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Abstract

It is shown that the temperature dependence of Langmuir constants contains all the information
needed to determine spherically averaged intermolecular potentials. An analytical “inversion”
method based on the standard statistical model of van der Waals and Platteeuw is presented
which extracts cell potentials directly from experimental data. The method is applied to ethane
and cyclopropane clathrate-hydrates, and the resulting potentials are much simpler and more
meaningful than those obtained by the usual method of numerical 1tting with Kihara potentials.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A central mission of chemical physics is to determine intermolecular interactions
from experimental phase equilibrium data. This is generally a very di:cult task be-
cause macroscopic equilibrium constants re<ect averaging over vast numbers of poorly
understood microscopic degrees of freedom. Since the advent of the computer, empiri-
cally guided numerical 1tting has become the standard method to obtain intermolecular
potentials. An appealing and often overlooked alternative, however, is to solve inverse
problems based on simple statistical mechanical models.
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A well-known class of inverse problems is to determine the density of states n(E)
from the partition function Q(�), or one of its derivatives, as a function of inverse
temperature �= 1=kT . For classical Maxwell–Boltzmann statistics, these quantities are
simply related by a Laplace transform [1]

Q(�) =
∫ ∞

0
e−�	n(	) d	 (1)

which is straightforward to invert. Analogous quantum-mechanical problems have also
been solved using Laplace (or Mellin) transform methods. For example, in Bose–
Einstein statistics

Q(�) =
∫ ∞

0

n(	) d	
e�	 + 1

(2)

the phonon density of states can be obtained from the speci1c heat of a crystal
[2–9], and the area distribution of a blackbody radiator can be obtained from its power
spectrum [5,6,10–12]. Similarly, in Fermi–Dirac statistics

Q(�) =
∫ ∞

0

n(	) d	
e�(	−	F ) − 1

(3)

the band structure of a doped semiconductor can be obtained from the temperature
dependence of its carrier density [13]. In each of these examples, it is possible to
extract the microscopic density of states from a temperature-dependent thermodynamic
quantity because each is a function of just one variable.

In the more complicated case of chemical systems, thermodynamic quantities are
related to classical con1gurational integrals

Z(�) =
∫
V

e−�
(̃r) d̃r ; (4)

where the total energy 	 in Eq. (1) is replaced by the intermolecular potential 
(̃r),
and the integral extends over the interaction volume V . Unfortunately, these integrals
are multi-dimensional, which leads to under-determined inverse problems. Perhaps as
a result, statistical inversion methods have apparently not been developed for inter-
molecular potentials in chemical systems, and instead empirical 1tting has been used
exclusively to describe phase equilibrium data.

In this article, we show that within the common spherical-cell approximation the
intermolecular potential is completely determined by the temperature dependence of
the Langmuir constant. In this case, the linear integral equation (1) is replaced by a
non-linear equation of the form

Z(�) = 4�
∫ ∞

0
e−�w(r)r2 dr ; (5)

where w(r) is a spherically averaged “cell potential” [24]. As shown below in the
important case of Langmuir constants for clathrate-hydrates, this simple inverse problem
can be solved exactly without resorting to numerical 1tting schemes.

Before proceeding, we mention some related ideas in the recent literature of solid-
state physics. As with chemical systems, empirical 1tting is also the standard approach
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to derive interatomic potentials for metals and semiconductors. Since the pioneering
work of Carlsson et al. in 1980 [14,15], however, exact inversion methods have been
developed to obtain potentials from cohesive energy curves [5,16–20]. These theoret-
ical advances, discussed brie<y in Appendix A, have recently led to improvements in
the modeling of silicon, beyond what had previously been obtained by empirical 1tting
alone [20,21]. Inspired by such developments in solid-state physics, here we seek sim-
ilar insights into clathrate-hydrate intermolecular forces, albeit using a very diLerent
statistical mechanical formalism.

2. The inverse problem for clathrate-hydrates

2.1. The statistical theory of van der Waals and Platteeuw

Clathrate-hydrates exist throughout nature and are potentially very useful technolog-
ical materials [22]. For example, existing methane hydrates are believed to hold much
more energy than any fossil fuel in use today. Carbon dioxide hydrates are being con-
sidered as eLective materials for the sequestration and=or storage of CO2. In spite of
their great importance, however, the theory of clathrate-hydrate phase behavior is not
very well developed, still relying for the most part on the ad hoc empirical 1tting
of experimental data. Therefore, we have chosen to develop our statistical inversion
method in the speci1c context of clathrate-hydrate chemistry.

Since being introduced in 1959, the statistical thermodynamical model of van der
Waals and Platteeuw (vdWP) has been used almost exclusively to model the phase
behavior of clathrate-hydrates, usually together with a spherical cell (SC) model for
the interaction potential between the enclathrated or “guest” molecule and the cage
of the clathrate-hydrate. The SC model was also introduced by vdWP, inspired by an
analogous approximation made by Lennard–Jones and Devonshire in the case of liquids
[23,24].

In the general formulation of vdWP [23], the chemical potential diLerence between
an empty, unstable hydrate structure with no guest molecules, labeled MT, and the
stable hydrate, labeled H, is related to the so-called Langmuir hydrate constant CJi and
the fugacity of the guest molecule f̂J

P�MT−H = kT
∑

i

�i ln

(
1 +

∑
J

CJif̂J

)
; (6)

where i designates the type of cage, �i the number of cages of type i per water molecule
and J the type of guest molecule. In practice, experimental phase equilibria data is used
to determine P�MT−H .

The connection with intermolecular forces within vdWP theory is made by expressing
the Langmuir hydrate constant as the con1gurational integral ZJi divided by kT , which
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is written explicitly as an integral over the volume V

CJi(T ) =
1

8�2kT

∫
V

e−
(r;�;�;�;�; �)=kT r2sin � sin� dr d� d� d� d� d� ; (7)

where 
(r; �; �; �; �; �) is the general six-dimensional form of the interaction potential
between the guest molecule at spherical coordinates (r; �; �) oriented with Euler angles
(�; �; �) with respect to all of the water molecules in the clathrate-hydrate.

In the SC approximation, which is made without any careful mathematical justi1ca-
tion, the intermolecular potential 
 is replaced by a spherically averaged cell potential
w(r), which reduces the Langmuir constant formula (7) to a single, radial integration

CJi(T ) =
4�
kT

∫ R

0
e−w(r)=kT r2 dr ; (8)

where the cutoL distance R is often arbitrarily taken as the radius of the cage. (As
shown below, the exact value rarely matters because temperatures are typically so low
that the high-energy portion of the cage r ≈ R makes a negligible contribution to the
integral). Although the SC approximation may appear to be a drastic simpli1cation,
it is nevertheless very useful for theoretical studies of intermolecular forces based on
Langmuir constant measurements.

2.2. Numerical 5tting schemes

Before this work, the functional form of the cell potential w(r) has always been
obtained by 1rst choosing a model interaction potential between the guest molecule in a
cage and each nearest-neighbor water molecule essentially ad hoc, and then performing
the spherical average from (7) to (8) analytically. The most common potential form
in use today is the Kihara potential, which is simply a shifted Lennard–Jones potential
with a hard core. Using the Kihara potential and spherically averaging the interaction
energy, typically over the 1rst-shell only, yields the following functional form for w(r):

w(r) = 2z	
[

!12

R11r

(
"10 +

a
R
"11

)
− !6

R5r

(
"4 +

a
R
"5

)]
; (9)

where

"N =
1
N

[(
1 − r

R
− a

R

)−N
−
(
1 +

r
R
− a

R

)−N
]

(10)

and z is the coordination number, R is the radius of the cage, and !; 	, and a are the
Kihara parameters. As a result of the averaging process leading from (7) to (8), the
functional form of w(r) is fairly complicated, and the parameters 	 and ! are generally
determined by 1tting monovariant equilibrium temperature–pressure data numerically
[22,25].

There are several serious drawbacks to this ubiquitous numerical 1tting procedure,
which suggest that the Kihara parameters lack any physical signi1cance: (i) The Kihara
parameters are not unique, and many diLerent sets can 1t the experimental data well;
(ii) the Kihara parameters found by 1tting Langmuir curves do not match those of
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found by 1tting other experimental data, such as the second virial coe:cient or the
gas viscosity [22]; and (iii) comparisons of Langmuir constants found via the SC
approximation (8) and via explicit multi-dimensional quadrature (7) show that the two
can diLer by over 12 orders of magnitude [26,27] (which results from the exponentially
strong sensitivity of the Langmuir constant to changes in the cell potential). These
problems call into question the validity of using the Kihara potential as the basis for
the empirical 1tting, and even the use of the SC approximation itself.

2.3. Inversion of Langmuir curves

It would clearly be preferable to extract more reliable information about the inter-
atomic forces in clathrate-hydrates directly from experimental data without any ad hoc
assumptions about their functional form. In principle, such an approach is possible for
clathrate-hydrates which contain a single type of guest molecule occupying only one
type of cage. In this case, each of the sums in Eq. (6) contains only one term, and
by using an equation of state to compute the fugacity f̂J , the Langmuir constant CJi

can be determined directly from experimental phase equilibria data. Typical data sets
obtained in this manner are shown in Fig. 1 for Structure I ethane and cyclopropane
clathrate-hydrates [28].

Because the full potential 
 in (7) is multi-dimensional (while the Langmuir constant
only depends on a single parameter T ), the general vdWP theory is too complex to
pose a well-de1ned inverse problem for the interatomic forces. The SC approximation,
on the other hand, introduces a very convenient theoretical construct, the spherically
averaged potential w(r), which has the same dimensionality as the Langmuir curve
CJi(T ) of a single type of guest molecule occupying a single type of cage. (Since we
consider only this case, we drop the subscripts Ji hereafter.) Although one can question
the accuracy of the SC approximation, its simplicity at least allows precise connections
to be made between the Langmuir curve and the cell potential.

As an appealing alternative to empirical 1tting, in this article we view Eq. (8) as an
integral equation to be solved analytically for w(r), given a particular Langmuir curve
C(T ). Letting �= 1=kT , we rewrite (8) as

C(�) = 4��
∫ ∞

0
e−�w(r)r2 dr ; (11)

where we have also set the upper limit of integration to R=∞, which introduces
negligible errors due to the very low temperatures (large �) accessible in experiments.
(This will be justi1ed a posteriori with a precise de1nition of “low” temperatures
below.) Note that Eq. (11) has the form of Eq. (5) with Z(�) = �C(�).

2.4. Application to experimental data

In our analytical approach, some straight-forward 1tting of the raw experimental data
is needed to construct the function C(�), but after that, the “inversion” process leading



144 M.Z. Bazant, B.L. Trout / Physica A 300 (2001) 139–173

Fig. 1. Exponential 1ts of Langmuir constants over the measured temperature range plotted with linear axes
for (a) and (b) cyclopropane and (c) ethane clathrate-hydrates. An enlargement of the high-temperature data
for cyclopropane is shown in (a). The experimental data is taken from Ref. [28].
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Fig. 2. Exponential dependence with inverse temperature of experimental Langmuir curves from Fig. 1 plotted
with log-linear axes for (a) ethane and (b) cyclopropane clathrate-hydrates. Straight lines indicate pure van’t
HoL behavior.

to w(r) is exact. For example, typical sets of experimental data are well described by
a van’t HoL temperature dependence

C(�) =C0em� (12)

as shown in Fig. 2 for ethane and cyclopropane clathrate-hydrates [28], and the constant
m is generally positive. (Note that the exponential dependence which we call “van’t
HoL dependence” in this paper can be expected based on quite general thermodynamic
considerations [29].)
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Aided by the analysis, the quality and functional form of these 1ts are discussed
below in Section 7. In order to allow for deviations from the dominant van’t HoL
behavior, however, in this article we consider the more general form

C(�) = �F(�)em� ; (13)

where m is a constant de1ned by

m= lim
b→∞

logC(�)=� (14)

whenever this limit exists and is 1nite, i.e., when the prefactor F(�) is Eq. (13) is
dominated by the exponential term at low temperatures. We exclude the possibility of
hyper-exponential behavior at low temperatures, logC=� → ∞, which is not physically
meaningful, as explained below. The set of possible prefactors includes power laws,
F(�) ∝ �−�, as well as various rational functions.

The rest of article is organized as follows. In Section 3, we discuss various necessary
and su:cient conditions for the existence of physically reasonable solutions, and we
also derive the asymptotics of the Langmuir curve at low temperature from the behav-
ior of the cell potential near its minimum. In Section 4, we perform the analysis in the
general case, and in Section 5, we discuss the speci1c case of van’t HoL dependence
(12), which leads to a cubic solution as well as various unphysical solutions involving
cusps. In Section 6, we derive analytical solutions for several diLerent temperature
dependences, which reveal the signi1cance of possible deviations from van’t HoL be-
havior for the form of the potential w(r). The theoretical curves are compared with
the experimental data in Section 7, and the physical conclusions of the analysis are
summarized in Section 8. Relevant mathematical theorems are proved in Appendix B.

3. General analysis of the inverse problem

3.1. Necessary conditions for the existence of solutions

On physical grounds, it expected that the cell potential w(r) is continuous (at least
piecewise) and has a 1nite minimum at r0¿ 0 somewhere inside the clathrate cage,
w(r)¿w(r0) =w0. We also allow the possibility that w(r) is in1nite for certain val-
ues of r (e.g. outside a “hard-wall radius”) by simply omitting such values from the
integration in Eq. (11). As proved in Appendix B, these simple physical requirements
su:ce to imply the asymptotic relation (14), where m=−w0. They also place important
constraints on the prefactor F(�) de1ned in (13), which must be
(i) analytic in the half-plane Re�¿c and
(ii) real, positive and non-increasing for �¿c on the real axis,
where c¿ 0 is a real number. (Note that we view the inverse temperature � as a
complex variable, for reasons soon to become clear.) Moreover, if the set

S = {r¿ 0 |w0 ¡w(r)¡∞} (15)
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has non-zero measure, then F(�) is strictly decreasing on the positive real axis. It is
straightforward to generalize these rigorous results to the multi-dimensional integral of
vdWP theory, Eq. (7), without making the spherical-cell approximation, as described in
Appendix B, but hereafter we discuss only the spherically averaged integral equation,
Eq. (11), because it makes possible an exact inversion.

In this section, we give simple arguments to explain the results proved in Theorem 1
of Appendix B. First, we consider the illustrative example of a constant cell potential
with a hard wall at r = rhw ¿ 0,

w(r) =

{
w0 if 06 r ¡ rhw ;

∞ if r ¿ rhw
(16)

which satis1es the assumptions stated above. The integral (11) is easily performed in
this case to yield

C(�) = 4
3�r

3
hw�e−w0� (17)

which implies m= − w0, the well depth, and F(�) = 4
3�r

3
hw, the volume of negative

energy. Consistent with the general results above, F(�) is constant in this case since
S = ∅. For continuous potentials w(r), however, the prefactor F(�) must be strictly
decreasing because S 
= ∅.

The integral equation (11) can be simpli1ed by a change of variables from radius
to volume. In terms of a shifted cell potential versus volume

u(x) =w(r) − w0 where x=
4�
3

r3 (18)

the integral equation is reduced to the form

C(�) = �F(�)e−w(r0)� ; (19)

where

F(�) =
∫ ∞

0
e−�u(x) dx : (20)

Since u(x)¿ 0 by construction, the function F(�) is clearly non-increasing. In the
Appendix B, it is proved that if the potential varies continuously near its minimum
(in a very general sense), then F(�) does not decay exponentially. Since F(�) also
positive and bounded above, we conclude

lim
�→∞

logC(�)=�= − w0 (21)

which implies m= − w0. Therefore, the slope of the Langmuir curve on a “van’t
Ho9 plot” (log C versus �= 1=kT) in the low-temperature limit is equal to (minus)
the minimum energy of the cell potential. Since it is generally observed that m
is positive, as in the case of ethane and cyclopropane clathrate-hydrates shown in
Figs. 1 and 2, the cell potential must be attractive, w0 = − m¡ 0, which simply indi-
cates that the total internal energy is lowered by the introduction of guest molecules
into clathrate-hydrates.
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The fact that F(�) must be non-decreasing has important consequences for the
existence of solutions which are piecewise continuous and bounded below. For ex-
ample, consider the class of Langmuir curves of the form

C(�) ∝ ��em� (22)

which is useful in 1tting experimental data (see below). We have already addressed
the borderline case, �= 1, in which a discontinuous hard-wall solution is possible.
Although it is not obvious a priori, there are no solutions to the inverse problem if
�¿ 1, since in that case F(�) ∝ ��−1 is increasing. On the other hand, if �¡ 1, then
well behaved continuous solutions are possible, because F(�) is strictly decreasing.

3.2. Low-temperature asymptotics of the Langmuir curve

From Eq. (21), we see that the minimum energy w0 =w(r0) determines the leading
order asymptotics of C(�) in the low-temperature limit. More generally, one would
expect that C(�) at low temperatures would be completely determined by the shape of
the cell potential at low energies, close to its minimum. Using standard methods for
the asymptotic expansion of Laplace integrals [30], it is straightforward to provide a
mathematical basis for this intuition. For simplicity, here we consider the usual case
of a parabolic minimum

w(r) =w0 + 1
2k(r − r0)2 + O((r − r0)3) (23)

for some constants k ¿ 0 and r0¿ 0, although below we will derive many exact so-
lutions with non-parabolic minima.

Due to the factor of r2 appearing in the integrand in Eq. (11), the two cases of
a non-central or central minimum, r0 ¿ 0 and r0 = 0, respectively, must be treated
separately. Physically, this qualitative diLerence between central and non-central wells
is due to the spherical averaging process going from Eqs. (7) to (11): A central well
in w(r) corresponds to a unique local minimum of the multi-dimensional potential 
,
but a non-central well in w(r) corresponds to a non-local minimum of 
 which is
smeared across a sphere of radius r0.

Beginning with non-central-well case, r ¿ 0, we have the following asymptotics as
Re� → ∞:

C(�)∼ 4�r2
0�
∫ r0+	

r0−	
e−�(w0+

1
2 k(r−r0)2) dr ∼ 4�r2

0

(
2�
k

)1=2

e−�w0

∫ ∞

−∞
e−t2 dt

= 4�r2
0

(
2��
k

)1=2

e−�w0 (24)

which is the usual leading order term in the expansion of a Laplace integral [30].
Therefore, the experimental signature of a non-central well is a Langmuir constant
which behaves at low temperatures like

C(�) ∼ Aem��1=2 as � → ∞ : (25)
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Comparing (24) and (25), we can identify the well depth w0 = − m, consistent with
the general arguments above, but it is impossible to determine independently the lo-
cation of r0 and the curvature k of the minimum. Instead, any r0 and k satisfy-
ing 4�r2

0

√
2�=k =A would exactly reproduce the same large-� asymptotics of the

Langmuir curve (as would a completely diLerent central-well solution described in
Section 6). This degeneracy of non-central-well solutions revealed in the low-
temperature asymptotics is actually characteristic of all non-central-well solutions, as
explained below.

In the central-well case, r0 = 0, the asymptotics must be carried out more carefully
because the leading term derived in (24) vanishes

C(�)∼ 4��
∫ 	

0
e−�(w0+

1
2 kr2)r2 dr ∼ 4�

(
2

k3�

)1=2

e−�w0

∫ ∞

0
t1=2e−t dt

=
(

2�
k

)3=2 e−�w0

�1=2 : (26)

The experimental signature of a parabolic central well in the Langmuir curve

C(�) ∼ Bem��−1=2 as � → ∞ (27)

is qualitatively diLerent from (25), which provides an unambiguous way to separate the
two cases using low-temperature measurements. Moreover, unlike the non-central-well
case, the curvature k = 2�B−2=3 of a parabolic central minimum is uniquely determined
by the low-temperature asymptotics of the Langmuir curve. Consistent with asymptotic
results, we shall see in Section 4 that central-well solutions to the inverse problem are
unique; while non-central-well solutions are not.

3.3. Su;cient conditions for the existence of solutions

The primary di:culty in solving Eq. (11) lies in its being a non-linear integral
equation of the “1rst kind” for which no general theory of the existence and uniqueness
of solutions exists [31,32]. In the linear case, however, there is a special class of
1rst-kind equations which can be solved using Laplace, Fourier or Mellin transforms,
namely integral equations of the additive or multiplicative convolution type [34,35]

3(x) =
∫ ∞

−∞
K(x − y) (y) dy (28)

or

3(x) =
∫ ∞

0
K(xy) (y) dy ; (29)

respectively, where  (x) is the unknown function and 3(x) is given. Integral equations
of the multiplicative form (29) often arise in statistical mechanics as explained in
Section 1.

Although our non-linear, 1rst-kind equation (11) is not of the convolution type
because the unknown function w(r) appears in the exponent, it does somewhat resem-
ble a Laplace transform. This connection is more obvious in the alternative formulation
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(20) relating F(�) and u(x), which is equivalent to the original equation (11) according
to the analysis above. In the next section, it is shown that physically reasonable solu-
tions exist whenever F(�) has an inverse Laplace transform f(y) which is positive,
non-decreasing and non-constant for y¿ 0. (Su:cient conditions on F(�) to ensure
these properties of f(y) are given in Appendix B.)

4. Analytical solutions for arbitrary Langmuir curves

4.1. The unique central-well solution

It is tempting to change variables y= u(x) in the integral (20) to reduce it to a
Laplace transform, but care must be taken since u−1(y) may not be single-valued.
This leads us to treat solutions which are monotonic separately from those which are
not, an important distinction fore-shadowed by the asymptotic analysis above. As a
natural 1rst case, we seek diLerentiable solutions u(x) which are strictly increasing
without bound (u(∞) =∞) from a central minimum (u(0) = 0). Such “central-well
solutions” correspond to cell potentials w(r) which are strictly increasing from a 1nite
minimum w(0) =w0 at the center of the cage. We proceed by considering the inverse
cell potential v(y) = u−1(y) with units of volume as a function of energy, which is
single-valued and strictly increasing with v(0) = 0, as shown in Fig. 3(a). With the
substitution y= u(x), Eq. (20) is reduced to Laplace’s integral equation [35] for the
unknown function v′(y)

F(�) =
∫ ∞

0

e−�y dy
u′(u−1(y))

=
∫ ∞

0
e−�yv′(y) dy : (30)

Upon taking inverse Laplace transforms, we arrive at the diLerential equation for v(y)

v′(y) =f(y) (31)

whose unique solution is

v(y) =
∫ y

0
f(y) dy (32)

using the boundary condition v(0) = 0. According to (31), the continuity of f(y) for
y¿ 0 (which is not assumed) would be guarantee the diLerentiability of v(y) for
y¿ 0; and hence of u(x) for x¿ 0.

Equivalently, we can also simplify (30) with an integration by parts

F(�) = �
∫ ∞

0
e−�yv(y) dy : (33)

Therefore, the inverse cell potential is given by

v(y) = g(y) ; (34)

where g(y) is the inverse Laplace transform of the function

G(�) =
F(�)
�

=
C(�)e�w0

�2 : (35)
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Fig. 3. (a) Sketch of a central-well solution, where x is the scaled volume of interaction and u(x) is the
spherically averaged cell potential with inverse v(y) = u−1(y). (b) Sketch of a non-central-well solution
composed of a non-increasing function u−(x) and a non-decreasing function u+(x) joined at a minimum of
zero at x0, along with a possible hard core at x1 and hard wall at x2. The two branches v−(y) and v+(y)
of the multi-valued inverse cell potential v(y) are also shown, along with other variables de1ned in the text.

The cell potential u(x) is determined implicitly by the algebraic equation

g(u) = x : (36)

Returning to the original variables, we have a general expression for w(r) in the
central-well case

w(r) =w0 + g−1
(

4
3
�r3
)

: (37)
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This equation uniquely determines the central-well potential that exactly reproduces
any admissible Langmuir curve.

4.2. Non-central-well solutions

The simplest kind of non-central-well solution is the central well (37) shifted by a
“hard-core” radius rhc ¿ 0

w(r) =




∞ if 06 r ¡ rhc ;

w0 + g−1
[

4
3�(r3 − r3

hc)
]

if r¿ rhc
(38)

which exempli1es a peculiar general property of our integral equation. An arbitrary
hard core can be added to any solution. Note that, if u(x) is any solution of the
rescaled equation (20), then so is

ũ(x) =

{∞ if 06 x¡xhc ;

u(x − xhc) if x¿ xhc
(39)

for any hard-core volume xhc¿ 0. The proof is simple∫ ∞

0
e−�ũ(x) dx=

∫ ∞

xhc

e−�u(x−xhc) dx=
∫ ∞

0
e−�u(x) dx=F(�) : (40)

Physically, a hard core for the cell potential could represent the presence of a sec-
ond guest molecule (in a spherically symmetric model) in the same clathrate-hydrate
cage. Alternatively, a hard core could represent a water molecule (again in a spheri-
cally symmetric model) at the node of several adjacent clathrate cages, in which case
the cell potential actually describes the “super-cage” surrounding the central water
molecule.

The arbitrary hard core just described only hints at the vast multiplicity of non-
monotonic solutions to the integral equation (20), which is a common characteristic of
1rst-kind equations [32]. Next, we consider the general case of a non-central well,
shown in Fig. 3(b), which includes (38) as a special case. To be precise, we seek
continuous solutions u(x) on an interval x1 ¡x¡x2 composed of a non-increasing
function u−(x) and a non-decreasing function u−(x) which are piecewise diLerentiable
and non-negative. We also allow for a possible hard core in the central region x¡x1

as well as a “hard wall” beyond the clathrate cage boundary x¿x2. The general form
of such a non-central-well solution is

u(x) =




∞ if 0¡x¡x1 ;

u−(x) if x1 ¡x6 x0 ;

u+(x) if x06 x¡x2 ;

∞ if x¡x2 ;

(41)
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where u−(x0) = u+(x0). We do not assume u′+(x0) = u′−(x0); which would imply dif-
ferentiability at the minimum u′(x0) = 0; although we do not rule out this case either.
Instead, we allow for the mathematical possibility of a discontinuous 1rst derivative at
x0; i.e., a “cusp” at the well position, at least for the moment.

As before, it is convenient to express the solution (41) in terms of two diLerentiable
functions v−(y) = u−1

− (y) and v+(y) = u−1
+ (y) which describe the multi-valued inverse

cell potential. Note that v−(∞) = x1; v+(∞) = x2 and v−(0) = v+(0) = x0. In terms of
the inverse cell potentials, the integral equation (20) takes the form

F(�) =
∫ ∞

0
e−�u(x) dx

=
∫ x0

x1

e−�u−(x) dx +
∫ x2

x0

e−�u+(x) dx

=
∫ ∞

0
e−�y[v′+(y) − v′−(y)] dy (42)

which implies

v′+(y) − v′−(y) =f(y) : (43)

In this case, the continuity of f(y) would only guarantee the diLerentiability of the
diLerence v+(y) − v−(y); but not of the individual functions v+(y) and v−(y). Inte-
grating (42) by parts before taking the inverse transform yields a general expression
for the solution

v+(y) − v−(y) = g(y) ; (44)

where again g(y) is the inverse Laplace transform of F(�)=�. Unfortunately, we have
two unknown functions and only one equation, so the set of non-central-well solutions
is in5nite.

The scaled Langmuir curve F(�) uniquely determines only v+(y)− v−(y); the vol-
ume diLerence as a function of energy between the two branches of the scaled cell
potential u(x); but not the branches v+(y) and v−(y) themselves. An in1nite vari-
ety of non-central-well solutions, which exactly reproduce the same Langmuir curve
as the central-well solution, can be easily generated by choosing any non-increasing,
non-negative, piecewise diLerentiable function v−(y) such that the function v+(y) de-
1ned by (44) is non-decreasing. Even the position of the well v−(0) = x0 can be chosen
arbitrarily.

For example, one such family of solutions with a central “soft core” (x1 = 0) is
given by

u(x) =

{
u−(x) if 06 x6 x0 ;

u+(x) if x¿ x0 ;
(45)
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where

v−(y) = u−1
− (y) =

{
x0 − ayb if 06y6yc ;

0 if y¿yc

(46)

and

v+(y) = u−1
+ (y) = v−(y) + g(y) (47)

for any a; b¿ 0 and x0¿ 0. (In the limit a → 0; we recover the unique central-well
solution.) Note that yc = u(0) = (x0=a)1=b is the height of the central maximum of the
potential. These solutions, all derived from a single Langmuir curve, exist whenever
g(y) increases quickly enough that v+(y) is non-decreasing, which is guaranteed if
g′(y)¿ abyb−1 for 0¡y¡yc.

Another family of non-central-well solutions with a soft core can be constructed with
the choice

v−(y) =

{
x0 − :g(y) if 06y6yc ;

0 if y¿yc

(48)

for any 0¡:¡ 1 and x0¿ 0; where yc = g−1(x0=:). In this case, the cell potential is
easily expressed in terms of g−1(x) as

u(x) =




g−1( x0−x
: ) if 06 x6 x0 ;

g−1( x0−x
1−: ) if x06 x6 xc ;

g−1(x) if x¿ xc ;

(49)

where xc = v+(yc) = x0=:. This class of solutions exists whenever g(y) is non-decreasing
(or f(y)¿ 0). If yc =∞; then there is a hard core u(0) =∞. Otherwise, if there is
a soft core u(0) =yc ¡∞; then there is typically a cusp (discontinuous derivative) at
xc; as explained below.

As demonstrated by the preceding examples, it is straightforward to generate an enor-
mous variety of non-central-well solutions, with an arbitrarily shaped soft or hard core,
and an arbitrary position of the minimum. In spite of the multiplicity of non-central-well
solutions, however, our analysis of the inverse problem at least determines v+(y) −
v−(y) uniquely from any experimental Langmuir curve. This important analytical con-
straint is not satis5ed by empirical 5tting procedures.

4.3. Soft cores and outer cusps

Non-central-well solutions with a soft core satisfy v−(y) = 0 for y¿yc ¿ 0; as in
the examples above. In such cases, v+(y) = g(y) for y¿yc regardless of whether or
not there is an outer hard wall, which implies that u(x) = g−1(x) for x¿ xc; where
xc = g−1(yc). If f(y) is continuous for y¿ 0; then, unless u−(x) has an “inverted
cusp” at the origin (v′−(yc) = 0 and u′−(0+) =−∞); any non-central-well solution u(x)
with a soft core must have a cusp at x= xc; as in the examples above. This “outer cusp”
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in u(x) could only be avoided if f(y) itself has a cusp at yc which would allow v+(y)
to be continuous. However, an inverted cusp in u(x) at the origin does not necessarily
imply an cusp in w(r) at the origin due the transformation x= 4

3�r
3. For example, if

v−(y) ∼ (yc − y)3=2 as y → yc; or u(x) ∼ yc − x2=3 as x → 0; then w(r) would have
a physically reasonable, parabolic soft core w(r) ∼ w0 + yc − (4�=3)2=3r2 as r → 0.
Nevertheless, even in such cases, if f(y) were continuous for all y¿ 0; then both u(x)
and w(r) would have unphysical second-derivative discontinuities at x= xc related to
the soft core. In general, a continuously diLerentiable, non-central-well solution with
a central soft core could only arise if f(y) were discontinuous at some yc ¿ 0; and
such discontinuities are generally not present.

4.4. Cusps at a non-central minimum

As mentioned above, the behavior of the cell potential near its minimum (whether
central or not) is determined by the behavior of the Langmuir curve at low temperature,
or equivalently, at large inverse temperature, �= 1=T . The Laplace transform formal-
ism makes this connection transparent and mathematically rigorous. The asymptotic
behavior of G(�) as Re� → ∞ is related to the asymptotics of the inverse transform
g(y) as y → 0; which in turn governs the local shape of the energy minimum through
Eq. (34) for a central well or Eq. (44) for a non-central well. The leading order asymp-
totics has already been computed above for parabolic minima, but the general solutions
above show how various non-local properties of the potential are related to 1nite tem-
perature features of the Langmuir curve. Here, we comment on a subtle diLerence in
diLerentiability between central and non-central wells, related to the small-y behavior
of f(y).

For some sets of experimental data, including the van’t HoL form (12), the prefactor
F(�) appears to have a bounded inverse Laplace transform in the neighborhood of the
origin

lim
y→0

f(y) =f(0)¡∞ : (50)

This generally implies the existence of a cusp at a non-central minimum of u(x); which
is signi1ed by a non-zero right and=or left derivative. When u(x) is diLerentiable at its
minimum, it satis1es u′−(x−0 ) = u′+(x+

0 ) = 0. In the central-well case x0 = 0; the existence
of a cusp in u(x) follows from (31)

u′(0+) = 1=v′(0+) = 1=f(0)¿ 0 (51)

but this does not imply a cusp in the unscaled potential w(r) as long as f(0)¿ 0
because in that case

w(r) − w0 = u(4�r3=3) ∼ (4�=3f(0))r3 as r → 0+ : (52)

In the non-central-well case, however, the bounded inverse transform (50) implies
a cusp at the minimum because, v′+(0) − v′−(0) =f(0)¡∞ from (44) along with
v′+(0)¿ 0 and v′−(0)6 0 implies that v′+(0)¡∞ and=or v′−(0)¿−∞ which in turn
implies u′+(0)¿ 0 and=or u′−(0)¡ 0. Unlike the central-well case, however, a cusp in
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u(x) at the non-central minimum x0 ¿ 0 implies a cusp at the corresponding non-central
minimum of w(r). Therefore, we conclude that whenever (50) holds, the only physi-
cally reasonable solution is the central-well solution (37).

4.5. Asymptotics at high energy and temperature

The high-energy behavior of the cell potential is related to (but not completely
determined by) the high-temperature asymptotics of the Langmuir hydrate constant,
through the function g(y). For example, the cell potential would have a hard wall at
x2 ¡∞; if and only if g(y) were unbounded

lim
y→∞ g(y) =∞ : (53)

Since the empirical modeling of Langmuir curves using Kihara potentials assumes an
outer hard core, Eq. (53) could be used to test the suitability of using the Kihara
potential form, although experimental data is often not available at su:ciently high
temperatures to make a fully adequate comparison (see below). Whenever (53) holds,
the non-central-well solutions u(x) are also universally asymptotic to the central-well
solution

u(x) ∼ g−1(x) (54)

at large volumes x → ∞. This follows from (44) and the fact that v−(y) is bounded,
which implies v+(y) ∼ g(y). The exact inversions performed in Section 6 provide fur-
ther insight into the relationship between small � asymptotics of the Langmuir constant
and high-energy behavior of the cell potential.

5. Langmuir curves with van’t Ho$ temperature dependence

Experimental Langmuir hydrate-constant curves C(�) are well 1t by an ideal van’t
HoL temperature dependence (12), demonstrated by straight lines on Arrhenius log-
linear plots

logC =m� + logC0 (55)

as shown in Figs. 1 and 2 for ethane (C0 = 4:733× 10−7 atm−1; m= 9:4236 kcal=mol)
and cyclopropane (C0 = 1:9041×10−7 atm−1; m= 10:5939 kcal=mol) clathrate-hydrates
[28]. This data is analyzed carefully in Section 7, where alternative functional forms are
also considered. In the ideal van’t HoL case, we have F(�) =C0=� and G(�) =C0=�2.
The inverse Laplace transforms of these functions are simply f(y) =C0H (y) and
g(y) =C0yH (y), respectively, where H (y) is the Heaviside step function.

We begin by discussing the unique central-well solution, which is illustrated by the
solid line in Fig. 4 for the case of ethane. The central-well solution is linear in volume
u(x) = g(x) =C0yH (y), and cubic in radius

w(r) =
4�r3

3C0
− m : (56)
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Fig. 4. Analytical cell potentials for the ethane clathrate-hydrate which exactly reproduce the experimental
data in Fig. 2(a). The unique central-well solution (56) is indicated by a solid line, while a family of
non-central-well solutions with soft cores (59) is also shown as dashed lines with cusp-like minima at
r0 = 0:2; 0:3; 0:4 TA. Each of these solutions also has a cusp at r = 21=3r0, where the energy is the same as
the central maximum, and beyond this distance joins the central-well solution.

A curious feature of this exact solution is that it has a vanishing “elastic constant”,
w′′(0) = 0, a somewhat unphysical property which we address again in Section 7.

The simple form of (56) makes it very appealing as a means of interpreting ex-
perimental data with van’t HoL temperature dependence. We have already noted that
the slope of a van’t HoL (Fig. 2) plot of the Langmuir constant is equal to the well
depth m=−w0, but now we see that the y-intercept logC0 is related to the well-size,
e.g. measured by the volume of negative energy mC0. This volume corresponds to a
spherical radius of

rs =
(

3mC0

4�

)1=3

(57)

which is 0:4180 TA for ethane and 0:3208 TA for cyclopropane. Since the van der Waals
radius of ethane is less than that of cyclopropane, it makes physical sense that rethane

s ¿
rcyclopropropane
s . Moreover, these volumes fall within the ranges determined from two

diLerent experimental modeling approaches: Using the radius of the water cage from
X-ray scattering experiments [22], Lennard–Jones potentials from gas viscosity data
give 0:79 TA for ethane and 0:61 TA for cyclopropane [33], while computations with van
der Waals radii give 0:18 TA for ethane and 0:03 TA for cyclopropane [22].

There are in1nitely many non-central well solutions reproducing van’t HoL temper-
ature dependence, but each of them has unphysical cusps (discontinuous derivatives).
There will always be a cusp at the minimum of the potential, since f(y) satis1es the
general condition (50). For example, the central-well solution can be shifted by an
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arbitrary hard core radius r0¿ 0

w(r) =




∞ if 06 r ¡ r0 ;

4�(r3−r3
0 )

3C0
− m if r¿ r0 :

(58)

In the case of a soft core, there must be a second cusp in the outer branch of the
potential at the same energy as the inner core due to the continuity of f(y), as ex-
plained above. This is illustrated by the following piecewise cubic family of soft core
solutions of the general form (49)

w(r) =




8�|r3
0−r3|

3C0
− m if 06 r6 21=3r0

4�r3

3C0
− m if r0¿ 21=3r0

(59)

which are shown in Fig. 4 in the case of ethane guest molecules. An in1nite variety
of other piecewise diLerentiable solutions exactly reproducing van’t HoL dependence
of the Langmuir curve could easily be generated, as described above, but each would
have unphysical cusps.

Previous studies involving ad hoc 1tting of Kihara potentials have reported non-
central wells [22], but these empirical 1ts may be only approximating various exact,
cusp-like, non-central-well solutions, such as those described above. Moreover, given
that the central-well solution (56) can perfectly reproduce the experimental data, it
is clear that the results obtained by 1tting Kihara potentials to Langmuir curves are
simply artifacts of the ad hoc functional form, without any physical signi1cance. Kihara
1ts also assume a hard wall at the boundary of the clathrate cage (by construction),
whereas all of the exact analytical solutions (both central and non-central wells) have
the asymptotic dependence

w(r) ∼ 4�r3

3C0
(60)

as r → ∞ according to (54). Any deviation from the cubic shape at large radii,
such as a hard wall, would be indicated by a deviation from van’t HoL behavior
at high temperatures, but such data would be di:cult to attain in experiments (see
below).

The preceding analysis shows that the only physical information contained in a
Langmuir curve with van’t HoL temperature dependence is the depth w0 and the ef-
fective radius rs of the spherically averaged cell potential, which takes the unique
form (56) in the central-well case. In hindsight, the simple two-parameter form of
the potential is not surprising since a van’t HoL dependence is described by only
two parameters, m and C0. It is clearly inappropriate to 1t more complicated ad hoc
functional forms, such as Eq. (9) derived from the Kihara potential, since they con-
tain extraneous 1tting parameters and do not reproduce the precise shape of any exact
solution.
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6. Analysis of possible deviations from van’t Ho$ behavior

6.1. Dimensionless formulation

The general analysis above makes it possible to predict analytically the signi1cance
of possible deviations from van’t HoL temperature dependence, which could be present
in the experimental data (see below). We have already discussed the experimental sig-
natures of various low- and high-energy features of the cell potential in the asymptotics
of the Langmuir curve. In this section, we derive exact solutions for Langmuir curves
of the form (13) where F(�) is a rational function. Such cases correspond to log-
arithmic corrections of linear behavior on a van’t HoL plot of the Langmuir curve,
which are small enough over the accessible temperature range to be of experimental
relevance, in spite of the dominant van’t HoL behavior seen in the data.

Fitting to the dominant van’t HoL behavior (55) introduces natural scales for energy,
m, and pressure, C−1

0 , so it is convenient and enlightening to introduce dimensionless
variables. With the de1nitions

�̃=m�; C̃(�̃) =C(�̃=m)=C0 and F̃(�̃) =F(�̃=m)=mC0 ; (61)

the Langmuir curve can be expressed in the dimensionless form

C̃(�̃) = �̃F̃(�̃)e�̃ : (62)

For consistency with these de1nitions, the other energy-related functions in the analysis
are non-dimensionalized as follows:

G̃(�̃) =G(�̃=m)=m2C0; ỹ=y=m; f̃(ỹ) =f(mỹ)=C0; g̃(ỹ) = g(mỹ)=mC0 ;

(63)

where f̃(ỹ) and g̃(ỹ) are the inverse Laplace transforms of F̃(�̃) and G̃(�̃), respec-
tively. The natural scales for energy and pressure also imply natural scales for volume,
mC0, and distance, rs, as described in the previous section, which motivates the fol-
lowing de1nitions of the dimensionless cell potential versus volume

x̃= x=mC0; ũ(x̃) = u(mC0x̃)=m (64)

and radius

r̃ = r=rs; w̃(r̃) =w(rsr̃)=m : (65)

Note that x̃= r̃3. With these de1nitions, the central-well solution takes the simple form

ũ(x̃) = g̃−1(x̃) (66)

in terms of the dimensionless volume, or

w̃(r̃) = − 1 + g̃−1(r̃3) (67)

in terms of the dimensionless radius. We now consider various prefactors F̃(�̃) which
encode valuable information about the energy landscape in various regions of the
clathrate cage.
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6.2. The interior of the clathrate cage

6.2.1. Power-law prefactors
The simplest possible correction to van’t HoL behavior involves a power-law

prefactor

F̃(�̃) = �̃
−�

for any �¿ 0 (68)

which corresponds to a logarithmic correction on a van’t HoL plot of the Langmuir
constant

log C̃ = �̃ + (1 − �) log(�̃) (69)

as shown in Fig. 5(a). In this case, we have

f̃(ỹ) = ỹ �−1H (ỹ)=<(�) and g̃(ỹ) = ỹ �H (ỹ)=<(� + 1) ; (70)

where <(z) is the gamma function. In general, power-law prefactors at low temperatures
signify an energy minimum with a simple polynomial shape.

6.2.2. The central-well solution
The unique central-well solution is also a simple power law

ũ(x̃) = [<(� + 1)x̃ ]1=� (71)

or equivalently

w̃(r̃) = − 1 + <(� + 1)1=�r̃3=� : (72)

The cubic van’t HoL behavior is recovered in the case �= 1, as is the (asymptotic)
parabolic behavior from (23) and (27) in the case �= 3=2. Because w̃(r̃)+1 ˙ r̃3=�, a
power-law correction van’t HoL behavior with a positive exponent (�¡ 1) corresponds
one which is “wider” than a cubic, while a negative exponent (�¿ 1) corresponds to
a potential which is “more narrow” than a cubic, as shown in Fig. 5(b). On physical
grounds, the smooth polynomial behavior described by (72) is always to be expected
near the minimum energy of the cell potential. Therefore, the power-law correction
to van’t HoL behavior (69) has greatest relevance for low-temperature measurements
in the range �̃�1, from which it determines interatomic forces in the interior of the
clathrate cage at low energies |w̃(r̃)|�1.

6.2.3. Non-central-well solutions
As described above, there are in1nitely many non-central-well solutions. One family

of solutions of the form (49) with := 1=2 is given by

w̃(r̃) + 1 =

{
[2<(� + 1)|r̃3 − r̃3

0|]1=� if 06 r̃6 21=3r̃0 ;

[<(� + 1)r̃3]1=� if r̃¿ 21=3r̃0 ;
(73)

where r̃0 = r0=rs is arbitrary, as shown in Fig. 5(c) for the case r̃0 = 0:65. These so-
lutions are unphysical since they all have cusps at r̃ = 21=3r̃0 near the outer wall of
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Fig. 5. Exact inversion of Langmuir curves with power-law corrections to van’t HoL behavior, expressed
in terms of dimensionless variables, as in Eq. (69). (a) Plots of C̃ =C=C0 versus �̃=m=kT for the
cases �= 1=2; 1; 3=2. (b) The corresponding (unique) central-well potentials plotted as w̃ =w=m versus
r̃ = r=(3mC0=4�)1=3. (c) Examples of soft-core non-central-well solutions of the form (73) with an arbitrarily
chosen minimum at r̃ = 0:65, which all have cusps at r̃ = 21=3(0:65) ≈ 0:819.



162 M.Z. Bazant, B.L. Trout / Physica A 300 (2001) 139–173

the cage. However, they can still have reasonable behavior near the minimum at r̃0

for certain values of �, which could have experimental relevance for low-temperature
measurements. Near the minimum, the exact solutions (73) have the asymptotic form

w̃(r̃) ∼ −1 + [6<(� + 1)r̃2
0|r̃ − r̃0|]1=� as r̃ → r̃0 ; (74)

which is cusp-like for �¿ 1=2, but diLerentiable for 0¡�6 1=2. For example, the
non-central well has a parabolic shape in the case �= 1=2, which agrees with the
asymptotic analysis in Eqs. (23)–(25) when the units are restored, and it has a cubic
shape when �= 1=3. On the other hand, in the central-well case �= 3=2 and 1 cor-
respond to parabolic and cubic minima, respectively. Therefore, this example nicely
illustrates the diLerence between the low-energy asymptotics of central and non-central
wells described above in Section 3, which would be useful in interpreting any experi-
mental Langmuir constant data showing deviations from van’t HoL behavior.

6.3. The outer wall of the clathrate cage

6.3.1. Rational function prefactors
The behavior of the Langmuir curve in the high-temperature region �̃=O(1) is

directly linked to properties of the outer wall of the clathrate cage, described by the
cell potential at high energies w̃(r̃) + 1 =O(1). Although this region of the Langmuir
curve does not appear to be accessible in experiments (see below), in this section we
derive exact solutions possessing diLerent kinds of outer walls, whose faint signature
might someday be observed in experiments at moderate temperatures. In order to isolate
possible eLects of the outer wall, we consider Langmuir curves which are exactly
asymptotic to the usual van’t HoL behavior at low temperatures with small logarithmic
corrections (on a van’t HoL plot) at moderate temperatures. These constraints suggest
choosing rational functions for F̃(�̃) such that F̃(�̃) ∼ 1=�̃ as � → ∞.

6.3.2. Central wells with hard walls
We begin by considering a “shifted power law” prefactor

F̃(�̃) = 1=(�̃ + �) for any �¿ 0 (75)

which corresponds to a shifted logarithmic deviation from van’t HoL behavior

log C̃ = �̃ − log(1 + �=�̃) : (76)

As shown in Fig. 6(a), this suppresses the Langmuir constant at high temperatures,
which intuitively should be connected with an enhancement of the strength of the outer
wall compared to the cubic van’t HoL solution. Taking inverse Laplace transforms we
have

f̃(ỹ) = e−�ỹH (ỹ) and g̃(ỹ) =
(
1 − e−�ỹ)H (ỹ)=� (77)

and indeed, since g̃(ỹ) is bounded, all solutions must have a hard wall regardless
of whether or not the well is central, as described above. For example, the unique
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Fig. 6. Exact inversion of Langmuir curves of the form C̃ = e�̃=(1+�=�̃−(�=�̃
2
) in terms of the dimensionless

variables de1ned by Fig. 5. (a) Langmuir curves in this class of functions have anomalous high temperature
(small �̃) behavior but are asymptotic to the van’t HoL curve (�= �= 0). (b) The corresponding central-well
solutions depart from the cubic van’t HoL curve at large radius and energy, indicating diLerent properties
at the boundary of the clathrate cage: “hard walls”, if �¿ 0 and �= 0, or “soft walls”, if �= 0 and �¿ 0.

central-well solution is

w̃(r̃) = − 1 − log(1 − �r̃3)=� for 06 r̃ ¡ �−1=3 (78)

which has an outer hard wall at r̃ = �−1=3, as shown in Fig. 6(b). The solution is also
asymptotic to the cubic van’t HoL solution at small radii r̃��−1=3. Therefore, in the
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limit � → 0, the radius of the outer hard wall diverges, and the solution reduces to the
cubic shape as the deviation from van’t HoL behavior is moved to increasingly large
temperatures. Since empirical 1tting with Kihara potential forms arbitrarily assumes
an outer hard wall, this example provides analytical insight into the nature of the
approximation at moderate to high temperatures, where the Langmuir constant should
be suppressed according to (76).

6.3.3. Central wells with soft walls
Next we consider the opposite case of a Langmuir constant which is enhanced at

high temperatures compared to van’t HoL behavior, which intuitively should indicate
the presence of a “soft wall”, rising much less steeply than a cubic function. An
convenient choice is

F̃(�̃) = �̃=(�̃
2 − �2) for any �¿ 0 (79)

which is analytic except for poles at �= ± � on the real axis. Although this function
diverges at �= � due to the overly soft outer wall, the corresponding Langmuir curve

log C̃ = �̃ − log[1 − (�=�̃)2] (80)

shown in Fig. 6(a) could have experimental relevance at moderate temperatures �̃��;
if � were su:ciently small. In this case, we have

f̃(ỹ) = cosh(�ỹ)H (ỹ) and g̃(ỹ) = sinh(�ỹ)H (ỹ)=� (81)

which yields the central-well solution

w̃(r̃) = − 1 + sinh−1(�r̃3)=� : (82)

As shown in Fig. 6(b), this function follows the van’t HoL cubic at small radii r̃��−1=3

but “softens” to a logarithmic dependence for large radii r̃��−1=3.

7. Interpretation of experimental data

We begin by 1tting Langmuir curves, computed from experimental phase equilibria
data, an equation of state, and reference thermodynamic properties [28] for ethane and
cyclopropane clathrate–hydrates to the van’t HoL equation

logC =m� + b (83)

using least-squares linear regression. This leads to rather accurate results, as indicated
by the small uncertainties in the parameters displayed in Table 1 (63% con1dence
intervals corresponding to much less than 1% error). The high quality of the regression
of logC on � is further indicated by correlation coe:cients very close to unity, 0.99650
and 0.99998 for the ethane and cyclopropane data, respectively. Using the 1tted values
for m and C0 = eb; the data for the two clathrate-hydrates can be combined into a
single plot in terms of the dimensionless variables C̃ and �̃; as shown in Fig. 7, which
further demonstrates the common linear dependence.
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Table 1
Linear regressions of the experimental Langmuir constant data [28] for ethane and cyclopropane
clathrate-hydrates on the form logC =m�+ b+ � log(�), where C is measured in atm−1 and � in mol/kcal.
Errors re<ect 63% con1dence intervals. The rows where �= 0; 1=2, or −1=2 correspond to two-parameter
1ts with � held constant

Guest molecule m b �

Ethane 9:422 ± 0:043 −14:561 ± 0:081 0
9:180 ± 0:044 −14:419 ± 0:082 1=2
9:664 ± 0:043 −14:703 ± 0:080 −1=2

10:52 ± 0:85 −15:2 ± 0:50 −2:3 ± 1:8

Cyclopropane 10:594 ± 0:012 −15:474 ± 0:022 0
10:335 ± 0:011 −15:302 ± 0:021 1=2
10:853 ± 0:012 −15:646 ± 0:024 −1=2

9:36 ± 0:47 −14:66 ± 0:31 2:37 ± 0:90

Fig. 7. Collapse of the experimental Langmuir curves for ethane and cyclopropane hydrates from Fig. 2
plotted in terms of the dimensionless variables C̃ =C=C0 versus �̃=m=kT , where C0 and m are obtained
by 1tting each data set to logC =m=kT + logC0. Ideal van’t HoL behavior C̃ = exp (�̃) is shown as a solid
line. Fits including power-law corrections of the form of Eq. (84) are also shown as the dotted and dashed
lines (which are very close to the van’t HoL line).

Converting the experimental data to dimensionless variables also reveals that the
measurements correspond to extremely “low temperatures”. This is indicated by large
values of �̃=m=kT in the range of 16–24, which imply that kT is less than 6% of
the well depth m. As such, physical intuition tells us that the experiments can probe
the cell potential only very close to its minimum. This intuition is 1rmly supported
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by the asymptotic analysis above, which (converted to dimensionless variables) links
the asymptotics of the Langmuir constant for �̃�1 to that of the cell potential for
|r̃ − r̃0|�1. In this light, it is clear that any features of the cell potential other than
the local shape of its minimum, which are determined by empirical 1tting, e.g. using
Eq. (9) based on the Kihara potential, are simply artifacts of an ad hoc functional
form, and are of any physical signi1cance.

Since the shape of the potential very close to its minimum should always be well
approximated by a polynomial (the leading term in its Taylor expansion), the analysis
above implies that only simple power-law prefactors to van’t HoL behavior should be
considered in 1tting low-temperature data. Therefore, we re1t the experimental data,
allowing for a logarithmic correction

logC =m� + b + � log(�) (84)

as in Eq. (69). The results are shown in Table 1, and the best-1t functions are dis-
played in dimensionless form in Fig. 7. In the case of ethane, the best-1t value of
�= 1− � corresponds to a roughly linear central-well solution w̃ ˙ r̃ 0:9 or a cusp-like
non-central-well solution w̃ ˙ |t̃−r̃0|0:3. Although these solutions are not physically rea-
sonable, perhaps the qualitative increase in � compared with ideal van’t HoL behavior
(�= 1) is indicative of a parabolic central well (�= 3=2). In the case of cyclopropane,
we have �= − 1:4 ± 0:9; which violates the general condition �¿ 0 needed for the
existence of solutions to the inverse problem. If this 1t were deemed reliable, then the
basic postulate of vdWP theory, Eq. (7), would be directly contradicted, with or with-
out the spherical cell approximation (see the Appendix B). It is perhaps more likely
that the trend of decreasing �¡ 1 could indicate a non-central parabolic minimum in
the spherically averaged cell potential (�= 1=2).

Although it appears that there may be systematic deviations from ideal van’t HoL
behavior in the experimental data for ethane and cyclopropane, � 
= 0 or � 
= 1; the
results are statistically ambiguous. For both types of guest molecules, adding the third
degree of freedom � substantially degrades the accuracy of the two linear parameters
m and b; with errors increased by several hundred percent. Moreover, the uncertainty
in � is comparable to its best-1t value. Therefore, it seems that we cannot trust the
results with � 
= 0; and, by the principle of Occam’s razor, we are left with the more
parsimonious two-parameter 1t to van’t HoL behavior, which after all is quite good,
and its associated simple cubic, central-well solution.

On the other hand, there are diLerent two-parameter 1ts, motivated by the inversion
theory, which can describe the experimental data equally well, but which are somewhat
more appealing than the cubic solution in that they possess a non-vanishing elastic
constant (second spatial derivative of the energy). For example, the 1ts can be done
using (84) with the parameter � 1xed at either 1=2 or −1=2; corresponding to either a
non-central or central, parabolic minimum, respectively. The results shown in Table 1
reveal that these physically signi1cant changes in the functional form have little eLect
on the parameters m and b.
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The di:culty with the present experimental data as a starting point for inversion
is its limited range in �̃ of roughly one decade, which makes it nearly impossible
to detect corrections proportional to log � related to diLerent polynomial shapes of
the minimum. It would be very useful to extend the range of the data, using the
analytical predictions to interpret the results. In general, it is notoriously di:cult to
determine power-law prefactors multiplying a dominant exponential dependence, but at
least the present analysis provides important guidance regarding the appropriate 1tting
functions, which could not be obtained by ad hoc numerical 1tting. Moreover, the clear
physical meaning of the dominant van’t HoL parameters elucidated by the analysis also
makes them much more suitable to describe experimental data than the arti1cial Kihara
potential parameters.

8. Summary

In this article, we have shown that spherically averaged intermolecular potentials can
be determined analytically from the temperature dependence of Langmuir constants.
Starting from the statistical theory of van der Waals and Platteeuw, the method has
been developed for the case of clathrate-hydrates which contain a single type of guest
molecule occupying a single type of cage. Finally, the method has been applied to
experimental data for ethane and cyclopropane clathrate-hydrates. Various conclusions
of the analysis are summarized below.

General theoretical conclusions

• Physically reasonable intermolecular potentials (which are piecewise continuous and
bounded below) exist only if the Langmuir curve has a dominant exponential (van’t
HoL) dependence at low temperatures, lim�→∞ logC=�=m; with a prefactor F(�) =
C(�)e−m�=� which is smooth and non-increasing.

• The slope m of an experimental “van’t HoL plot” of logC versus inverse temperature
� is precisely equal to the well depth, i.e., (minus) the minimum of the potential.
This is true not only for the spherically averaged cell potential, minw(r) =−m; but
also for the exact multi-dimensional potential, min
(̃r ) = − m.

• For any physically reasonable Langmuir curve, the unique central-well potential can
be determined from Eq. (37).

• There also exist in1nitely many non-central-well solutions of the form (41), con-
strained only to satisfy Eq. (44). Several classes of such solutions with a central
“soft core” (a 1nite maximum at the center of the cage) are described explicitly in
Eqs. (45)–(49).

• Each one of the multitude of non-central-well solutions with a soft core typically
possesses unphysical cusps (slope discontinuities), while the unique central-well so-
lution is a well-behaved analytic function.
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• For ideal van’t HoL temperature dependence, C(�) =C0em�; the central-well solution
is a simple cubic given by Eq. (56). The attractive region of the potential has depth
m; volume mC0; and radius rs = (3mC0=4�)1=3. Each non-central-well solution for
van’t HoL dependence has two unphysical cusps, one at the minimum.

• The experimental signature of a parabolic, non-central well is a Langmuir curve that
behaves like C(�) ∼ Aem��1=2 at low temperatures (� → ∞); while a parabolic
central well corresponds to C(�) ∼ Bem��−1=2.

• If there is a pure power-law prefactor multiplying van’t HoL behavior C(�) =
C0(m�)1−�em� with �¿ 0; the central-well solution is also a power law (72). For
certain values of the prefactor exponent 0¡�6 1=2; there are also non-central-well
solutions with diLerentiable minima such as (73), although such solutions still pos-
sess cusps at higher energies.

• Rational function prefactors multiplying van’t HoL behavior, such as (76) or (80),
are associated with non-cubic behavior at the outer wall of the cage, such as a “hard
wall” (78) or a “soft wall” (82), respectively.

Conclusions for clathrate-hydrates

• Since Langmuir constants must increase with temperature, m¿ 0; on the basis of
general thermodynamical arguments, the intermolecular potential must be attractive
(with a region of negative energy).

• The depth w0 and radius rs of the attractive region of the cell potential can be
estimated directly from experimental data using the simple formulae w0 = − m and
rs = (3mC0=4�)1=3 without any numerical 1tting. The resulting values for ethane and
cyclopropane hydrates are consistent with typical estimates obtained by other means.

• The experimental Langmuir constant data for ethane and cyclopropane clathrate-
hydrates is very well 1t by an ideal van’t HoL dependence, which corresponds to a
cubic central well

w(r) =
4�r3

3C0
− m

as given by Eq. (56). However, the data is also equally consistent with a central
parabolic well

w(r) =
�r2

B2=3 − m=
�m1=3r2

C2=3
0

− m

or various non-central (spherically averaged) parabolic wells. The range of temper-
atures is insu:cient to distinguish between these cases.

• Experimental data tends to be taken at very “low” temperatures, kT�m; which
means that only the region of the potential very close to the minimum |r− r0|�rs is
probed. Therefore, only simple polynomial functions are to be expected, and 1tting
to more complicated functional forms, such as the Kihara potential, has little physical
signi1cance.
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• In practical applications to clathrate-hydrates, the full power of our analysis could
be exploited by measuring Langmuir hydrate constants over a broader range of tem-
peratures than has previously been done.

• The availability of the inversion method obviates the need for empirical 1tting pro-
cedures [22,25], at least for single-component hydrates in which guest molecules
occupy only one type of cage. Moreover, the method also allows a systematic anal-
ysis of empirical functional forms, such as the Kihara potential, which cannot be
expected to have much predictive power beyond the data sets used in parameter
1tting.

• The general method of “exact inversion” developed here could also be applied to
other multi-phase chemical systems, including guest-molecule adsorption at solid
surfaces or in bulk liquids.
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Appendix A. Inversion of cohesive energy curves for solids

The basic idea of obtaining interatomic potentials by “exact inversion” has also
recently been pursued in solid-state physics (albeit based on a very diLerent math-
ematical formalism having nothing to do with statistical mechanics). The inversion
approach was pioneered by Carlsson et al., 1980 in the case of pair potentials for crys-
talline metals [14,15]. These authors had the following insight: Assuming that the total
(zero-temperature) cohesive energy E(x) of a crystal with nearest-neighbor distance x
can be expressed as a lattice sum over all pairs of atoms (i; j)

E(x) =
∑
ij

�(xsij) ; (A.1)

where sij are normalized atomic separation distances, then a unique pair potential �(r)
can be derived which exactly reproduces the cohesive energy curve E(x). (Lattice
sums also appear in some clathrate-hydrate models [36], but to our knowledge they
have never been used as the basis for an inversion procedure.)

The mathematical theory for the inversion of cohesive energy curves has been de-
veloped considerably in recent years and applied to wide variety of solids [5,16–19].
The extension of the inversion formalism to semiconductors has required solving a
non-linear generalization of Eq. (A.1) representing many-body angle-dependent inter-
actions [18,19]

F(x) =
∑
ijk

g(xsij)g(xsik)h(�ijk) ; (A.2)
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where F(x) is the many-body energy, h(�ijk) is the energy of the angle between two
covalent bonds r̃ij = x̃sij and r̃ik = x̃sik , and g(r) is a radial function which sets the range
of the interaction. In general, �(r); g(r), and h(�) can be systematically obtained from
a set of multiple cohesive energy curves for the same material [18–20]. The angular
interaction can also be obtained directly from cohesive energy curves for non-isotopic
strains [37].

Appendix B. Mathematical theorems

The 1rst theorem provides necessary conditions on the Langmuir C(�) so that the
cell potential w(r) is bounded below and continuous. It also interprets the slope of a
van’t HoL plot of the Langmuir curve in the low-temperature limit as the well depth,
under very general conditions. As pointed out in the main text, it is convenient to view
the inverse temperature � as a complex variable.

Theorem 1. Let w(r) be real and continuous (except at possibly a 5nite number of
discontinuities) for r¿ 0 with a minimum, w(r)¿w0 =w(r0)¿−∞ for some r0¿ 0,
and suppose that the integral

C(�) = 4��
∫ ∞

0
e−�w(r)r2 dr (B.1)

converges for some �= c on the real axis. Then

C(�) = �F(�)e−w0� (B.2)

where the complex function F(�) is
(i) real, positive and non-increasing on the real axis for �¿c and
(ii) analytic in the half plane Re�¿c.
If, in addition, the set S	 = {r¿ 0 |w0 ¡w(r)¡w0 + 	} has non-zero measure for
some 	= 	0 ¿ 0, then F(�) is strictly decreasing on the positive real axis (for �¿c).
Moreover, if S	 has 5nite, non-zero measure for every 0¡	¡	0, then

lim
�→∞

logC(�)=�= − w0 ; (B.3)

where the limit is taken on the real axis.

Proof. De1ne a shifted cell potential versus volume, u
(

4�
3 r3
)
=w(r)−w0. Substituting

u(x) for w(r) reduces Eq. (B.1) to Eq. (B.2), where

F(�) =
∫ ∞

0
e−�u(x) dx : (B.4)

Since u(x)¿ 0 is real, the function F(�) is real and positive for all real � for which
the integral converges. Moreover, for any complex � and �′ with Re�¿Re�′ ¿c,
we have the bound

|F(�)|6
∫ ∞

0
e−Re �·u(x) dx6

∫ ∞

0
e−Re �′·u(x) dx6F(c)¡∞ (B.5)
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which establishes that the de1ning integral (B.4) converges in the right half-plane
Re�¿ c and is non-increasing on the real axis, thus completing the proof of (i).

Next let w(r) be larger than its minimum value (but 1nite), w(r0)¡w(r)¡∞,
on a set S∞ of non-zero measure, so that 0¡u(x)¡∞ for the corresponding set of
volumes. Then for every �¿�′ ¿c on the real axis we have∫

S∞
e−�u(x) dx¡

∫
S∞

e−�′u(x) dx : (B.6)

On the complement Sc
∞ = (0;∞) \ S∞, either u(x) = 0 or u(x) =∞, which implies∫

Sc∞

e−�u(x) dx=
∫
Sc∞

e−�′u(x) dx : (B.7)

From Eqs. (B.6), (B.7) we conclude that F(�) is strictly decreasing on the real axis.
Next we establish the low-temperature limit (B.3). Given 0¡	¡	0, we have the

following lower bound for any �¿c on the real axis

e	�F(�) =
∫ ∞

0
e−�[u(x)−	] dx¿ e	�=2

∫
S	=2

dx

+
∫
Sc
	=2

e−�[u(x)−	] dx¿ e	�=2
∫
S	=2

dx : (B.8)

Combining this with the upper bound, F(�)¿F(c)¡∞, we obtain

e−	=2M	6F(�)6F(c) ; (B.9)

where M	 =
∫
S	=2

dx is a 1nite, non-zero constant (because S	=2 is assumed to have
1nite, non-zero measure). Substituting Eq. (B.2) in Eq. (B.9), we arrive at

log � + logM	 − 	�=2 − �w06 logC(�)6 log � + logF(c) − �w0 (B.10)

which yields

−w0 − 	=26 lim
�→0

logC(�)=�6− w0 : (B.11)

The desired result is obtained in the limit 	 → 0.
Finally, we establish the analyticity of F(�) in the open half-plane Re�¿c by

showing that its derivative exists and is given explicitly by

F ′(�) = −
∫ ∞

0
e−�u(x)u(x) dx : (B.12)

This requires justifying the passing a derivative inside the integral (20), which we
have just shown to converge for Re�¿ c. Using a classical theorem of analysis [31],
it su:ces to show that the integral in (B.12) converges uniformly for Re�¿c+ 	 for
every 	¿ 0 because the integrand is a continuous function of � and x. (The possibility
of a 1nite number of discontinuities in u(x) is easily handled by expressing (B.12) as
1nite sum of integrals with continuous integrands.) It is a simple calculus exercise to
show that te−t ¡ 1=e, and hence

te−(c+	)t6
e−ct

e	
(B.13)
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for all real t¿ 0. This allows us to derive a bound on the “tail” of the integral (B.12)∣∣∣∣
∫ ∞

X
e−�u(x)u(x) dx

∣∣∣∣6
∫ ∞

X
e−Re �·u(x)u(x) dx

6
∫ ∞

X
e−(c+	)u(x)u(x) dx¡

1
e	

∫ ∞

X
e−cu(x) dx (B.14)

which is independent of �. This uniform bound vanishes in the limit X → ∞ because
it is proportional to the tail of the convergent integral de1ning F(�), which completes
the proof.

The proof of Theorem 1 does not depend in any way on the dimensionality of the
integral and thus can be trivially extended to the general multi-dimensional case of
vdWP theory without the spherical cell approximation.

Theorem 2. Let 
(r; �; �; �; �; �)¿
(r0; �0; �0; �0; �0; �0) =w0 be real and continuous,
and suppose that the integral

C(�) =
�

8�2

∫
V

e−�
(r;�;�;�;�; �)r2 sin � sin � dr d� d� d� d� d� (B.15)

converges for some �= c (real). Then all the conclusions of Theorem 1 hold.

The six-dimensional integral (B.15) of Theorem 2 does not present a well-posed
inverse problem for the intermolecular potential 
. However, the spherically averaged
integral equation (B.1) of Theorem 1 can be solved for the cell potential w(r) for a
broad class of Langmuir curves C(�) speci1ed in the following theorem. The proof of
the following theorem is spread throughout Section 4 of the main text.

Theorem 3. If the inverse Laplace transform f(y) of F(�) exists and is non-
decreasing and non-constant for y¿ 0, then there exist a unique central-well
solution (r0 = 0) and in5nitely many non-central-well solutions (0¡r0 ¡∞) to
the inverse problem (11). If f(y) is also continuous, then the central-well solution is
the only continuously di9erentiable solution.

Finally, we state su:cient assumptions on F(�) to guarantee the assumed properties
of f(y). In light of the necessary condition that F(�) be analytic the right half-plane
Re�¿c, the de1ning contour integral for f(y)

f(y) =
1

2�i

∫ c′+i∞

c′−i∞
e�yF(�) d� (B.16)

must converge for any c′ ¿c. By closing the contour in the left half-plane, it can
be shown that a su:cient (but not necessary) condition to ensure the assumed prop-
erties of f(y) is that F(�) decay in the left half-plane (limA→∞ |F(Aei�)|= 0 for
�=26 �6 3�=2) and have isolated singularities only on the negative real axis or at
the origin with positive real residues. The particular examples of F(�) considered in
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Section 6 satisfy these conditions, but the weaker assumptions above regarding f(y)
su:ce for the general derivation in Section 4.
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