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Abstract

A generalization of the Renormalization Group, which describes order-parameter %uctuations
in 5nite systems, is developed in the speci5c context of percolation. This “Stochastic Renor-
malization Group” (SRG) expresses statistical self-similarity through a non-stationary branching
process. The SRG provides a theoretical basis for analytical or numerical approximations, both at
and away from criticality, whenever the correlation length is much larger than the lattice spacing
(regardless of the system size). For example, the SRG predicts order-parameter distributions and
5nite-size scaling functions for the complete crossover between phases. For percolation, the sim-
plest SRG describes structural quantities conditional on spanning, such as the total cluster mass
or the minimum chemical distance between two boundaries. In these cases, the Central Limit
Theorem (for independent random variables) holds at the stable, o=-critical 5xed points, while
a “Fractal Central Limit Theorem” (describing long-range correlations) holds at the unstable,
critical 5xed point. This 5rst part of a series of articles explains these basic concepts and a
general theory of crossover. Subsequent parts will focus on limit theorems and comparisons of
small-cell SRG approximations with simulation results.
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1. Introduction

The theory of critical phenomena is mostly concerned with phase transitions in
the thermodynamic limit of in5nite systems. In this limit, an order parameter has

1 This paper was originally prepared for the proceedings of the conference, “Horizons in
Complex Systems,” held in Messina, Sicily in December 2001 to commemorate Prof. Stanley’s birthday.
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unambiguous values in each phase and is singular at a precise critical point of the
control variable (temperature, concentration, etc.) [1–4]. In 5nite systems, however,
there are two basic modi5cations to the thermodynamic picture: (i) The critical point
becomes blurred since all statistical averages are analytic functions of the control vari-
able, and (ii) the order parameter %uctuates around its mean value. Accordingly, the
order parameter in a 5nite system is described by a probability distribution, which
depends non-trivially on the control variable and the system size.

As arguably the simplest critical phenomenon, percolation [5–7] provides a natural
setting within which study order-parameter %uctuations in 5nite systems. Moreover,
in recent years there has been growing practical interest in the distribution functions
of structural quantities, such as the minimum or maximum chemical distance between
two terminals [8–17], the masses of spanning clusters [11–13,18], and the mass of
the largest cluster [19–22]. These random quantities not only act as order parameters
for the phase transition, but also play a crucial role in both dynamical [23,24,16] and
mechanical [19,21] properties of heterogeneous materials [25].

There is no existing theory to predict order-parameter statistics for arbitrary values
of concentration and system size, but considerable progress has been made in under-
standing the limiting behavior in each thermodynamic phase. Classical limit theorems
for independent random variables hold in the normal phases, where correlations are
negligible (by de5nition). In the supercritical phase, the masses of large fragments of
the in5nite cluster [26–28] and other structural quantities [29,30] satisfy the Central
Limit Theorem, i.e., the distribution is Gaussian, and the mean and variance both grow
linearly with the system size. In the subcritical phase, the mass of the largest cluster
is governed by the theory of extremes of independent random variables [19,20]. In
this case, the distribution has the Fisher–Tippett (or Gumbel) form with non-universal
corrections due to discrete-lattice e=ects, while the mean grows logarithmically with
system size (with a bounded variance) [20].

Computer simulations of percolation have shown that various order parameters
in the critical phase have di=erent universal distributions with stretched-exponential
tails (when scaled to have unit mean) [8,9,11,18,14–16,22]. These signatures of what
we call the “Fractal Central Limit Theorem” [31] can be predicted by analyzing
stationary branching processes [32–34], as was recently pointed out by Hovi and
Aharony [13]. Aside from an early analysis of mean-5eld percolation on the Cayley
tree [10], these authors made the 5rst (and, to the author’s knowledge, only)
systematic use of branching processes to approximate critical limiting distributions,
although they focused mainly on the tails of spanning-cluster mass distri-
butions [13].

In this 5rst part of a series of articles, we present the “Stochastic Renormalization
Group” (SRG), a theoretical formalism based on non-stationary branching processes
which describes the crossover of order-parameter distributions between di=erent ther-
modynamic phases. The SRG expresses the statistical self-similarity of 5nite systems
in which the correlation length, �, and linear system size, L, are both much larger than
the lattice spacing, a. The critical (��L) and o=-critical (��L) 5xed points of the
SRG correspond to various limit theorems for the order parameter. In the latter case,
small correlation lengths (� ≈ a) are also allowed. Although the basic idea of the SRG
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applies to critical phenomena and random fractals in general, we develop it here on
the speci5c context of percolation.

The article is organized as follows. In Section 2, we set the stage by reviewing
classical renormalization-group (RG) concepts in percolation. In Section 3, we present
the SRG for any statistical quantity conditional on spanning the system, such as the
total mass of spanning clusters or the minimum chemical distance. In Section 4, we
show how the SRG generally describes crossover. In Sections 5 and 7, we brie%y ex-
plain why the o=-critical and critical 5xed points are associated with the CLT and the
FCLT, respectively. In Section 8, we summarize the SRG “%ow” in the space probabil-
ity distributions for percolation quantities dependent upon spanning, and we conclude
by discussing the general relevance of the SRG for fractals and phase transitions in
5nite systems. Subsequent parts will analyze the 5xed points in detail, including more
comparisons with simulation data. The subtle case of the largest cluster (which may
not span), the most natural order parameter in 5nite systems [19,20,35–37], will also
be addressed.

2. RG concepts in percolation

2.1. Self-similarity at the critical point

The basic idea behind all RG methods for critical phenomena is the statistical
self-similarity of large systems near a critical point [2–4]. This essentially follows
from dimensional analysis: In the limits a=L→0 and a=�→0, there are only two (out
of originally three) relevant length scales, L and �, so all systems with the same di-
mensionless ratio, L=�, must have approximately the same statistical properties (upon a
suitable normalization). The self-similarity becomes exact in the thermodynamic limit,
L→∞, as the critical point is approached, �→∞, with the scaling variable, L=�, held
constant.

The notion of self-similarity is exploited by the RG to calculate non-trivial properties
of the critical point, which cannot be obtained by simple dimensional analysis [3,4].
For example, in the case of percolation, according to the arguments above, a large
system of N = mn sites must have approximately the same connectivity statistics as a
coarse-grained system of n�1 large “cells” (or “blocks”) containing m�1 sites each,
provided that an e=ective occupation probability for cells, pm = Rm(p), is de5ned so
as to preserve the dimensionless ratio, L=�:

(mn)1=d

�(p)
=

n1=d

�(pm)
; (1)

where d is the system dimension (N = Ld). This is analogous to Kadano=’s original
block renormalization of the coupling constant for magnetic spins.

If the exact dependence of the correlation length on p were known, then the cell
occupation probability would be given by

Rm(p) = �1
(
�(p)
m1=d

)
: (2)
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Fig. 1. Typical trajectories of the renormalized cell occupation probability pN given by Eq. (3) for the
four-site (N =4j) RG scheme described in Eq. (11) starting at the critical 5xed point, p1 =p(4)

c =(
√
5 1)=2

(solid line), a nearby subcritical value, p′
1 = p(4)

c 108 (dotted line), and a nearby supercritical value,

p′′
1 =p(4)

c + 108 (dashed line). An associated estimate of the correlation length, �(4)(p′
1), in the sub-critical

case is labeled as the system size N = �d where the renormalized occupation probability pN drops below
0.5. This is very close to a correlation length estimate, �(4)(p′′

1 ), for the supercritical case where pN rises
above 0.7.

The trick is to now reverse the logic: From a suitable de5nition of the cell occu-
pation probability, an estimate of the correlation length, �(n)(p), can be obtained by
successively “renormalizing” the occupation probability,

pmn = Rn(pm) ; (3)

starting from p1 = p. By de5nition, an appropriate choice of Rn(p) yields a valid
asymptotic approximation in the large-cell limit, limn→∞ �(n)(p)= �(p), although it is
not trivial to make this choice for a given problem such that the convergence is fast
enough to allow the use of small cells.

2.2. Asymptotic approximations

Estimates of the correlation length and pc itself are obtained from the RG, Eq.
(3), as follows. As shown in Fig. 1, for any suitable choice of Rn(p), recursion (3)
converges to one of three possible 5xed points in the thermodynamic limit, j → ∞:

lim
j→∞

pnj =




0 for 06p¡p(n)
c ;

p(n)
c for p= p(n)

c ;

1 for p(n)
c ¡p ;

(4)

the stable subcritical 5xed point, p = 0; the stable supercritical 5xed point, p = 1;
or the unstable critical 5xed point, p = p(n)

c , which is an n-cell estimate of the true
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in5nite-system value of pc. As long as the RG transformation, is chosen to satisfy

lim
n→∞Rn(p) =




0 for 06p¡pc ;

c for p= pc ;

1 for pc ¡p6 1

(5)

for some constant 06 c6 1, then the approximation converges in the large-cell limit,
limn→∞ p(n)

c = pc. As shown in Fig. 1, for p �= p(n)
c , an estimate of the correlation

length, �(n)(p), can be de5ned as the (interpolated) linear system size, nj=d, where the
cell occupation probability, pnj , 5rst passes within a given tolerance of a stable 5xed
point as j → ∞.

The RG introduces a useful arti5cial length scale, the linear cell size, b (n= bd). In
order for the lattice-spacing a to not a=ect the RG calculation of critical behavior, we
must have b�a, but the underlying assumption of self-similarity also requires b��(p),
which is guaranteed near the critical point, where �(pc) = ∞. General considerations
of dimensional analysis imply that such a divergence must have the form of a power
law [38], �(p) ∼ (p→pc)� (e.g. for p → p+

c ), but dimensional analysis alone cannot
determine the critical exponent �. The RG, however, easily produces an asymptotic
estimate, �(n), for a given choice of n= bd.

Substituting an approximation of the correlation-length singularity,

�(n)(p) ∼ (p→p(n)
c )�

(n)
; (6)

into Eq. (1) with m= n yields

Rn(p) p(n)
c ∼ n1=d�

(n)
(p→p(n)

c ) ; (7)

from which we identify, n1=d�
(n)

= R′
n(p

(n)
c ). The resulting RG estimate of the critical

exponent is

�(n) =
1

logb R′
n(p

(n)
c )

: (8)

(Note that, since Rn(p) is generally a polynomial, it is analytic at p(n)
c , which implies

that the correlation length diverges with the same exponent for p → p+
c and p → pc.)

Such RG estimates of critical exponents are believed to converge to their exact values
in the large-cell limit, provided that Eq. (5) holds, consistent with our analysis below
and extensive numerical evidence in the literature.

2.3. The renormalization group

Algebraically, the recursion in Eq. (3) represents a group of operators acting on
the occupation probability (more precisely, a semigroup without an inverse). There
are at least two equivalent ways to construct this “renormalization group”. First, by
using the same number of cells at each level of recursion, the renormalized occupation
probabilities, pnj =R

(n)
j p, for the sequence of system sizes, N =n; n2; n3; n4; : : : ; can be

generated by iterates of the function, Rn(p), acting on the site occupation probability,
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p∈ [0; 1]. In this case, the group operators,

R
(n)
j = Rj

n◦ = Rn ◦ Rn ◦ · · · ◦ Rn (9)

( j compositions of Rn(p)) are mappings from [0; 1] to [0; 1] which depend on the cell
size, n.

Alternatively, one could view Rn(p) as the initial condition for a group of operators
acting on the space of functions, {f : [0; 1] 
→ [0; 1]}, by setting the number of cells to
equal the number of sites at each iteration. For example, the renormalized probabilities,
pn2j =RjRn(p), for the sequence of system sizes, N =n; n2; n4; n8; : : : ; can be generated
by group operators de5ned as follows:

Rj+1 =RjR1 ;

R1f = f ◦ f : (10)

Although the initial condition depends on the function Rn(p), in this case the RG is
always the same. As such, broad sets of initial conditions can yield the same limiting
behavior, and in this way the RG explains, at least qualitatively, the universality of
critical exponents.

2.4. Cell occupation by spanning

These abstract concepts would not be terribly important were it not for the fact that
they can be put to practical use by clever de5nitions of the cell occupation probability.
In the spirit of this commemorative issue, we focus on the seminal contributions of
Reynolds, Stanley, and Klein [39–41]. Before their work, a few simple, small-cell
decimation procedures were proposed [42–45], but these authors 5rst de5ned a cell to be
“occupied” it is spanned by a cluster from one side to another in at least one direction.
This choice captures the essence of percolation as a phase transition in connectivity.
Moreover, it should always produce convergent RG approximations because Eq. (5)
holds rigorously for any spanning rule that, as n → ∞, requires a cluster to extend
across an in5nite distance [6].

For a given choice of spanning rule, the spanning probability, Rn(p), can be evalu-
ated exactly for small cells or approximately by Monte-Carlo simulation for large cells
[39–41]. For example, for a square site or bond lattice in two dimensions, the func-
tion Rn(p) could be the probability that a cluster connects opposite boundaries of a
square cell in one direction, both directions, or either direction. Once Rn(p) is obtained,
estimates of pc and � are given by the expressions above. The fractal dimension Df

of incipient in5nite clusters can also be estimated by generalizing the RG to include
“ghost bonds” between non-nearest neighbor sites, although below we derive a di=erent
estimate which does not require any ghost bonds.

For illustration purposes, throughout this paper we will consider the following, very
simple example. For site percolation on the square lattice, a reasonable RG for a small
cell of only n = 2 × 2 sites is based on the probability of spanning in one direction
[40,41],

R4(p) = p4 + 4p3q+ 2p2q2 (11)
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(where q = 1 − p) which is the sum of probabilities to have spanning clusters of
size four, three, or two, respectively. Solving the quartic equation, R4(p) = p, yields
(curiously) the golden mean as an estimate of the critical point,

p(4)
c =

√
5− 1
2

≈ 0:618034 ; (12)

which is fairly close to the best available numerical value [46], pc = 0:5927621 (13).
The critical exponent estimate from Eq. (8),

�(4) =
1

log2[4p
(4)
c (1− (p(4)

c )2)]
≈ 1:63529 (13)

is not as close to the presumably exact value, � = 4
3 , although larger cells slowly

improve this estimate [41]. Of course, more sophisticated and accurate RG schemes
exist for various percolation problems, but this simple example illustrates the power of
RG methods to approximate non-trivial quantities, such as the critical exponents and pc

itself, with remarkable ease. Using the same example, we will produce RG estimates
below for many other quantities, both at and away from the critical point, with little
additional e=ort.

In the limit of large cells, n → ∞, numerical evidence suggests that RG estimates
converge to their exact values (whenever known), and the accuracy of small-cell
approximations is often quite remarkable [13,39,41,47]. In spite of these successes,
however, the validity of the large-cell RG based on spanning has recently been de-
bated in the context of critical spanning probabilities [47–58]. Strictly speaking, Eq. (3)
seems to predict that the critical spanning probability in the in5nite-system limit is
precisely equal to pc. On the other hand, simulations on the square site lattice sup-
port another theoretical prediction (from conformal 5eld theory [59]) that the crit-
ical spanning probability in two dimensions is exactly 1

2 , which is somewhat less
than pc.

There is no contradiction, however, since the RG only predicts that the spanning
probability at the n-cell estimate p(n)

c is equal to p(n)
c , which need not hold in the

limit of in5nite cells [47]. In fact, when the e=ect of the 5nite cell size is properly
considered as p(n)

c → pc, the RG actually predicts the universal spanning probability,
including its subtle dependence on the system shape [48,55,57–59] and boundary con-
ditions [53,54,58] with good precision [47]. In summary, the general validity of the
RG based on spanning is now fairly well established, and thus we use it as a starting
point for our theory below.

2.5. Self-similarity away from the critical point

The RG is often invoked to motivate (but not to calculate) the “data collapse” of
any quantity, Q(L; p) depending on system size L and concentration p onto 5nite-size
scaling functions of the form,

Q(L; p) ∼ LDf�
(

L
�(p)

)
; (14)
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where the fractal dimension, Df, and the dimensionless scaling function, �(x), do not
depend on L or p. (Here and below, we always choose units to set a=1.) As explained
above, this result is simply a consequence of dimensional analysis.

There is no existing theory to predict 5nite-size scaling functions. Although the frac-
tal dimension can be calculated from the RG, the scaling function is usually obtained
by the ad hoc 5tting of numerical data [5,7,60,20]. This approach, however, is quite
tedious and fails to take advantage of the full power of the RG.

Although RG methods calculations have mostly been applied to the critical phase,
where ��L (or � = ∞), the general arguments given above only require that the
correlation length be large, ��1, but not necessarily larger than the linear system size
L. Therefore, in principle the RG cannot only motivate, but also predict, 6nite-size
scaling functions, as we demonstrate by a suitable generalization below.

For RG approximations using cells of size n = bd, the scaling law, Eq. (14), is
replaced by

Q(L; p) ∼ LD
(n)
f �(n)

(
L

�(n)(p)

)
; (15)

where �(n)(p); �(n)(x); D(n)
f are estimates based on the n-cell level of coarse graining.

The scaling function, �(n)(x), can be determined at any value of its argument, L=�(n)(p),
by an appropriate renormalization of p to maintain this ratio in the limit N=Ld=nj →
∞, as explained below. Since b=�(p) → 0 in this limit, the general arguments above
imply convergence, limn→∞ �(n)(x) = �(x).

If the system size is large, L�1, and one is not interested in accurately describing
crossover (which also requires being close to the critical point, ��1), then the RG
can actually produce accurate approximations far from the critical point, even when
the correlation length is small, �(p) ≈ 1. As emphasized in Ref. [20], if a system is
partitioned into cells with b��, then each cell makes independent contributions to any
quantity of interest for the whole system, which are easily combined using standard
techniques from probability theory. The possibility of accurate approximations in this
limit is a consequence of self-similarity near the stable, o7-critical 5xed points of the
RG, where ��b�L.

3. Stochastic renormalization group for spanning-cluster masses

3.1. The mathematical statement of statistical self-similarity

A key ingredient missing in classical RG methods is the randomness of the order
parameter in 6nite systems. We now reformulate the RG in probabilistic terms for the
case of percolation, using a general formalism which could also be applied to other
critical phenomena. Let XN (p) be an order parameter conditional on spanning, such as
the total mass of spanning clusters or the minimum chemical distance between opposite
boundaries, for a large system of size N�1 at a given concentration p, suPciently
close to the critical point that discrete lattice e=ects are small, �(p)�1. Consider
coarse-graining such a system of size N into n cells of size m.
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The powerful constraint of statistical self-similarity discussed above implies that,
upon a suitable renormalization of the occupation probability, the random number of
occupied cells, Xn(pm), has the same distribution as in a of size n with the original
value of p. Unlike the sites or bonds in the original system, however, the coarse-grained
cells do not have equal masses. Instead, each occupied cell contributes a random mass,
Xm(p), sampled independently from the appropriate distribution for a smaller system
of size m.

This motivates a recursive construction we refer to as the “Stochastic Renormaliza-
tion Group” (SRG): The total spanning-cluster mass is given by a recursive random
sum of random variables,

Xmn(p) =
Xn(pm)∑
i=1

X (i)
m (p) ; (16)

where X (i)
m denotes the ith independent sample from the mass distribution for each cell.

Random cluster masses, Xn(p); Xn2 (p); Xn3 (p); : : : ; at the n-cell level of approximation
can be generated recursively using Eq. (16), which is fully determined by the cell
probability distribution,

fn(p; x) = Prob(Xn(p) = x) ; (17)

and the cell occupation probability, Rn(p), from Eq. (3). These simple quantities can
be either calculated exactly for small cells or approximated numerically for large cells.
The SRG then extrapolates the distribution to larger 5nite systems in an arbitrary stage
of crossover between phases.

The SRG approximates the statistics of cluster masses through random geometrical
constructions, as illustrated in Fig. 2. The coarse-graining procedure described above
involves discarding contributions from unoccupied cells, and the 5gure only shows
the sites and cells which survive the entire process (from right to left). Equivalently,
clusters are created by recursively re5ning occupied cells (from left to right). In each
row, the picture on the right shows a random cluster of sites, and the pictures to the
left show the hierarchical structure of connectivity among the sites at di=erent scales of
coarse-graining. At scales smaller than the correlation length, these arti5cially generated
clusters are random fractals characteristic of the critical phase, while at larger scales
in normal phases they are objects of integer dimension, as explained below. Although
the connectivity of these arti5cial clusters is not required explicitly (as shown in the
5gure), their mass distributions must nevertheless approach those of the real spanning
clusters in each phase in the large-cell limit, purely as a consequence of statistical
self-similarity. The crossover between phases can also be described if the correlation
length is much larger than lattice spacing.

3.2. Analogy with population growth

In mathematical terms, Eq. (16) describes a stochastic branching process [32–34],
which is notably non-stationary since the generating distribution, fn(pm; x), is di=erent
at every stage of recursion. Since the 19th century, stationary branching processes
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Fig. 2. Three random realizations (in each row from left to right) of a nine-cell SRG branching process
for the total cluster mass conditional on spanning in the vertical direction. Top row: the supercritical phase,
showing the crossover to critical behavior at scales smaller than the correlation length. Middle row: the
critical phase, showing complete statistical self-similarity. Bottom row: the subcritical phase, also showing
the crossover to critical behavior. (Note that in these examples the fractal dimension has been reduced well
below its actual value for 2d percolation, Df =91=48, to illustrate the crossover regime with greater clarity.)

have been analyzed as models of population growth, e.g. in the contexts of human
family trees [61], animal populations [62] and nuclear chain reactions [63]. It does not
appear, however, that any mathematical studies have addressed the particular type of
non-stationarity in Eq. (16), which has multiple 5xed points corresponding to di=erent
thermodynamic phases.

The analogy with population growth provides a delightfully simple way to understand
the SRG: The hierarchical structure of power-law correlations is analogous to the
genealogical structure of populations. This connection is easily understood from the
graphical constructions of Fig. 2. Each cluster of sites is a graphical representation of
a “family tree”. The “ancestors” of a site are the coarse-grained cells in which it is
contained. From the pictures, it is clear that any random changes to the occupied cells
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(“ancestors”) at a given length scale (or “generation”) greatly a=ect the number of
occupied cells and sites (“descendants”) at all smaller length scales. Therefore, even
though all of the random variables in the branching process are independent, long-range
spatial correlations, analogous to “family ties”, are induced on the 5nal “population”
of sites.

Although the analogy with population growth is conceptually very useful, the SRG
branching process involves several new features not typically studied in the context of
populations, and thus it requires new mathematical results. For example, the large-cell
limit (of in5nitely many “children” per individual) is of primary interest for the SRG.
More importantly, the structure of spatial correlations corresponds to a very unusual
“family tree” where randomness in the number of children only appears gradually after
a certain generation. In the SRG, this occurs when the cell size is comparable to the
correlation length (the middle column in Fig. 2). Below this scale, spatial correlations
induced on the sites decay as a power law, re%ecting the absence of a characteristic
length, while above this scale correlations decay exponentially because the number of
“children” is no longer random. This gradual variation in the probability distribution
for “births” in the branching process causes a phase transition as the linear system size
passes through the correlation length, as explained below.

3.3. Recursions for distributions and generating functions

Since all the random variables in the SRG branching process are independent, Eq.
(16) takes the form [32],

fmn(p; x) =
x+n∑

j=x−n

fn(pm; j)f∗j
m (p; x) ; (18)

in terms of probability distribution functions, where f∗j = f ∗ f ∗ · · · ∗ f (j times)
denotes the jth auto-convolution, de5ned by f ∗ g(x) =

∑
y f(x y)g(y). In general,

the bounds of summation, x−n and x+n , are set by the distribution function, fn(p; x),
which also initializes the recursion in Eq. (18). In the case of percolation quantities
subject to a spanning condition, the minimum number of occupied cells is of the
order of the linear cell size, x−n = O(b), e.g. x−n = b = n1=d for hypercubic cells, and
the maximum number occupied cells is always equal to the total number of cells,
x+n = n.

For both analytical and numerical calculations with the SRG, it is convenient to
work with various generating functions [32], which are essentially discrete Fourier or
Laplace transforms. For example, Eq. (18) takes the simple form,

Qfmn(p; z) = Qfn(pm; Qfm(p; z)) ; (19)

in terms of probability generating functions,

Qf(z) =
∞∑
x=0

f(x)z x : (20)
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Other useful forms of the SRG,

f̃mn(s) = f̃m(pm; log f̃m(p; s)) ; (21)

f̂mn(p; s) = f̂n(pm; f̂m(p; s)) ; (22)

are expressed in terms of moment generating functions,

f̃(s) = Qf(es) ; (23)

or cumulant generating functions,

f̂(s) = log f̃(s) ; (24)

respectively. These transformations reduce the complicated sum of convolutions in
Eq. (18) to a simple composition of generating functions. In physics parlance, this
amounts to changing the representation of the SRG from real space to various de5ni-
tions of reciprocal (or momentum) space.

3.4. The stochastic renormalization group

Let us consider the algebraic structure of the transformations involved in the branch-
ing process, Eq. (16). There are various ways to iterate the recursions above, as
we now illustrate using the cumulant-generating-function representation, Eq. (22). For
example, as in Eq. (9) the same number of cells n can be used at each level of
recursion, which yields approximations,

f̂nj (p) = f̂n(pnj−1 ) ◦ f̂n(pnj−2 ) ◦ · · · ◦ f̂n(pn) ◦ f̂n(p) (25)

for the sequence of system sizes, N = n; n2; n3; n4; : : : . Alternatively, as in Eq. (10)
the number of cells can be set equal to the number of sites at each level of recursion,
which yields the (identical) approximations

f̂n2 (p) = f̂n(pn) ◦ f̂n(p)
f̂n4 (p) = f̂n2 (pn2 ) ◦ f̂n2 (p)

=f̂n(pn3 ) ◦ f̂n(pn2 ) ◦ f̂n(pn) ◦ f̂n(p)
...

f̂n2j+1(p) = f̂n2j (pn2j ) ◦ f̂n2j (p)

=f̂n(pn2j+1−1) ◦ f̂n(pn2j+1−2) ◦ · · · ◦ f̂n(pn) ◦ f̂n(p)
for the sequence of system sizes, N = n; n2; n4; n8; : : : . At a 5xed point, the same set
of RG operators {Rj} as in Eq. (10) now acts on initial conditions, f̂n(p; s), in the
space of functions, {f : [0; 1]× C 
→ C}.

If p is not a 5xed point, then the functional transformations are somewhat more
complicated, but they still have the structure of an Abelian semigroup (hence the name
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“Stochastic Renormalization Group”) in terms of a set of operators, {RSRG
j }, de5ned

by

Rj+1 =RSRG
1 RSRG

j ;

RSRG
1 · {R; f(p)}= {R ◦ R; f(R ◦ R(p)) ◦ f(p)} : (26)

These operators act on initial conditions,

{Rn2j (p); f̂n2j+1 (p; s)}=RSRG
j {Rn(p); f̂n2 (p; s)} ; (27)

in the function space, {R : [0; 1] 
→ [0; 1]} × {f̂ : [0; 1]× C 
→ C}.
The fact that the SRG can be expressed as a universal group acting on a space of

initial conditions suggests that the crossover of distributions between di=erent phases
shares the same universality properties as the 5xed points. Therefore, the shapes of
scaling functions and the limiting distributions in the critical and crossover regimes
should depend on embedding dimension, but not on the microscopic details of the
lattice (although we do not claim to rigorously prove this universality here, even within
the SRG formalism). Below, we will argue that boundary conditions also a=ect the
universal limiting distributions and thus also the scaling functions for crossover.

4. A theory of crossover phenomena

4.1. Two types of 8uctuations

It is straightforward to derive recursions for the moments,

"n;k(p) = 〈Xn(p)k〉=
(
z
@
@z

)k
Qfn(p; 1) =

(
@
@s

)k

f̃n(p; 0) (28)

or the cumulants,

cn;k(p) =
(

@
@s

)k

f̂n(p; 0) ; (29)

by di=erentiating the various generating-function recursions above. For example, the
mean, "n(p) = "n;1(p) = cn;1(p), satis5es the recursion,

"mn(p) = "n(pm)"m(p) ; (30)

which simply con5rms our intuition that the mean total mass is equal to the mean
number of occupied cells times the mean mass per cell. The variance, %n(p)2=cn;2(p),
satis5es another recursion,

%mn(p)2 = "n(pm)%m(p)2 + %n(pm)2"m(p)2 ; (31)

which is coupled to that of the mean.
The recursion for the variance, Eq. (31), has an important physical interpretation. The

5rst term on the right side is the variance within each cell times the mean number of
occupied cells. This represents the well-known additivity of variance for sums of a 5xed
number of independent random variables. The second term is the additional variance
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due to 8uctuations in the number of occupied cells. As explained above, this kind of
%uctuation induces hierarchical (power-law) correlations between the microscopic site
variables. The gradual disappearance of this second source of variance at scales larger
than the correlation length is precisely what determines the crossover away the critical
phase.

The higher cumulants are important indications of this crossover since they measure
departures from a Gaussian distribution, so we give a few more recursions implied by
the SRG branching process. The skewness, cN;3(p), satis5es,

cmn;3(p) = "n(pm)cm;3(p) + 3%n(pm)2"m(p)%m(p)2 + cn;3(pm)"m(p)3 ; (32)

and the kurtosis, cN;4(p), satis5es,

cmn;4(p) = "n(pm)cm;4(p) + %n(pm)2(4"m(p)cm;3(p) + 3%m(p)4)

+ 3cn;3(pm)"m(p)2%m(p)2 + cn;4(pm)"m(p)4 : (33)

On the right side of each of these recursions, the 5rst term represents the additivity of
the cumulants of the mass within each cell over the expected number of occupied cells,
as in sums of independent variables. The remaining terms represent additional contri-
butions due to %uctuations in the number of occupied cells. As we elucidate below,
the phase transition occurs as a result of the competition between these two kinds of
8uctuations, representing short-range and long-range correlations, respectively.

4.2. Crossover of probability distributions

As discussed in Section 2, large systems near the critical point which have the same
ratio, L=�(p), are in the same stage of crossover, i.e., they are statistically identical.
This situation can be conveniently arranged within the formalism of the SRG, where
the analogous ratio is L=�(n)(p): Di7erent systems are in the same stage of crossover if
they have the same cell occupation probability on the largest cells, i.e., at the highest
level of coarse-graining. In particular, a sequence of systems of increasing size can be
frozen in the same state of crossover by adjusting p at each stage of recursion to set
the occupation probability on the largest cells to a given constant, 0¡&¡ 1, which
acts as the 5nite-size scaling variable.

For example, if the cells have reached size m = nj for a system of size N = nj+1,
then we adjust p to the following value:

p= QR
j
n(&) = QR

1
n ◦ QR

1
n ◦ · · · QR1

n(&) (34)

(the inverse of Rn(p) applied j times). This choice ensures that the correlation length
for the system is �(n)(&) in units of the largest cell length. In other words, the 5nite-size
scaling variable is held constant,

�(n)(p)
L

=
�(n)(&)nj=d

L
=

�(n)(&)
b

; (35)

where n= bd and N = Ld.
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The crossover from subcritical to critical to supercritical is controlled by varying &
from 0 to p(n)

c to 1, respectively. For a given value of &, if we de5ne,

ĥnj+1(&; s) = f̂nj (R
j
n(&); s) ; (36)

then the SRG takes the form:

ĥn(&) = f̂n(&);

ĥn2 (&) = f̂n(&) ◦ f̂n(R1
n(&));

ĥn3 (&) = f̂n(&) ◦ f̂n(R1
n(&)) ◦ f̂n(R2

n(&));

...

ĥnj+1(&) = f̂n(&) ◦ f̂n(R1
n(&)) ◦ · · · ◦ f̂n(Rj

n(&)) (37)

in the cumulant-generating-function representation. By construction, the inverse iteration
of the occupation probability converges to the critical 5xed point,

lim
j→∞

Rj
n(&) = p(n)

c (38)

for 0¡&¡ 1, so the iteration for ĥN (&; s) approaches a stationary functional iteration,
which has a well de5ned limit (after an appropriate rescaling, discussed below). If we
next take the large-cell limit n → ∞, then convergence is attained because the 5rst term
in the resulting in5nite product tends to the true distribution inside a large cell of size
n → ∞, while each of the remaining terms tends toward a constant, ĥn(p

(n)
c ; s), because

(again, by construction) limn→∞ R j
n (&)=p(n)

c . Therefore, in the large-cell limit the SRG
produces asymptotic approximations of scaling functions and probability distributions
in the crossover regime.

4.3. Finite-size scaling functions

An analytical formula for the scaling function of the kth cumulant,

cLd;k(p) ∼ (LD
(n)
f )k�(n)

k

(
L

�(n)(p)

)
; (39)

can be derived from the n-cell SRG. The trick is to choose & according to Eq. (35)
and thus cast the scaling function in the equivalent form

((n)
k (&) = �(n)

k

(
b

�(n)(&)

)
: (40)

Although the subcritical (p¡p(n)
c ) and supercritical (p¿p(n)

c ) scaling functions are
di=erent in terms of the variable x = L=�(n)(p), there is a single, continuous scaling
function in terms of the variable &∈ [0; 1]. From the auxiliary function, ((n)

k (&), the
usual scaling function for the kth moment, �(n)

k (x), can be determined from Eq. (40),
once the appropriate n-cell correlation length, �(n)(p), is measured (e.g. as in Fig. 1)
or approximated using Eqs. (6) and (8).
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The auxiliary scaling function, ((n)
k (&), is easily calculated (at least numerically)

from Eq. (37). For example, consider the case of the mean, k = 1. After j iterations
of the SRG, an approximation of the scaling function, ((n)

1 (&), is given by

"nj+1(p)

"n(p
(n)
c ) j+1

=
"n(&)

"n(p
(n)
c )

"n(Rn1(&))

"n(p
(n)
c )

"n(Rn2(&))

"n(p
(n)
c )

· · · "n(R
j
n (&))

"n(p
(n)
c )

; (41)

where the rescaling factors in the denominator are chosen so that

((n)
1 (p(n)

c ) = �(n)
1 (0) = 1 : (42)

This is also required for convergence as j → ∞ (with & 5xed) since Rnj(&) → p(n)
c . In

this limit, we obtain a formula for the n-cell SRG approximation of the in5nite-system
scaling function,

((n)
1 (&) =

∞∏
j=0

"n(R
j
n (&))

"n(p
(n)
c )

: (43)

It is straightforward to prove that this in5nite product converges if "′
n(p

(n)
c )¿ 0 and

R′
n(p

(n)
c )¿ 0, as required for the critical exponents to be 5nite and non-zero.

By comparing Eqs. (39) and (41), we have

LD
(n)
f = nD

(n)
f j=d = "n(p(n)

c ) j ; (44)

which yields a simple estimate of the fractal dimension,

D(n)
f = d logn "n(p

(n)
c ) : (45)

It is apparent that this estimate of the fractal dimension converges to the correct value
in the large-cell limit, as long as p(n)

c → pc, because it is equivalent to the usual
5nite-system estimate used in numerical simulations, "n(pc) ∼ nDf=d. Eq. (45) has also
been derived by Hovi and Aharony using similar methods, albeit, valid only at the
critical point [13] (see also below). Here, however, we also predict universal scaling
functions and probability distributions for the complete crossover between phases.

As n → ∞, the 5rst term in the in5nite product of Eq. (43) converges to the true
scaling function, and all other terms converge to unity, since limn→∞ R1

n(&) = p(n)
c

for 0¡&¡ 1 according to Eq. (5). This suggests that the SRG approximation of the
scaling function converges in the large-cell limit. A very similar convergence proof is
carried out in detail in Part II for an in5nite-product formula for the strength of the
in5nite cluster.

4.4. A simple example

To illustrate the SRG approach, we compute estimates of 5nite-size scaling functions
for the total mass of clusters spanning a square system in one direction, using the very
simple four-cell scheme introduced above in Section 2.4. In this case, the SRG is based
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on the conditional probability generating function,

Qf4(p; z) =
2p2q2z2 + 4p3qz3 + p4z4

R4(p)
; (46)

where R4(p) is de5ned in Eq. (11), which yields the following polynomials for the
moments,

"4; k(p) =
2k+1p2q2 + 3k4p3qz3 + 4kp4

R4(p)
: (47)

From these expressions it is straightforward to compute (at least numerically) the
auxiliary scaling functions ((n)

k (&), but it would also be necessary to calculate the
correlation length, �(n)(p) to obtain the usual scaling functions, �(n)

k (x).
In practice, it is easier to iterate the cumulant recursions (numerically) starting

from two particular values of p very close to p(n)
c (one above and one below), as

in Fig. 1, and then rescale by appropriate values of �(n)(p) for the chosen values of
p. This method e=ectively samples the true continuous scaling functions at discrete
points bj=�(n)(p), which are very closely spaced (in log coordinates). For our four
-cell example, the results of this method are shown in Fig. 3.

The scaling functions in Fig. 3 exhibit a smooth crossover from one power law to
another (straight lines on a log–log plot) as the system size exceeds the correlation
length, which is the correct qualitative behavior. The quantitative accuracy of these
particular approximations is not very good, however, because even the fractal dimension
(limiting slope) is poorly described. For this example, Eq. (45) predicts D(n)

f ≈ 1:611,
for the mass of spanning clusters, compared to the presumably exact value, Df =
91=48 ≈ 1:896.

As with the critical exponent, �, four cells (b= 2) is not enough to reasonably ap-
proximate the fractal dimension, Df, but these estimates improve very quickly with
increasing cell size. For example, Eq. (45) predicts fractal dimensions for various
structural quantities on the square bond lattice with less one percent error using re-
markably small cells (b6 4) [13]. Likewise, preliminary numerical results with the
SRG using larger cells on the square site lattice also suggest that the approximation of
scaling functions improves quickly with cell size, concomitant with the improvement in
describing the fractal dimension. This ongoing work will be reported elsewhere, but at
least the analysis here predicts convergence in the large-cell limit (provided that the
scaling functions actually exist).

5. The supercritical #xed point

5.1. Asymptotic independence

A detailed analysis of the 5xed points of the SRG will be presented in upcoming
parts of this series, so here in the remaining sections we simply give the basic ideas.

Above the critical point of the RG, p¿p(n)
c , once the linear cell size exceeds

the correlation length, m1=d � �(n)(p), the renormalized cell occupation probability
approaches the supercritical 5xed point, pm → 1. In this limit, the sums in Eq. (16)
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Fig. 3. Four-cell SRG estimates of crossover functions for (a) the mean and (b) the standard deviation of
the total mass of clusters spanning a square system in one direction.

no longer have a random number of terms because Xn(1) is equal to a constant, x+n ,
with probability one, i.e.,

Qfn(1; z) = zx
+
n ; f̃n(1; s) = ex

+
n s; and f̂n(1; s) = x+n s : (48)

The suppression of randomness in the number of “children” of the SRG branching
process corresponds to the removal of hierarchical correlations at scales larger than the
correlation length. In the in5nite-system limit, independent contributions of mass from
all cells are simply accumulated at each level of recursion. In other words, the SRG
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at the supercritical 5xed point reduces to a non-random sum of independent random
variables,

Xmn(p) ∼
x+n∑
i=1

X (i)
m (p) : (49)

For example, at scales larger than the correlation length in the supercritical phase, all
x+n =n=bd cells make independent contributions to the total mass of spanning clusters,
while only a straight line of x+n =b cells contributes to the minimum chemical distance
in a hypercubic system. (The former case is illustrated in the top row of Fig. 2.)

5.2. Central Limit Theorem

It is well known that non-random sums of independent random variables obey the
Central Limit Theorem (CLT), which is characterized by a Gaussian limiting distribu-
tion with linear scaling of the mean and variance [32]. In the case of the SRG, “the
CLT holds” means that the distribution of the scaled random variable

ZN =
XN (p) "N (p)

%N (p)
(50)

converges to a standard normal distribution (i.e., a Gaussian with zero mean and unit
variance). If equality holds in Eq. (49) and thus Eq. (48) applies, then the CLT is
straightforward to prove from the cumulant generating function representation,

f̂mn(s; p) = x+n f̂m(s; p) ; (51)

which implies the additivity of cumulants (the crucial step in most proofs of the CLT).
This recursion is only asymptotically valid, however, so it is not clear a priori that the
convergence is fast enough to ensure that the CLT holds.

Nevertheless, in Part II it is shown that the CLT does in fact hold for the supercritical
5xed point of the SRG. This result is consistent with Newman’s proofs of the CLT
for the mass of 5nite fragments of the in5nite cluster [26,64,28]. The SRG prediction
is also in excellent agreement with our own new simulation results (using the methods
of Ref. [20]) for the total mass of clusters spanning a large square system in either
direction, shown in Fig. 4.

6. The subcritical #xed point

For p¡p(n)
c , the occupation probability renormalizes to zero because the spanning

probability tends to zero (exponentially) once the cell size exceeds the correlation
length. In this limit, all cells become “unoccupied”, and hence spanning clusters are
extremely rare. When spanning clusters do occur, however, they tend to include the
minimum number of cells, x−n , in a straight line across the system (x−n =b), as illustrated
in Fig. 2. Indeed, this intuition is supported by the SRG for the conditional distribution
of spanning cluster masses: At the subcritical 5xed point, the SRG again reduces to a
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Fig. 4. Supercritical and subcritical probability distributions, g(z), for the total mass of clusters spanning a
square system in either direction (scaled to have zero mean and unit variance). Numerical simulation data
for square-lattice site percolation is compared with the analytical prediction of the SRG at the o=-critical
5xed points, i.e., the Gaussian, e−z2=2=

√
2+. The numerical data re%ects averaging over 10 million samples

for a system of size N =200× 200 for the supercritical case and 20 million samples of size N =100× 100
for the subcritical case.

non-random sum of random variables,

Xmn(p) ∼
x−n∑
i=1

X (i)
m (p) ; (52)

since Xn(0) = x−n with probability one.
As in the supercritical case, this suggests that the CLT holds. The simulation data in

Fig. 4 is also consistent with this claim, although it is diPcult to generate enough sub-
critical spanning clusters to attain good convergence. (Much better convergence could
presumably be attained using a “go-with-the-winners” algorithm [65].) To the author’s
knowledge, the validity of the CLT for various quantities conditional on spanning in
subcritical percolation has not previously been reported.

Since spanning clusters are very rare in the subcritical regime, a much better order
parameter for the entire phase transition in 5nite systems is the mass of the largest
cluster [35–37,19,20]. At the subcritical 5xed point, the mass distribution of the largest
cluster does not obey the CLT, and instead the Fisher–Tippett limit theorem of extreme
statistics holds [19,20]. On the other hand, the CLT does hold for the largest-cluster
mass at the supercritical 5xed point because the largest cluster and various spanning
clusters are all the same in the supercritical limit. To unify the present theory with these
intriguing results revealing subcritical/supercritical asymmetry, in Part IV the SRG is
extended to the more subtle case of the mass of the largest cluster (which may not
span).
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7. The critical #xed point

7.1. Complete statistical self-similarity

At the critical 5xed point, p= p(n)
c , the SRG reduces exactly to

Xmn =
Xn∑
i=1

X (i)
m ; (53)

which asserts that, at every scale, the random cluster mass Xmn in a system of N =mn
sites has the same statistics as the sum of independent mass contributions X (i)

m from
a random number Xn out of n cells of size m. (In this section, we will drop the p
arguments in our notation with the understanding that p= p(n)

c .) As was recently 5rst
pointed out by Hovi and Aharony [13], the n-cell iteration of Eq. (53), with the distri-
bution of Xn 5xed in the upper limit of the random sums, corresponds to a stationary
Watson–Galton branching process [66,33,34]. This classical discrete branching process
describes the growth of a population of individuals, each of whom has a random num-
ber of children Xn sampled independently from the same distribution.

The self-similar iteration of Eq. (53),

Xm2 =
Xm∑
i=1

X (i)
m ; (54)

starting from the initial condition Xn (where N=n2
j
) corresponds to a hierarchical sam-

pling of the Watson–Galton process: The distribution of grandchildren is that of the
children’s children, the distribution of great, great grandchildren is that of the grand-
children’s grandchildren, etc. In this form, the SRG at the critical 5xed point clearly
expresses statistical self-similarity at all length scales because the coarse-grained mass
“on the cells” (the random number of terms in the sum) has the same distribution as
the random mass contributions from each cell.

In terms of cumulant generating functions, the SRG at the critical 5xed point is
simply a functional iteration,

f̂mn = f̂n ◦ f̂m ; (55)

starting from the initial condition f̂n(s). From Eq. (30), this implies that the mean
scales with system size, N = Ld = n j, as a power law,

"n j = ("n) j = LD
(n)
f = (nD

(n)
f =d) j ; (56)

where the n-cell estimate of the fractal dimension is given once again by Eq. (45).
(From Eq. (56), we see that "n ¿ 1 is a necessary condition for the expected value

of the critical order parameter to grow with system size, or equivalently, for the fractal
dimension to be positive. In the context of population growth, this is the case where
the expected population size grows exponentially with the number of generations, e.g.
a supercritical nuclear reaction. Conversely, the case, "n ¡ 1, models exponentially fast
extinction of a population, e.g. a subcritical nuclear reaction. As such, probability theo-
rists refer to these two types of branching processes as “supercritical” and “subcritical”,
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respectively, and while the marginal case "n =1 is naturally termed “critical” [32–34].
Unfortunately, this standard mathematical terminology is poorly suited here because the
SRG at the critical 5xed point is actually a “supercritical branching process”. In fact,
the non-stationary SRG branching process is “supercritical” for any thermodynamic
phase since the expected value of the order parameter always increases with system
size.)

7.2. The Fractal Central Limit Theorem

Although the SRG corresponds to a new kind of non-stationary branching pro-
cess, various existing mathematical results for simple Watson–Galton branching pro-
cesses [66,33,34] have direct relevance for the critical 5xed point [13]. For exam-
ple, the “central region” of the limiting distribution is at the same scale as the mean.
In other words, the scaled variable, ZN = XN ="N , has a stationary limiting
distribution,

lim
j→∞

Prob:(Xn j ¡ z"n j) = G(n)(z) (57)

for some non-trivial function G(n)(z) (the nth SRG estimate of the true limiting distribu-
tion). This result, which can be derived form Eq. (55), explains why random fractals,
such as critical spanning clusters in percolation, have very large mass %uctuations,
comparable to the mean, in contrast to normal random objects, such as supercritical
spanning clusters, which have “square-root %uctuations” (at the scale of the square root
of the mean) as a consequence of the CLT.

In Part III, it is shown that for percolation quantities, the SRG critical 5xed point,
G(z) = limn→∞ G(n)(z), is generally not Gaussian. Its shape depends sensitively on
macroscopic constraints, such as spanning or boundary conditions, although it is pre-
sumably universal for di=erent lattices in the same embedding dimension. The fact that
shape of the critical order-parameter distribution depends on macroscopic constraints,
for arbitrarily large systems, is a striking signature of long-range correlations, which
has apparently not been previously noted in the literature on percolation. This is also
the 5rst conclusion of the FCLT: In the central region, the limiting mass distribu-
tion of a random unifractal is non-Gaussian and depends sensitively on macroscopic
constraints.

Preliminary numerical evidence indicates that satisfactory approximations of critical
distribution functions can be obtained using remarkably small cells. These approxi-
mations are produced by numerically iterating the recursions given above, either for
the probability density directly (which involves discrete convolutions) or for one of
the generating functions (which involves simple multiplications followed by an inverse
transform). In Fig. 5, we see that the very simple n = 2 × 2 cell scheme discussed
above is surprisingly close to the results of large-scale simulations for clusters spanning
a square site lattice in one direction. Even more striking is the good accuracy achieved
using only slightly larger cells, n = 3 × 3 and n = 4 × 4. These approximations and
others are analyzed in more detail in Part III.
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Fig. 5. Limiting probability distribution (scaled to have unit mean) for the total mass of clusters spanning
a square system in one direction (solid line, obtained from simulations on a 300 × 300 site lattice with
p= 0:592746 ≈ pc) compared with 2× 2; 3× 3, and 4× 4 SRG approximations (dashed lines, obtained by
numerically iterating the exact recursions given in the main text).

The SRG also predicts universal stretched-exponential decay for the tails of the
critical limiting distributions

log g(z) ∼
{

A(z)z-̂ as z → ∞;

B(z)z&̂ as z → 0;
(58)

where g(z)=G′(z) is the limiting probability density function in the limit of in5nite cell
size, and A(z) and B(z) are periodic functions of log z, which are essentially constant
in practice [13]. (Note that stretched-exponential decay of the left tail as z → 0 holds
only if xn ¿ 1:) The tail exponents, -̂ and &̂, can be expressed in terms of other
critical exponents and do not depend on macroscopic constraints. If the mean scales
like "n(pc) ∼ n- and the largest possible value scales like x+n ∼ n-

+
, then the exponent

for the right tail is given by

-̂=
-+

-+ − -
: (59)

Similarly, if the smallest possible value scales like xn ∼ n-, then the exponent for the
left tail is given by,

&̂=
-

-− − -
: (60)

In the case of spanning clusters in d dimensions, we have - = Df=d; -+ = 1, and
-= 1=d, in which case the tail exponents are

-̂=
d

d− Df
(61)
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Fig. 6. Topology of the SRG %ow for in the space of scaled probability distributions of any structural quantity
conditional on spanning, such as the total cluster mass or the minimum chemical distance connecting two
opposite boundaries.

and

&̂=
1

1− Df
: (62)

These conclusions follow directly from classical mathematical theorems on Watson–
Galton branching processes [33,34,66], as 5rst pointed out by Hovi and Aharony [13].
Note that the co-dimension, d − Df, governs the right tail, because rare, very large
clusters have the dimension of the system d, rather than the normal fractal dimension,
Df. Similarly, the co-dimension, Df − 1, governs in the left tail, because rare, very
small clusters (conditional on spanning) are roughly linear objects with dimension one.

These results lead us to the second general conclusion of the FCLT: Outside the
central region, the limiting distributions of random unifractals have stretch exponen-
tial tails with universal exponents given by Eqs. (59)–(62). In ongoing work [31],
the generality of the FCLT is explored by the comparisons with percolation, random
graphs, and the Ising model, and subtle question of what happens above the upper
critical dimension is also addressed.

8. Discussion

Combining the results of this article, we arrive at a fruitful intuitive picture of the
SRG “%ow” (dashed lines) in the space of probability distributions, as sketched in
Fig. 6. As the system size is increased, the physical manifold 06p6 1 (solid lines)
is advected from the single-site manifold for N=1 towards the thermodynamic manifold
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for N =∞ (interior dotted line). The SRG accurately describes the universal %ow near
the two thermodynamic 5xed points and the crossover manifold connecting them, far
away from the p= 0; 1 5xed point representing discreteness and non-universality. For
a 5xed value of p �= 0; pc; 1; at small sizes the system trajectory passes near the
(unstable) critical 5xed point where the FCLT holds and then crosses over toward the
(stable) o=-critical 5xed point, where the CLT holds, once the system size exceeds
the correlation length.

The signi5cance of the SRG is both practical and fundamental. In real applications,
critical phenomena such as percolation occur in a 5nite systems, which are often small
enough compared to the correlation length that 5nite-size e=ects are important. In such
cases, the SRG provides a simple analytical or numerical method to approximate the
mean, variance, and distribution of an order parameter for arbitrary system sizes and
values of the control parameter, even when the correlation length and system size are
comparable. These approximations should be fairly accurate as long as the correlation
length and the system size are much larger than one.

Preliminary numerical results for percolation suggest that reasonable accuracy can
be achieved with remarkably small cell sizes (b¿ 2). Developing the best small-cell
approximations for various quantities in percolation and other statistical models will
require more extensive comparisons with simulation data, but once reasonable small-cell
schemes are identi5ed, they allow trivial calculations which may suPce to replace direct
simulations in various applications. From a practical point of view, simple approxima-
tions for a broad range of conditions can be much more useful than exact results for
certain limiting cases because models like percolation are always themselves only crude
approximations of real physical systems.

The SRG also provides basic insights into critical phenomena and random fractals.
The connection with branching processes gives a simple “population-growth” picture
of how crossover occurs in a continuous phase transition. The 5xed points of the SRG
also explain the nature of %uctuations in di=erent thermodynamic phases, e.g. governed
by the CLT and the FCLT. These conclusions have been reached here in the speci5c
context of percolation, which is perhaps the simplest case, but it should be possible to
extend the SRG to other critical phenomena, by postulating and analyzing appropriate
non-stationary branching processes expressing statistical self-similarity.
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