Methods of optimal transportation: multidimensional mechanism design

Aleksandr Zimin joint work with Alexander Kolesnikov, Aleh Tsyvinski, and Fedor Sandomirskiy

MIT, Department of Mathematics

April 18, 2022

Outline of the talk

Based on "Beckmann's approach to multi-item multi-bidder auctions"

- 1. Overview: auction design problem with $I \ge 2$ items and $B \ge 2$ bidders
 - I = 1 item and $B \ge 1$ bidders
 - I ≥ 2 items and B = 1 bidders
- 2. Show dual problem formulation
- 3. Connection with transport problems:
 - the mass transshipment problem
 - Beckmann's problem the dynamic version of the transshipment problem
- 4. Numerical techniques and results

Auction design problem for the case of multiple items

Given:

the auctioneer has I items

• a set
$$\mathcal{B} = \{1, 2, \dots, B\}$$
 of $B \ge 1$ bidders

• each bidder b has a type $x_b = (x_{b1}, \ldots, x_{bI})$ private values

Assumptions:

- the bidders are drawn from this population independently, i.e. the value estimates x_b are sampled independently from the distribution ρ supported on $X = [0, 1]^I$
- each bidder with type $x = (x_1, \ldots, x_I)$ has an additive utility quasi-linear in money

$$u = p \cdot x - t$$

for receiving $p = (p_1, \ldots, p_l)$ amount of each item paying t; (·) is a scalar product the auctioneer and bidders know ρ and each bidder observes their own type.

Direct revelation mechanisms

- > By the revelation principle, we can work with direct mechanisms
- Each bidder b simultaneously and confidentially announces (and may misreport) its value estimate x_b to the auctioneer.
- Using the vector $x = (x_1, \ldots, x_b)$, the auctioneer determines how much of each item each bidder receive and how much each bidder must transfer:
 - ▶ $P_b(x) = (P_{b1}(x), ..., P_{bl}(x))$ is the amount of good that the bidder b receive,
 - \blacktriangleright $T_b(x)$ is the price that the bidder b must pay to the auctioneer for the bundle.
- ▶ The bidders know allocation functions P_b and transfers functions T_b before the auction game. The collection of functions allocation and transfer function is called a mechanism.
- The revenue of the auctioneer is $R = \sum_{b=1}^{B} T_b(x_1, \dots, x_B)$. The goal of the auctioneer is to maximize the expected revenue.

Restrictions on feasible mechanisms

Feasibility: ∑^B_{b=1} P_b(x₁,...,x_B) ≤ 1 for every set of bidders (x₁,...,x_B).
 Reduced mechanism:

$$\overline{P}_b(x_b) = \mathbb{E}[P_b(y) \mid y_b = x_b], \quad \overline{T}_b(x_b) = \mathbb{E}[T_b(y) \mid y_b = x_b].$$

- **>** Symmetry: $\overline{P} = \overline{P}_b$, $\overline{T} = \overline{T}_b$
- Expected utility:

$$u(x_b) = \mathbb{E}[x_b \cdot P_b(y) - T_b(y) \mid y_b = x_b] = x_b \cdot \overline{P}(x_b) - \overline{T}(x_b).$$

- ▶ Individual rationality: no bidder of the type x wants to abstain from participation, i.e., nobody gets a negative expected utility, $u(x) \ge 0$.
- Incentive compatibility: no bidder x has an incentive to misreport their values if others report truthfully:

$$x \cdot \overline{P}(x) - \overline{T}(x) \ge x \cdot \overline{P}(\hat{x}) - \overline{T}(\hat{x})$$
 for all $\hat{x} \in [0, 1]$

Auction design problem formulation

Auctioneer's revenue: $R = B \cdot \int \overline{T}(x) \rho(x) dx$.

Problem (Rochet-Chone, Econometrica 1998)

Find allocation functions (P_1, \ldots, P_B) and a utility function u(x) maximizing the auctioneer's expected revenue

$$R = B \cdot \int [x \cdot \nabla u(x) - u(x)] \rho(x) dx$$

subject to the following constraints:

- feasibility: $\sum_{b=1}^{B} P_{b,i}(x_1, \ldots, x_B) \leq 1$ for each item *i* and every collection of types.
- individual rationality: u(0) = 0,
- incentive compatibility: u(x) is convex and $\nabla u = \overline{P}$, where \overline{P} is the reduced allocation function.

The case of $I \ge 2$ items and B = 1 bidder.

▶ I = 1 case: Myerson (2007 Nobel Memorial Prize in Economic Sciences)

- I ≥ 2 and B = 1: solution is already complicated even in a simple case (Manelli and Vincent, Econometrica 2006)
 - B = 1 bidder
 - \blacktriangleright I = 2 independent uniformly distributed items on [0, 1]
- Properties:
 - Is selling each item separately always optimal? No.
 - Is bundling all items together always optimal? No.
- Duality:
 - Daskalakis, Deckelbaum, Tzamos (Econometrica 2017) established that duality is a Monge-Kantorovich problem with the stochastic dominance constraint.

What we had: feasibility

Problem (Auction design problem for $l \ge 1$ goods) Find allocation functions (P_1, \ldots, P_B) and a utility function u(x) maximizing the auctioneer's expected revenue

$$R := B \cdot \int \overline{T}(x) \rho(x) dx = B \cdot \int [x \cdot \nabla u(x) - u(x)] \rho(x) dx$$

subject to the following constraints:

- feasibility: $\sum_{b=1}^{B} P_{b,i}(x_1, \ldots, x_B) \leq 1$ for each item *i* and every collection of types.
- individual rationality: u(0) = 0,
- incentive compatibility: u(x) is convex and $\nabla u = \overline{P}$, where \overline{P} is the reduced allocation function.

The feasibility condition

The expected revenue $R = B \cdot \int [x \cdot \nabla u(x) - u(x)] \rho(x) dx$ depends only on u(x) and $\overline{P}(x) = \nabla u(x)$.

Question

Given a reduced allocation function $\overline{P} = \nabla u$, under which conditions is it possible to find the full feasible mechanism (P_1, \ldots, P_B) ?

Stochastic dominance condition

Definition

The random variable ξ majorizes random variable η ($\xi \succeq \eta$) if $\mathbb{E}[\varphi(\xi)] \ge \mathbb{E}[\varphi(\eta)]$ for any convex increasing function φ .

Theorem (Hart and Reny)

The reduced allocation function $\overline{P}_i(x)$ is feasible if and only if $\overline{P}_i(\zeta) \leq \xi^{B-1}$, where ζ is distributed with the density ρ and ξ is uniformly distributed on [0, 1]. Equivalently, for all convex increasing φ .

$$\int arphi(\overline{P}_i(x)) \,
ho(x) dx \leq \int_0^1 arphi(z^{B-1}) \, dz$$

What we have now: feasibility \rightarrow stochastic dominance

Problem (Auction design problem for $l \ge 1$ goods) Find reduced allocation function \overline{P} and a utility function u(x) maximizing the auctioneer's expected revenue

$$R := B \cdot \int \overline{T}(x) \rho(x) dx = B \cdot \int [x \cdot \nabla u(x) - u(x)] \rho(x) dx$$

subject to the following constraints:

- stochastic dominance: $\overline{P}_i \ge 0$ and $\int \varphi_i(\overline{P}_i(x)) \rho(x) dx \le \int_0^1 \varphi_i(z^{B-1}) dz$ for every convex non-decreasing φ_i ,
- individual rationality: u(0) = 0,
- incentive compatibility: u(x) is convex and $\nabla u = \overline{P}$, where \overline{P} is the reduced allocation function.

Lagrangian: monopolist problem with production costs

Problem

Fix the convex non-decreasing cost functions $(\varphi_1, \ldots, \varphi_l)$. Find the maximum of the expected revenue over all convex non-decreasing non-negative functions u(x):

$$M(u;\varphi_i) = B\bigg(\int \bigg[\underbrace{x \cdot \nabla u(x) - u(x)}_{transfer} - \underbrace{\sum_{i=1}^{l} \varphi_i\left(\frac{\partial u}{\partial x_i}\right)}_{production \ cost}\bigg]\rho(x)dx + \underbrace{\sum_{i=1}^{l} \int \varphi_i(z^{B-1}) dz}_{constant \ for \ fixed \ \varphi_i}\bigg)$$

Interpretation

The monopolist problem:

- ▶ B = 1 bidder, $I \ge 2$ items
- $\varphi_i(t)$ is a cost of producing t units of the *i*th item

Intuition

 $arphi_i(t)$ is a nonlinear Lagrange multiplier function for the stochastic dominance constraint

Minimax principle for the monopolist problem

Theorem

For every collection of convex non-decreasing functions $(\varphi_1, \ldots, \varphi_I)$, the optimal value in the corresponding monopolist problem with the nonlinear production cost dominates the maximal revenue of the auctioneer (weak minimax):

 $R\leq \max_{u}M(u;\varphi_{i}).$

Moreover, there exists a collection of functions $(\varphi_1^{opt}, \ldots, \varphi_l^{opt})$ such that the optimal values in the monopolist problem and in the auction design problem coincide (strong minimax):

$$R = \max_{u} M(u; \varphi_i^{opt}).$$

Where are we now

Derived a minimax problem

- the monopolist's is a nonlinear Lagrangian for the auctioneer's problem
- but the problem is endogenous and complicated

Next:

- linearize the nonlinear Lagrangian:
 - using Legendre transform
- derive a dual formulation
- show that the dual is Beckmann's problem

Strong minimax relation between the auctioneer and the monopolist problem:

$$\frac{R}{B} = \min_{\varphi} \max_{u} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} \varphi_i\left(\frac{\partial u}{\partial x_i}\right) \right] \rho(x) dx + \sum_{i=1}^{l} \int_0^1 \varphi_i(z^{B-1}) dz \right\}.$$

Strong minimax relation between the auctioneer and the monopolist problem:

$$\frac{R}{B} = \min_{\varphi} \max_{u} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} \varphi_i\left(\frac{\partial u}{\partial x_i}\right) \right] \rho(x) dx + \sum_{i=1}^{l} \int_0^1 \varphi_i(z^{B-1}) dz \right\}.$$
Legendre transform: $\varphi_i\left(\frac{\partial u}{\partial x_i}\right) = \max_{c_i} \left\{ c_i \cdot \frac{\partial u}{\partial x_i} - \varphi_i^*(c_i) \right\}$

Strong minimax relation between the auctioneer and the monopolist problem:

$$\frac{R}{B} = \min_{\varphi} \max_{u} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} \varphi_{i} \left(\frac{\partial u}{\partial x_{i}} \right) \right] \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}.$$

$$\models \text{ Legendre transform: } \varphi_{i} \left(\frac{\partial u}{\partial x_{i}} \right) = \max_{c_{i}} \left\{ c_{i} \cdot \frac{\partial u}{\partial x_{i}} - \varphi_{i}^{*}(c_{i}) \right\}$$

$$\models \text{ Introduce } c(x) = (c_{1}(x), \dots, c_{l}(x)):$$

$$\frac{R}{B} = \min_{\varphi} \max_{u} \min_{c} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_{i}(x) \cdot \frac{\partial u(x)}{\partial x_{i}} \right] \rho(x) dx + \int \sum_{i=1}^{l} \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}.$$

Strong minimax relation between the auctioneer and the monopolist problem:

$$\frac{R}{B} = \min_{\varphi} \max_{u} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} \varphi_{i} \left(\frac{\partial u}{\partial x_{i}} \right) \right] \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}.$$

$$\blacktriangleright \text{ Legendre transform: } \varphi_{i} \left(\frac{\partial u}{\partial x_{i}} \right) = \max_{c_{i}} \left\{ c_{i} \cdot \frac{\partial u}{\partial x_{i}} - \varphi_{i}^{*}(c_{i}) \right\}$$

$$\vdash \text{ Introduce } c(x) = (c_{1}(x), \dots, c_{l}(x)):$$

$$\frac{R}{B} = \min_{\varphi} \max_{u} \min_{c} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_{i}(x) \cdot \frac{\partial u(x)}{\partial x_{i}} \right] \rho(x) dx + \int \sum_{i=1}^{l} \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}.$$

Minimax principle: maximize over *u*:

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_i(x) \cdot \frac{\partial u(x)}{\partial x_i} \right] \rho(x) dx = \begin{cases} 0 & \text{(take } u \equiv 0\text{)}, \\ +\infty & \text{(can multiply by } \lambda > 0\text{)} \end{cases}$$

Duality theorem for the auctioneer's problem

Theorem

In the auctioneer's problem with $B \ge 1$ bidders, $I \ge 1$ items, and bidders' types distributed on $X = [0, 1]^{\mathcal{I}}$ with positive density ρ , the optimal revenue coincides with

$$R = B \cdot \inf_{(\varphi_1,\ldots,\varphi_l)} \inf_{c=(c_1,\ldots,c_l)} \left\{ \sum_{i=1} \int \varphi_i^*(c_i(x)) \rho(x) dx + \sum_{i=1}^l \int_0^1 \varphi_i(z^{B-1}) dz \right\},$$

where infimum is taken over all convex non-decreasing cost functions φ_i and over all vector fields $c(x) = (c_1(x), \ldots, c_l(x))$ satisfying the constraint

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - \underbrace{c(x) \cdot \nabla u(x)}_{\sum c_{i} \cdot \frac{\partial u}{\partial x_{i}}} \right] \rho(x) dx = 0.$$

Remark: McCann and Zhang (2023) discovered the related duality result in parallel for the general monopolist problem.

From inequality constraint to stochastic dominance

The constraint in the dual problem: for every convex increasing u(x):

$$\int \Big[x \cdot \nabla u(x) - u(x)\Big]\rho(x)dx \leq \int \nabla u(x) \cdot c(x) \rho(x)dx.$$

▶ Integrate by parts the auctioneer's revenue $x \cdot \nabla u(x) - u(x)$:

$$\int [x \cdot \nabla u(x) - u(x)] \rho(x) dx = \int \underline{u(x)} dm(x);$$

Integrate the right-hand side by parts using the divergence formula:

$$\int \nabla u(x) \cdot c(x) \rho(x) dx = \int \underline{u(x)} d\pi(x);$$

where π + div[ρ ⋅ c] = 0
 in 1D case, π + (c ⋅ ρ)' = 0 + boundary terms
 The inequality ∫ u(x) dm(x) ≤ ∫ u(x) dπ(x) is equivalent to the stochastic dominance constraint m ≺ π.

Dual problem formulation with stochastic dominance

We had:

$$\frac{R}{B} = \inf_{\varphi} \inf_{c} \sum_{i=1}^{l} \left\{ \sum_{i=1}^{l} \int \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}$$

through all convex non-decreasing $(\varphi_1,\ldots,\varphi_I)$ and vector fields c subject to

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - c(x) \cdot \nabla u(x) \right] \rho(x) dx = 0.$$

Dual problem formulation with stochastic dominance

We had:

$$\frac{R}{B} = \inf_{\varphi} \inf_{c} \sum_{i=1}^{l} \left\{ \sum_{i=1}^{l} \int \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}$$

through all convex non-decreasing $(\varphi_1,\ldots,\varphi_l)$ and vector fields c subject to

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - c(x) \cdot \nabla u(x) \right] \rho(x) dx = 0.$$

We proved:

$$\frac{R}{B} = \inf_{\varphi} \inf_{\pi \succeq m} \inf_{c: \operatorname{div}[\rho \cdot c] + \pi = 0} \left\{ \sum_{i=1} \int \varphi_i^*(c_i(x)) \rho(x) dx + \sum_{i=1}^l \int_0^1 \varphi_i(z^{B-1}) dz \right\}$$

through all convex non-decreasing $(\varphi_1, \ldots, \varphi_I)$ and vector fields c

Dual problem formulation with stochastic dominance

We had:

$$\frac{R}{B} = \inf_{\varphi} \inf_{c} \sum_{i=1}^{l} \left\{ \sum_{i=1}^{l} \int \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}$$

through all convex non-decreasing $(\varphi_1,\ldots,\varphi_l)$ and vector fields c subject to

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - c(x) \cdot \nabla u(x) \right] \rho(x) dx = 0.$$

We proved:

$$\frac{R}{B} = \inf_{\varphi} \inf_{\pi \succeq m} \underbrace{\inf_{c: \operatorname{div}[\rho \cdot c] + \pi = 0} \left\{ \sum_{i=1}^{r} \int \varphi_i^*(c_i(x)) \rho(x) dx + \sum_{i=1}^{l} \int_0^1 \varphi_i(z^{B-1}) dz \right\}}_{\operatorname{Next: Beckmann} = \operatorname{dynamic Kantorovich-Rubinstein problem}}$$

through all convex non-decreasing $(\varphi_1,\ldots,\varphi_I)$ and vector fields c

Plan: duality between the auction problem and $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem

Recall the classical transportation problems

- Monge-Kantorovich problem
- Kantorovich-Rubinstein problem an alternative (less known) formulation
- ► Introduce $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem
 - Beckmann's is a dynamic version of Kantorovich-Rubinstein problem
- The dual to the auction problem is equivalent to $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem.

Reminder: Monge-Kantorovich and Kantorovich-Rubinstein problems

The classical Monge-Kantorovich problem

Given marginal distributions μ and ν and a cost function $\alpha(x, y) = ||x - y||$, find

$$\min_{\gamma} \int \alpha(x, y) \, \gamma(x, y) \, dx dy$$

subject to the constraints $\underline{\mathrm{pr}_1\gamma = \mu}$ and $\mathrm{pr}_2\gamma = \nu$.

fixed marginals

Reminder: Monge-Kantorovich and Kantorovich-Rubinstein problems

The classical Monge-Kantorovich problem

Given marginal distributions μ and ν and a cost function $\alpha(x, y) = ||x - y||$, find

$$\min_{\gamma} \int \alpha(x, y) \, \gamma(x, y) \, dx dy$$

subject to the constraints $\underbrace{\mathrm{pr}_1\gamma=\mu \text{ and } \mathrm{pr}_2\gamma=\nu}_{\text{fixed marginals}}.$

The mass transshipment problem (Kantorovich and Rubinstein, 1958) Given a marginal difference $\mu - \nu$ and a cost function $\alpha(x, y) = ||x - y||$, find

$$\min_{\pi} \int \alpha(x, y) \, \gamma(x, y) \, dx dy$$

subject to the balancing condition $pr_1\gamma - pr_2\gamma = \underbrace{\mu - \nu}_{\text{fixed difference}}$.

Beckmann's problem

Idea: replace the immediate transfer $x \to y$ with the dynamical one using all the intermediate points on (x, y) as transshipment nodes.

The continuous transportation problem (Beckmann, 1952)

Given a marginal difference $\mu - \nu$, find the optimal value

$$\min_{c} \int |c(x)| \, dx$$

subject to the balancing condition $\operatorname{div}[c] + \mu - \nu = 0$.

Intuition

- |c(x)| is the traffic through the point x
- the direction of c(x) is the direction of the transport flow through x

Theorem

The mass transportation and Beckmann's problems are equivalent: optimal values are identical and the solution to one problem can be constructed by another one.

Generalization: $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem

Non-linear cost in Beckmann's problem: $\int \Phi(c(x)) \rho(x) dx$

• the cost $\Phi(c)$ depends on both the direction and the traffic;

• $\rho(x)$ is the weight of the node x;

The balancing condition: $\operatorname{div}_{\rho}[c] + \mu - \nu = 0$.

• $\operatorname{div}_{\rho}[c] \coloneqq \operatorname{div}[\rho \cdot c]$ is a weighted divergence;

$\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem

For a given cost function $\Phi(c)$, minimize the total weighted cost over all transport flows c satisfying the balancing condition for $\pi = \mu - \nu$:

$$\operatorname{Beck}_{\rho}(\pi, \Phi) = \inf_{c : \operatorname{div}_{\rho}[c] + \pi = 0} \int \Phi(c) \rho(x) dx$$

Strong duality theorem in $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -form

Recall:
$$\frac{R}{B} = \inf_{\varphi} \inf_{\pi \succeq m} \inf_{c: \operatorname{div}[\rho \cdot c] + \pi = 0} \left\{ \sum_{i=1}^{r} \int_{\varphi} \varphi_i^*(c_i(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_i(z^{B-1}) dz \right\}$$

.

For given convex functions
$$(\varphi_1, \ldots, \varphi_l)$$
, define the cost $\Phi(c) = \sum_{i=1}^{l} \varphi_i^*(c_i)$

Theorem (Duality between auction design problem and $\operatorname{Beck}_{\rho}(\pi, \Phi)$ -problem) In the auctioneer's problem with $B \ge 1$ bidders, $I \ge 1$ items, and bidders' types distributed on $X = [0, 1]^{\mathcal{I}}$ with positive density ρ , the optimal revenue coincides with

$$B \cdot \inf_{\substack{(\varphi_i)_{i \in \mathcal{I},} \\ \pi \succeq m}} \left[\frac{\operatorname{Beck}_{\rho}(\pi, \Phi)}{\sum_{i \in \mathcal{I}} \int_{0}^{1} \varphi_{i}\left(z^{B-1}\right) dz} \right]$$

Numerical results: I = 2 items, multiple bidders

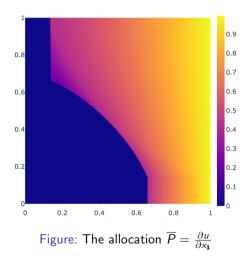
We solve the auction design problem with unprecedented numerical precision:

 $\blacktriangleright~200\times200$ types, 1.6 billion incentive constraints

Outline of the methods we use:

- finite element method to approximate the continuous problem
- Oberman's approach to reduce the number of incentive constraints
- the Strassen theorem to reformulate the stochastic dominance constraint
- state of the art linear programming solvers

Example of B = 2 bidders and I = 2 independent items.



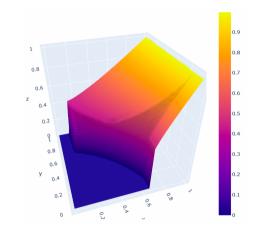


Figure: The 3D surface graph

The algorithm could be scaled to multiple bidders

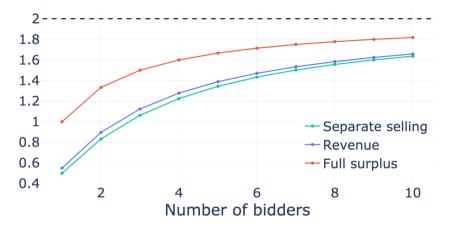


Figure: Revenue as a function of the number of bidders *B* for two items with i.i.d. values uniform on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $B \rightarrow \infty$ (the dashed line).

Bunching regions of the solution to the auction problem

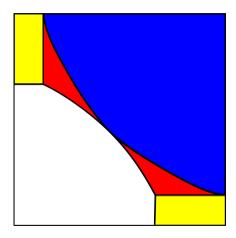


Figure: Partition of the square $[0,1]^2$ w.r.t. the rank of the hessian H(u).

Consider the optimal utility function u for the case of B = 2 bidders and I = 2 items with the value estimates independently uniformly distributed on [0, 1].

The square $[0, 1]^2$ can be divided into the following regions:

white region:
$$u = 0$$
;
yellow regions: $\frac{\partial u}{\partial x_i} = 0$ for some *i*;

- red regions: det H(u) = 0;
- blue region: u is strictly convex

Conclusion

- Optimal auction design problem with multiple bidders and multiple items
 - problem at the frontier of the economics reseach
 - the methods are of the broad interest to mathematicians across fields
- $\operatorname{Beck}_{\rho}(\pi, \Phi)$ generalization of the Beckmann problem
 - simple Beckmann's problem dual to the Kantorovich-Rubinstein problem
- Main mathematical result duality between $\operatorname{Beck}_{\rho}(\pi, \Phi)$ and auction problems.
- Foundation for the development of effective numerical methods

Duality result for B = 1 bidder

We minimize the functional $B \cdot \left(\sum_{i=1}^{l} \int \varphi_i^*(c_i) \rho(x) dx + \int_0^1 \varphi_i(z^{B-1}) dz \right)$.

• In the case of one bidder, $\int_0^1 \varphi(z^{B-1}) dz = \varphi(1)$.

Fix the vector field c_i . The minimum is reached if $\varphi_i \equiv 0$ and $\varphi_i^*(z) = z$

• The value of the functional for $\varphi_i \equiv 0$ is equal to

$$\int \sum_{i=1}^{l} c_i(x) \rho(x) dx = \int ||c||_{l^1} \rho(x) dx$$

Proposition (Duality for B = 1 bidder)

$$R = \min_{\pi \succeq m} \min_{\operatorname{div}_{\rho}[c] + \pi = 0} \int ||c||_{l^{1}} \rho(x) dx$$

Connection with the Daskalakis & Deckelbaum & Tzamos duality

We decompose π as a difference of positive and negative parts: $\pi = \pi_c - \pi_p$. Theorem (Beckmann, 1952)

For any measure $\pi = \pi_c - \pi_p$,

$$\min_{\operatorname{div}_{\rho}[c]+\pi=0}\int ||c||_{l^{1}}\rho(x)dx = \min_{\gamma\in\Pi(\pi_{c},\pi_{p})}\int |x-y|\gamma(dx,dy)|_{t^{2}}$$

where $\Pi(\pi_c, \pi_p)$ is the set of transport plans with given marginals.

Theorem (Daskalakis & Deckelbaum & Tzamos)

Consider the auction design problem with B = 1 bidder. Then,

$$R = \min_{\pi_c - \pi_p \succeq m} \min_{\gamma \in \Pi(\pi_c, \pi_p)} \int |x - y| \gamma(dx, dy).$$

Nonlinear production function for the case of I = 2 uniform items

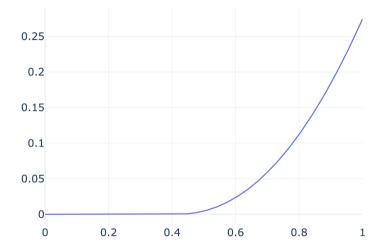


Figure: The nonlinear cost φ computed for the case of I = 2 independent uniformly distributed items and B = 2 bidders

Connection with the Daskalakis & Deckelbaum & Tzamos duality

▶ Recall the Daskalakis & Deckelbaum & Tzamos duality theorem:

$$\max_{u \in \mathcal{U} \cap \mathcal{L}_1} \mathcal{R}(u) = \min_{\substack{\gamma \in \mathcal{M}_+(T \times T) \\ \gamma_1 - \gamma_2 \succeq_{\text{cvx}} \mu_f}} \int_{T \times T} ||x - y||_1 \gamma(dx, dy).$$

Fix the projections γ_1^* and γ_2^* of the optimal γ^* .

$$\max_{u\in\mathcal{U}\cap\mathcal{L}_1}\mathcal{R}(u)=\min_{\gamma\in\Pi(\gamma_1^*,\gamma_2^*)}\int_{\mathcal{T}\times\mathcal{T}}||x-y||_1\gamma(dx,dy)=\mathcal{W}_1(\gamma_1^*,\gamma_2^*).$$

Beckmann's minimal flow problem:

$$\mathcal{W}_1(\gamma_1^*,\gamma_2^*) = \min\left\{\int |w(x)| \, dx \colon w \colon T \to \mathbb{R}^m, \nabla \cdot w = \gamma_1^* - \gamma_2^*\right\}.$$

▶ The solution *w* to the Beckmann's problem is an optimal vector field.

The case of $I \ge 2$ items and B = 1 bidder. The monopolist problem.

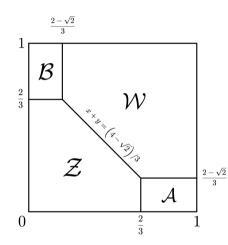


Figure: The mechanism for two i.i.d. uniform [0,1] items.

The case of B = 1 bidder and I = 2 items: the value estimates are i.i.d. uniformly distributed on [0, 1].

Description of the mechanism:

- \blacktriangleright \mathcal{Z} : receive no goods and pay 0;
- \mathcal{A} : receive the 1st good and pay $\frac{2}{3}$;
- \mathcal{B} : receive the 2nd good and pay $\frac{2}{3}$;
- \mathcal{W} : receive both goods and pay $\frac{4-\sqrt{2}}{3}$.

Consequences:

- Is selling each good separately always optimal? No.
- Is bundling all goods together always optimal? No.

The Border's condition

Theorem (Border, Econometrica 1991)

The reduced allocation function $\overline{P} = (\overline{P}_1, \dots, \overline{P}_I)$ is feasible if and only if each of its component satisfies the Border condition:

•
$$\overline{P}_i(x) \ge 0$$
 for all x;

► for any set *S* of bidder types,
$$B \cdot \underbrace{\int_{S} \overline{P}_{i}(x) \rho(x) dx}_{\text{bidder from S}} \leq 1 - \underbrace{\left(\int_{X \setminus S} \rho(x) dx\right)^{D}}_{\text{none of the bidders}}$$
.

In

- for simplicity, assume that the item is indivisible;
- left-hand side is probability of an intersection of 2 events:
 - at least one bidder with the type from the set S participates in the auction;
 - this bidder receives the item:
- right-hand side is probability of the event that at least one bidder with the type from the set S participates in the auction.

. D

Second-order stochastic dominance

Definition

A random variable ξ stochastically dominates random variable η if

 $\operatorname{Tail}_{\alpha}(\xi) \geq \operatorname{Tail}_{\alpha}(\eta)$

for each $0 \le \alpha \le 1$, where $\operatorname{Tail}_{\alpha}(\xi)$ is the *unconditional* expectation of the most $\alpha \times 100\%$ of the outcomes of ξ .

Equivalent definitions:

•
$$\mathbb{E}[\varphi(\xi)] \ge \mathbb{E}[\varphi(\eta)]$$
 for any convex increasing φ ;
• $\mathbb{E}[(\xi - t)_+] \ge \mathbb{E}[(\eta - t)_+]$ for each t

Intuition: $\xi \succeq \eta$ if $(1 - \xi)$ is less risky than $(1 - \eta)$.

Stochastic dominance condition

▶ Let S be the set of $\alpha \times 100\%$ bidder types with the highest probability of receiving an item. The Border condition

$$B \cdot \underbrace{\int_{S} \overline{P}_{i}(x) \rho(x) dx}_{\text{Tail}_{\alpha}} \leq 1 - \left(\underbrace{\int_{X \setminus S} \rho(x) dx}_{1-\alpha}\right)^{B}$$

is equivalent to the tail bound

$$\operatorname{Tail}_{lpha}(\overline{P}_{i}(\chi)) \leq rac{1}{B}(1-(1-lpha)^{B}) = \int_{lpha}^{1} z^{B-1} dz$$

• the right-hand side is the tail size of ξ^{B-1} , where ξ is uniform on [0, 1]:

$$\operatorname{Tail}_{lpha}(\overline{P}_{i}(\chi)) \leq \int_{lpha}^{1} z^{B-1} \, dz = \operatorname{Tail}_{lpha}[\xi^{B-1}].$$

Classical Lagrange multipliers

• every convex non-decreasing function φ is a positive combination of "elementary" convex functions $\varphi_t(x) = \max(x - t, 0)$: $\varphi(x) = \int \lambda(t)\varphi_t(x) dt$.

stochastic dominance constraint is a union of continuum "elementary constraints":

$$\int \varphi_t(\overline{P}_i(x)) \, \rho(x) dx \leq \int_0^1 \varphi_t(z^{B-1}) \, dz \quad \text{for all } t \in [0,1];$$

▶ add these constraints to the revenue objective, using Lagrange multipliers $\lambda(t) \ge 0$:

$$M = \int \underbrace{[x \cdot \nabla u - u]}_{\text{revenue}} \rho dx - \sum_{i=1}^{I} \underbrace{\int \lambda(t) dt \left(\int \varphi_{t,i}(\overline{P}_i) \rho dx - \int_0^1 \varphi_{t,i}(z^{B-1}) dz \right)}_{\text{Lagrange multiplier}}$$

• substitute $\varphi_i = \int \varphi_{t,i} \lambda(t) dt$ – convex and non-decreasing:

$$M = \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} \varphi_i\left(\frac{\partial u}{\partial x_i}\right) \right] \rho(x) dx + \sum_{i=1}^{l} \int \varphi_i(z^{B-1}) dz$$

Plan: introduce Beckmann's problem

Introduce the transshipment problem:

- discrete case: the minimum-cost flow problem
- continuous case:
 - a transshipment problem
 - > an alternative (less known) version of the Monge-Kantorovich problem
- Beckmann = continuous version of the transshipment problem

Dual solution to the auction problem

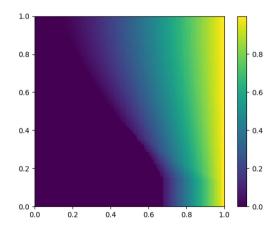


Figure: Distribution of the first component c_1 of the optimal vector field c

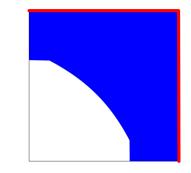


Figure: Distribution of $\nabla \cdot c$: $\int u \, d\nabla \cdot c = -\int \langle \nabla u, c \rangle dx.$

white region: $\nabla \cdot c = 0$; blue region: $\nabla \cdot c = 3$; red intervals: singular parts of $\nabla \cdot c$ equal to (-1)· uniform measures on [0, 1].

Minimum-cost flow problem

We are given the set of nodes G and the set of directed edges E.

- for each node u, the supply-demand imbalance i(u) is given
 - ► i(u) > 0 means that a positive amount the supply is added to the flow: could represent production at that node
 - ▶ i(u) < 0 a negative amount the demand is taken away from the flow: could represent consumption at that node
- for each directed edge (u, v), find the flow level f(u, v):
 - non-negativity: $f(u, v) \ge 0$

► flow conservation:
$$\underbrace{\sum_{(u,v)\in E} f(u,v)}_{\text{output flow}} - \underbrace{\sum_{(w,u)\in E} f(w,u)}_{\text{input flow}} = \underbrace{i(u)}_{\text{imbalance}}$$

the cost of the flow:

d(u, v) · |f(u, v)| is the cost of of pushing f(u, v) units of flow through one edge
 ∑ d(u, v) · |f(u, v)| is the total cost.

Example of the minimum-cost flow problem

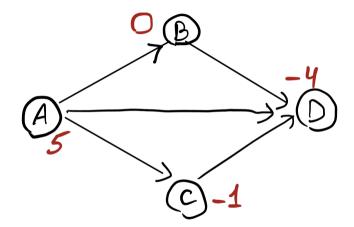


Figure: The graph consisting of 4 nodes A, B, C, D and 4 edges. The node A is a source, the nodes C and D are sinks, and B is a transshipment node

Example of the minimum-cost flow problem

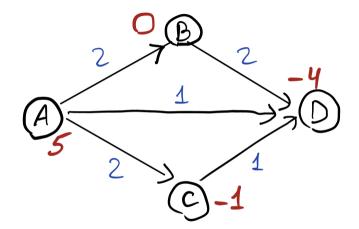


Figure: An example of the flow compensating supply-demand imbalance

Example of the minimum-cost flow problem

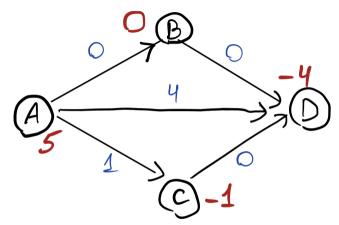


Figure: By the triangle inequality, any non-zero flow through the path $A \to B \to D$ or through the path $A \to C \to D$ could be replaced with the flow through the edge $A \to D$ reducing the total cost.

The Kantorovich-Rubinstein (mass transshipment) problem

Continuous network flow problem

- nodes are all the points x from \mathbb{R}^n ;
- the imbalance level i(x) is given by the signed measure $\mu \nu$;
- flow is given by the transport plan $\gamma(dx, dy)$:

flow conservation:
$$\underbrace{\int \gamma(x, y) \, dy}_{\operatorname{pr}_{2}\gamma} - \underbrace{\int \gamma(z, x) \, dz}_{\operatorname{pr}_{2}\gamma} = \underbrace{\mu(x) - \nu(x)}_{\text{imbalance}}$$
the cost of the flow:
$$\int d(x, y) \gamma(dx, dy)$$

The mass transshipment problem (Kantorovich and Rubinstein, 1958) Given a marginal difference $\mu - \nu$ and a cost function d(x, y) = ||x - y||, find the optimal value $\min_{\pi} \int d(x, y) \pi(dx, dy)$ subject to the constraint $\operatorname{pr}_1 \pi - \operatorname{pr}_2 \pi = \mu - \nu$.

From Kantorovich-Rubinstein to Beckmann

- Only local transfers are possible:
 - ▶ replace the immediate transfer $x \to y$ with the sequence of infinitesimal transfers $x \to (x + dc) \to (x + 2 \cdot dc) \to \cdots \to y$;
 - can be considered as a dynamic flow from x to y
- For each point x, define the transport flow c(x):
 - the direction of c(x) coincides with the local direction of the flow
 - the length of c(x) is the local congestion of the flow
- ▶ the total cost of the flow is $\int |c(x)| dx$. congestion distance
- the imbalance of the flow:
 - an amount of flow entering or leaving the infinitesimal sphere around x;
 - can be described using the divergence operator $\operatorname{div}[c] = \sum \frac{\partial c_i}{\partial x_i} + \text{ boundary terms}$

imbalance

• the flow conservation condition: $\operatorname{div}[c] + \mu - \nu = 0$.

Beckmann's problem

The mass transshipment problem (Kantorovich and Rubinstein, 1958)

Given a marginal difference $\mu - \nu$ and a cost function d(x, y) = ||x - y||, find the optimal value

$$\min_{\pi}\int d(x,y)\,\pi(dx,dy)$$

subject to the constraint $pr_1\pi - pr_2\pi = \mu - \nu$.

The continuous transportation problem (Beckmann, 1952) Given a marginal difference $\mu - \nu$, find the optimal value

$$\min_{c} \int |c(x)| \, dx$$

subject to the constraint $\operatorname{div}[c] + \mu - \nu = 0$.

Theorem

The mass transportation and Beckmann's problems are equivalent: the optimal values are identical and the solution to one problem can be constructed by another one.

Equivalence of dual to Kantorovich-Rubinstein and Beckmann problems

The weak form of the constraint
$$\operatorname{div}[c] + \mu - \nu = 0$$
: for all φ ,
 $\int \nabla \varphi(x) \cdot c(x) \, dx = \int \varphi(x) \cdot (\mu(dx) - \nu(dx))$

Introduce a Lagrangian:

$$\min_{c: \operatorname{div}[c]+\mu-\nu=0} \int |c| \, dx = \min_{c} \max_{\varphi} \left\{ \int |c| \, dx - \int \nabla \varphi \cdot c \, dx + \int \varphi \cdot (\mu(dx) - \nu(dx)) \right\}$$

- Apply the minimax principle: $\min_{c: \operatorname{div}[c]+\mu-\nu=0} \int |c| \, dx = \max_{\varphi} \left\{ \int \varphi \cdot (\mu(dx) - \nu(dx)) + \min_{c} \int |c| \, dx - \int \nabla \varphi \cdot c \, dx \right\}$
- $\min_c \int |c| \, dx \int \nabla \varphi \cdot c \, dx$ is bounded iff $|\nabla \varphi(x)| \le 1$ for all x
- ► $|\nabla \varphi| \le 1$ is 1-Lipschitz condition: $\varphi(x) \varphi(y) \le |x y|$
- The problem $\max_{\varphi} \int \varphi(x) \cdot (\mu(dx) \nu(dx))$ subject to $\varphi(x) \varphi(y) \le |x y|$ is dual to the transshipment problem

Beckmann's problem with nonlinear transfer cost

• the cost of pushing f(u, v) units of flow depends on f non-linearly:

•
$$\operatorname{cost} = \sum \Phi_{uv}(f(u, v))$$

• Φ_{uv} are edge-specific convex functions;

• in the continuous case:
$$\cot = \int \Phi(c(x)) \rho(x) dx$$

- the cost $\Phi(c)$ depends on both the direction and the congestion of the flow;
- $\rho(x)$ is the weight of the node x;
- ▶ the flow conservation condition: $\operatorname{div}_{\rho}[c] + \mu \nu = 0$
 - $\operatorname{div}_{\rho}[c] \coloneqq \operatorname{div}[\rho \cdot c]$ is a weighted divergence;

Problem (Beckmann's problem with non-linear transfer cost)

For a given cost function $\Phi(c)$, minimize the total weighted cost over all transport flows c compensating the supply-demand imbalance $\pi = \mu - \nu$:

$$\operatorname{Beck}_{\rho}(\pi, \Phi) = \inf_{c: \operatorname{div}[\rho \cdot c] + \pi = 0} \int \Phi(c) \rho(x) dx$$

Example of B = 2 bidders and I = 2 independent items.

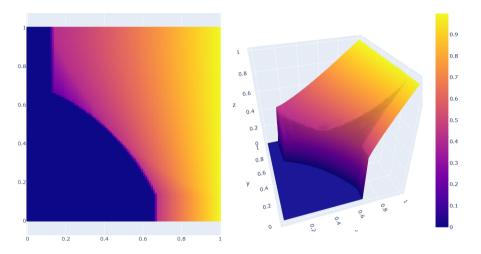
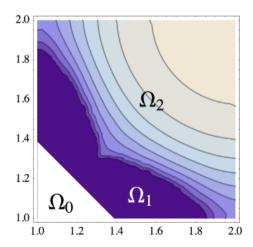


Figure: Graph of the first component of the conditional allocation function $\overline{P} = \frac{\partial u}{\partial x_1}$ for the uniformly distributed value estimate vector $x = (x_1, x_2)$.

Example of the monopolist problem with production cost



Problem example: $X = [1,2]^2$, $\rho(x)dx$ uniform on X, $\varphi_1(x) = \varphi_2(x) = \frac{1}{2}x^2$

$$\int \left[\langle x, u(x) \rangle - u(x) - \frac{1}{2} ||\nabla u||^2 \right] dx \to \max$$

over all $u \in \mathcal{U}$.

$$\blacktriangleright \ \Omega_0: \ u(x) = 0;$$

- Ω_1 : det H(u) = 0;
- Ω₂: det H(u) > 0, the function u satisfies the Heat equation Δu = 3.

The exact solution is unknown even in this simplest case!

Figure: The level set of det H(u) (Mirebeau 2014)

Solution: can solve with unprecedented numerical precision

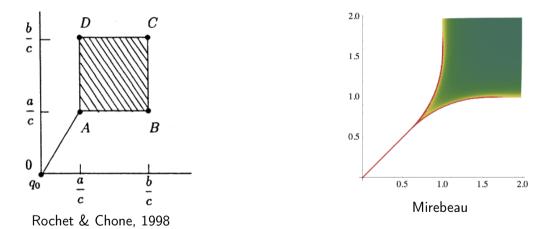


Figure: Previously, it was expected that the image of ∇u is a union of the interval [(0,0), (1,1)] and of the square $[1,2]^2$. Result of the modern computation is on the right picture.

Equivalence of dual to Kantorovich-Rubinstein and Beckmann problems

The weak form of the constraint
$$\operatorname{div}[c] + \mu - \nu = 0$$
: for all φ ,

$$\int \nabla \varphi(x) \cdot c(x) \, dx = \int \varphi(x) \cdot (\mu(dx) - \nu(dx))$$

- $\text{Introduce a Lagrangian:} \\ \min_{c: \text{ div}[c]+\mu-\nu=0} \int |c| \, dx = \min_{c} \max_{\varphi} \left\{ \int |c| \, dx \int \nabla \varphi \cdot c \, dx + \int \varphi \cdot (\mu(dx) \nu(dx)) \right\}$
- Apply the minimax principle: $\min_{c: \operatorname{div}[c]+\mu-\nu=0} \int |c| \, dx = \max_{\varphi} \left\{ \int \varphi \cdot (\mu(dx) - \nu(dx)) + \min_{c} \int |c| \, dx - \int \nabla \varphi \cdot c \, dx \right\}$
- $\min_c \int |c| \, dx \int \nabla \varphi \cdot c \, dx$ is bounded iff $|\nabla \varphi(x)| \le 1$ for all x
- ▶ $|\nabla \varphi| \le 1$ is 1-Lipschitz condition: $\varphi(x) \varphi(y) \le |x y|$
- The problem $\max_{\varphi} \int \varphi(x) \cdot (\mu(dx) \nu(dx))$ subject to $\varphi(x) \varphi(y) \le |x y|$ is dual to the transshipment problem

The algorithm could be scaled to multiple bidders

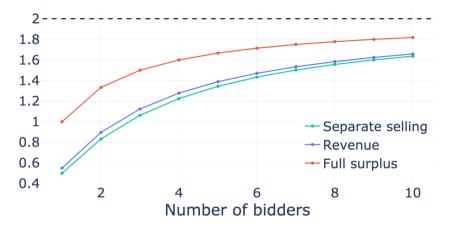


Figure: Revenue as a function of the number of bidders *B* for two items with i.i.d. values uniform on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $B \rightarrow \infty$ (the dashed line).

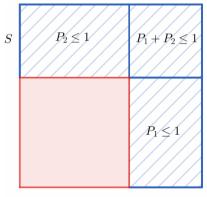
The Border's condition

Question

Given a reduced allocation function \overline{P} , under which conditions is it possible to find the full feasible mechanism (P_1, \ldots, P_B) ?

Consider any set S of bidder types.

$$\begin{split} &\sum_{b=1}^B \int_S \overline{P}_b(x_b) \, \rho(x_b) dx_b \\ &= \sum_{b=1}^B \int_{x_b \in S} P_b(x_1, \dots, x_B) \, \rho(x) dx \\ &\leq \Big| \cup_b \left\{ x_b \in S \right\} \Big| = 1 - (1 - |S|)^B. \end{split}$$



The Border's condition

Theorem (Border)

The reduced allocation function $\overline{P}(x)$ is feasible if and only if for any set S of bidder types,

$$\int_{S} \overline{P}(x) \rho(x) dx \leq \frac{1}{B} \left(1 - (1 - |S|)^{B} \right).$$

Example

Consider the case of *B* uniformly distributed bidders.

•
$$\overline{P}(x) = x^{B-1}$$
 for $x \ge \frac{1}{2}$;
• take $S = [t, 1]$:

$$\int_{S} \overline{P}(x) \, dx = \int_{t}^{1} x^{B-1} \, dx = \frac{1}{B}(1 - t^{B}).$$

The case of I = 1 item. A Vickrey auction

For $B \ge 1$ bidders, the auctioneer's revenue is equal to

$$R = \int \left(V(x_1)P_1 + \cdots + V(x_B)P_B \right) \rho(x_1, \ldots, x_B) \, dx_1 \ldots \, dx_B$$

subject to the constraint $P_1(x_1, \ldots, x_B) + \cdots + P_B(x_1, \ldots, x_B) \le 1$. The maximum of the integrand is reached if $P_b = 1$ for the maximal $V(x_b)$.

Theorem (Myerson 1981)

The Vickrey auction or a second-price sealed-bid auction is an optimal one: the highest bidder wins but the price paid is the second-highest bid. More precisely, denote $x_0 = \min\{x : V(x) \ge 0\}$. Then

$$\begin{aligned} P_b(x_1, \dots, x_B) &= 1 \text{ and } T_b(x_1, \dots, x_B) = \max_{d \neq b} x_d & \text{if } x_b = \max_{0 \leq d \leq B} x_d, \\ P_b(x_1, \dots, x_B) &= T_b(x_1, \dots, x_B) = 0 & \text{otherwise.} \end{aligned}$$

Time permitting: multidimensional taxation problem

The distribution of workers α ~ Φ
α = (α_c, α_m) is a bundle of cognitive and manual skills
Preferences: U(c, l) = c − l_c^ρ − l_m^ρ
Task technology: x_c = α_cl_c and x_m = α_ml_m

Problem Maximize the total budget

$$\max_{c,x} \int \left(\frac{1}{2} x_c(\alpha)^2 + \frac{1}{2} x_c(\alpha)^2 - c(\alpha) \right) \, d\Phi(\alpha)$$

subject to:

- ► the participation constraint: $U(c(\alpha), x_c(\alpha)/\alpha_c, x_m(\alpha)/\alpha_m) \ge \underline{\mathcal{U}}$
- the promise-keeping constraint: $\int U(c(\alpha), x_c(\alpha)/\alpha_c, x_m(\alpha)/\alpha_m) d\Phi(\alpha) \geq \mathcal{U}$

Utility allocation

Use

$$p_s := \alpha_s^{-\rho}$$
 $x_s(p) := x_s(\alpha)^{\rho}$

to transform preferences

$$u(c(\alpha)) - \left(\frac{x_c(\alpha)}{\alpha_c}\right)^{\rho} - \left(\frac{x_m(\alpha)}{\alpha_m}\right)^{\rho}$$

into a linear function

$$c(p) - p_c x_c(p) - p_m x_m(p)$$

Transformed planning problem

$$\min_{\{c,x_s\}} \int \left(c(p) - \frac{1}{2} x_c(p)^{2/\rho} - \frac{1}{2} x_m(p)^{2/\rho} \right) \pi(p) \mathrm{d}p$$

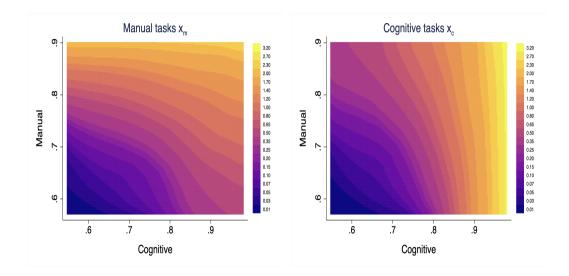
subject to:

$$c(p) - p_c x_c(p) - p_m x_m(p) \ge c(q) - p_c x_c(q) - p_m x_m(q)$$
(IC)

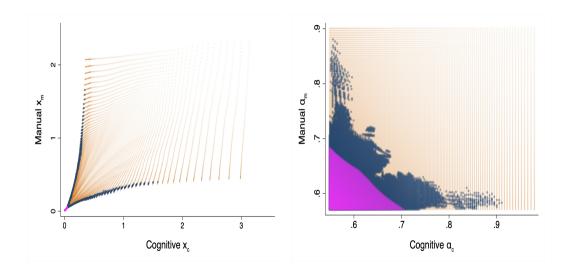
$$c(p) - p_c x_c(p) - p_m x_m(p) \ge \underline{\mathcal{U}}$$
(OO)

$$\int (c(p) - p_c x_c(p) - p_m x_m(p)) \pi(p) dp \ge \mathcal{U}$$
 (PK)

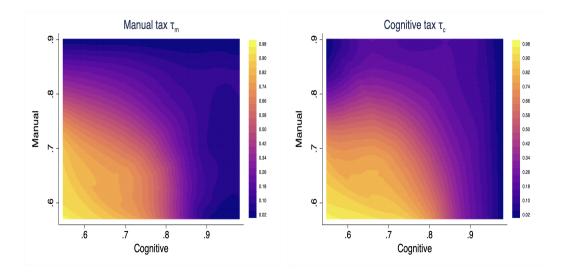
Task solution



Optimal bunching

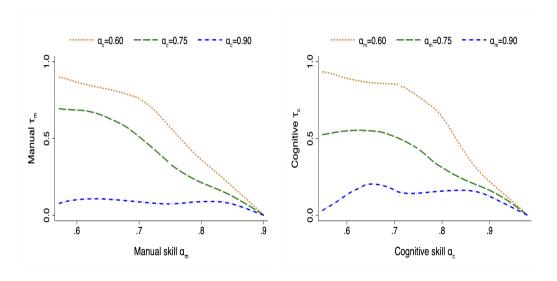


Tax wedges



.

Tax wedges



.

What is next

Maximize
$$R = B \cdot \int [x \cdot \nabla u(x) - u(x)] \rho(x) dx$$
 subject to
stochastic dominance: $\overline{P}_i \ge 0$ and $\int \varphi(\overline{P}_i(x)) \rho(x) dx \le \int_0^1 \varphi(z^{B-1}) dz$ for every convex non-decreasing φ

► (IR) and (IC)

Plan: writing a Lagrangian

- Put stochastic dominance constraint into the objective
- resulting problem consists of 2 steps:
 - choosing u;
 - choosing φ_i ,
- **>** problem with fixed φ_i , choosing u
- duality: then choose φ_i

Legendre transform

Definition

For a convex function f, define $f^*(y) = \sup_x \{xy - f(x)\}$.

Example

Theorem (Fenchel inequality)

For any convex function f(x),

•
$$f(x) + f^*(y) \ge xy$$
,
• $f(x) = \sup_y \{xy - f^*(y)\}.$

Intuition: convex function f is a maximum of its tangent lines.

Use minimax principle

• minimax principle: $\max_u \min_c = \min_c \max_u$:

$$\frac{R}{B} = \min_{\varphi} \min_{u} \max_{u} \left\{ \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_i(x) \cdot \frac{\partial u(x)}{\partial x_i} \right] \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_i(z^{B-1}) dz \right\}.$$
independent of u

maximize over u: if the functional can take a positive value, then by replacing $u \rightarrow \lambda \cdot u$ with $\lambda > 0$ we can obtain any positive values:

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_i(x) \cdot \frac{\partial u(x)}{\partial x_i} \right] \rho(x) dx = \begin{cases} 0 & \text{(take } u \equiv 0\text{)}, \\ +\infty & \text{(can multiply by } \lambda > 0\text{)} \end{cases}$$

Can treat \max_u as a constraint

• minimax principle: $\max_u \min_c = \min_c \max_u$:

$$\frac{R}{B} = \min_{\varphi} \min_{c} \left\{ \underbrace{\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_{i}(x) \cdot \frac{\partial u(x)}{\partial x_{i}} \right] \rho(x) dx}_{\text{replace with 0}} + \sum_{i=1}^{l} \int \varphi_{i}^{*}(c_{i}(x)) \rho(x) dx + \sum_{i=1}^{l} \int_{0}^{1} \varphi_{i}(z^{B-1}) dz \right\}.$$

maximize over u: if the functional can take a positive value, then by replacing $u \rightarrow \lambda \cdot u$ with $\lambda > 0$ we can obtain any positive values:

$$\max_{u} \int \left[x \cdot \nabla u(x) - u(x) - \sum_{i=1}^{l} c_i(x) \cdot \frac{\partial u(x)}{\partial x_i} \right] \rho(x) dx = \begin{cases} 0 & \text{(take } u \equiv 0), \\ +\infty & \text{(can multiply by } \lambda > 0) \end{cases}$$

The Kantorovich-Rubinstein problem (Dokl. Akad. Nauk SSSR, 1958) Intuition

- ▶ In the classical problem, production and consumption nodes are separate.
- > The transshipment problem: nodes can transfer and receive goods simultaneously.

The discrete mass transshipment problem

We are given:

• *m* points k = 1, ..., m and a vector $\psi = (\psi_1, ..., \psi_m)$;

• ψ_k represents the volume of production (if $\psi_k \leq 0$) of consumption (if $\varphi_k > 0$) Find a transport plan $\gamma = (\gamma_{ij})$: for each k,

- export $k \to j$ is γ_{kj} ; total export: $\sum_j \gamma_{kj}$;
- import $i \to k$ is γ_{ik} ; total import: $\sum_i \gamma_{ik}$;
- the balancing condition: $\sum \gamma_{ik} \sum \gamma_{kj} = \psi_k$
- the total transportation cost $\sum \alpha_{ij}\gamma_{ij}$ is minimal.

Analysis of the problem. IC-constraint

Recall the incentive compatibility constraint:

$$u(x) = x \cdot \overline{P}(x) - \overline{T}(x) \ge x \cdot \overline{P}(\widehat{x}) - \overline{T}(\widehat{x})$$

► The right hand-side is equal to

$$x \cdot \overline{P}(\widehat{x}) - \overline{T}(\widehat{x}) = (x - \widehat{x}) \cdot \overline{P}(\widehat{x}) + u(\widehat{x}).$$

► The inequality

$$u(x) - u(\widehat{x}) \ge (x - \widehat{x})\overline{P}(\widehat{x})$$

holds for all $x, \hat{x} \in [0, 1]^I$ if and only if u(x) is convex and $\overline{P}(x) \in \partial u(x)$ for all x.