplace’s equation.
For two or more variables, the general solutions are not simply related to harmonic
functions, but all similarity solutions exhibit an interesting geometrical equivalence.

For two variables, there is one example in our class, steady advection—diffusion
in a potential flow, to which conformal mapping has previously been applied. In
this case, our method is equivalent to Boussinesq’s streamline coordinates, but is
somewhat more general. A nonlinear diffusivity is also allowed, and the mapping
need not be to a plane of uniform flow (parallel streamlines). In a series of examples,
we have considered flows past absorbing leading edges and have generalized a recent
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equivalence theorem of Koplik et al. (1994, 1995). We have also considered the flows
past finite absorbing objects at high Péclet number.

Our class also contains the Nernst—Planck equations for steady, bulk electrochemi-
cal transport, for which very few exact solutions are known in more than one dimen-
sion. In electrochemistry, conformal mapping has been applied only to harmonic
functions, so we have presented some new results, such as the concentration polariza-
tions for semi-infinite, parallel-plate electrodes and for misaligned coaxial electrodes.
More generally, we have shown that Ohm’s law gives the correct spatial distribution
(but not the correct magnitude) of the electric field on any pair of equipotential
electrodes in two dimensions, even if the transport is nonlinear and non-Laplacian,
although this is not true for three or more electrodes. Such results could be useful
in modelling micro-electrochemical systems, where steady states are easily attained
(due to short diffusion lengths) and quasi-planar geometries often arise.

As mentioned throughout the paper, our results can be applied to a broad class
of moving free boundary problems for systems of non-Laplacian transport equations
(Bazant et al. 2003). In contrast, the vast literature on conformal-map dynamics
(cited in §1) relies on complex-potential theory, which only applies to Laplacian
transport processes. Nevertheless, standard formulations—such as the Polubarinova—
Galin equation for continuous Laplacian growth (Howison 1992) and the Hastings
& Levitov (1998) method of iterated maps for DLA—can be easily generalized for
coupled non-Laplacian transport processes in our class. In the stochastic case, non-
harmonic probability measures for fractal growth can be defined on any convenient
contour, such as the unit circle. As an example, we have derived the stable fixed
point of the growth measure for an arbitrary absorbing object in a uniform back-
ground potential flow (equation (4.11)). This sets the stage for conformal-mapping
simulations of ADLA, which might otherwise seem intractable.
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K. Chu, D. Crowdy, B. Davidovitch, I. Eames, E. J. Hinch, H. K. Moffatt and A. Toomre for
helpful comments on the manuscript; MIT for a junior faculty leave; and ESPCI for hospitality
and support through the Paris Sciences Chair. This work was also supported by the MRSEC
Program of the National Science Foundation under award number DMR 02-13282.
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