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Abstract
The multistsochastic Monge–Kantorovich problem on the product X =

∏n
i=1Xi of n

spaces is a generalization of the multimarginal Monge–Kantorovich problem. For a given
integer number 1 ≤ k < n we consider the minimization problem

∫
cdπ → inf of the space

of measures with fixed projections onto every Xi1 × · · · ×Xik for arbitrary set of k indices
{i1, . . . , ik} ⊂ {1, . . . , n}. In this paper we study basic properties of the multistochastic
problem, including well-posedness, existence of a dual solution, boundedness and continuity
of a dual solution.
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1 Introduction

This paper is a continuation of our previous work [14], where we studied a natural generalization
of the transportation or Monge–Kantorovich problem.

Let µ and ν be probability measures on measurable spaces X and Y , and let c : X × Y → R
be a measurable function. The classical Kantorovich problem is the minimization problem∫

X×Y
c(x, y) dπ → inf

on the space Π(µ, ν) of probability measures on X × Y with fixed marginals µ and ν.
It is well-known that this problem is closely related to another linear programming problem,

which is called “dual transportation problem”∫
f dµ+

∫
g dν → sup .

The dual transportation problem is considered on the couples of integrable functions (f, g),
satisfying f(x) + g(y) ≤ c(x, y) for all x ∈ X, y ∈ Y .

Nowadays, the Monge–Kantorovich theory attracts growing attention. The reader can find
huge amount of information in the following books and surveys papers: [1], [5], [9],[12], [18], [19],
[27], [28], [31], [32].

A particular case of the multistochastic problem is the multimarginal transportation prob-
lem. In the multimarginal problem one considers the product of n > 2 spaces and n independent
marginals µ1, . . . , µn. Some classical results on the multimarginal problem is contained in book
[27], in particular, functional-analytical duality theorems, applications to probability etc. Nev-
ertheless, till recent, only the case of two marginals was in focus of research. A revival of interest
in the case of many marginals is partially motivated by applications in economics and quantum
physics [7], [8], [10], [26]. Our motivation to study the cost function xyz in R3 is partially related
to the multimarginal problem considered in [15].

In [14] we introduce a more general problem, which we call “multistochastic problem”. Com-
pare to the classical (multimarginal) case this new problem is genuinely more difficult. Even its
well-posedness depends on the structure of the marginals in a complicated way. The aim of this
work is to fill many gaps related to basic properties of the problem.

The paper is organized as follows: the reader can consider Section 2 as an extended introduc-
tion, where we present the results of the paper, our previous results, open questions, examples,
and discuss relations to other problems. In Section 3 we study sufficient conditions for existence
of a feasible measure for the multistochastic problem. In Section 4 we give a proof of a duality
theorem which is based on the duality theory for linearly constrained transportation problem.
In Section 5 we study sufficient conditions for existence of a dual solution and construct an ex-
ample of non-existence. In Section 6 we give explicit uniform bounds for the dual solution under
assumption that the cost function is bounded. Then we prove uniqueness of the primal and dual
solutions in our main example studied in [14]. Finally, we give an example showing that a dual
solution can be discontinuous even for a nice cost function c.

2



2 The multistochastic Monge–Kantorovich problem. Preliminar-
ies, examples, and open questions.

We start with the formulation of the multistochastic problem in the most general setting. Let
X1, X2, . . . , Xn be measurable spaces equipped with σ-algebras B1, . . . ,Bn. It will be assumed
throughout that Xi are Polish spaces and Bi are Borel sigma algebras.

Definition 2.1. Let p, q be nonnegative integers, q ≤ p. Let us denote by Ipq the family of
subsets {1, 2, . . . , p} of cardinality q. In addition, the family of all subsets of {1, 2, . . . , p} will be
denoted by Ip = ∪pq=0Ipq.

Definition 2.2. For all α ∈ In let us set Xα =
∏
i∈αXi. The product of all spaces X =

∏n
i=1Xi

will be denoted by X. For a fixed α ∈ In the projection of X onto Xα will be denoted by Prα.
In addition, for arbitrary x ∈ X the image of x under projection Prα will be denoted by xα:
xα = Prα(x).

For arbitrary space X let us denote by P(X) the space of all probability measures on X.

Problem 2.3 (Primal (n, k)-Monge–Kantorovich problem). Given Polish spaces X1, . . . , Xn,
fixed family of measures µα ∈ P(Xα), α ∈ Ink, and a measurable cost function c. Assume
in addition that there exist integrable functions cα ∈ L1(Xα, µα), α ∈ Ink, such that |c(x)| ≤∑

α∈Ink cα(xα). Then we are looking for

inf
π∈Π(µα)

∫
X
c dπ,

where infimum is taken among the all uniting measures π.

Note that under that assumptions the cost function c is integrable with respect to every
uniting measure µ ∈ Π(µα). Indeed, one has

∫
X |c| dµ ≤

∑
α∈Ink

∫
X cα(xα) dµα, if |c(x)| ≤∑

α∈Ink cα(xα).
In what follows, we will additionally assume that c is continuous, and we will work with the

following functional spaces

CL(Xα, µα) = C(Xα) ∩ L1(µα),

CL(X,µα) =

c ∈ C(X) : |c(x)| ≤
∑
α∈Ink

cα(xα) for some cα ∈ CL(Xα, µα)

 .

In addition, Cb(X) is the space of all continuous bounded functions on X, Cb(X) ⊂ CL(X).

Definition 2.4. Assume that for every α ∈ Ink we are given a probability measure µα on Xα.
We say that a measure µ ∈ P(X) is uniting if Prα(µ) = µα for all α ∈ Ink. The set of all
uniting measures will be denoted by Π(µα).

Example 2.5. ((3, 2)-problem) Consider a product of three spaces X = X1 ×X2 ×X3, prob-
ability measures µ12, µ23, µ13 on X1 ×X2, X2 ×X3, X1 ×X3 respectively. Then µ ∈ Π(µα) if
and only if µ is a measure on X such that

Pr12(µ) = µ12,Pr13(µ) = µ13,Pr23(µ) = µ23.

In this introductory section we briefly describe several aspects of this problem. In particular,
we discuss previously known results, examples, open problems, and relation to other research.
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2.1 Feasibility of the problem, Latin squares and descriptive geometry.

The multistochastic problem is overdetermined and a uniting measure does not always exist. It
is clear that a necessary condition for existence of a uniting measure is the following consistency
condition:

Prα∩β(µα) = Prα∩β(µβ) = Prα∩β(µ).

This condition is not sufficient (see [14] and other examples below), but we show that this
condition is sufficient for existence of a signed uniting measure (see Theorem 3.5).

Nevertheless, in certain situations the set of feasible measures is very rich. This happens, for
instance, if Xi are finite sets of the same cardinality and all the measures µα are uniform. The
natural continuous generalization is: Xi = [0, 1] and µα are the Lebesgue measures on [0, 1]k

of the corresponding dimension k. A natural related discrete combinatorial object is a Latin
square. To see the relation let us consider an n× n Latin square S containing first n integers.
Then the discrete measure

1

n2

∑
i,j

δi,j,S(i,j)

on [1, . . . , n]3 has uniform projections to discrete xy, xz, yz planes.
More generally, the (n, k)-multistochastic problem is always feasible for the system of mea-

sures
µα =

∏
i∈α

µi, α ∈ Ink,

where µ1, . . . , µn are fixed measures on X1, . . . , Xn.
We believe that this example provides a natural source of applications, this is why a big part

of our results is related to this particular case.
Other source of applications might arise from the engineering, in particular, the descriptive

geometry. One of the founding fathers of descriptive geometry, Gaspard Monge, developed
a method of reconstruction of a three-dimensional body using its two-dimensional orthogonal
projections. This procedure is known as “projection de Monge” , in our language it gives a
recipe of finding a uniting measure in (3, 2)-problem.

A necessary and sufficient condition for existence of a measure with a given system of marginal
distributions in the spirit of linear programming duality was established by H. Kellerer [20].
Assume we are given a system of marginal distributions µα, where α belongs to some system A
of subsets of {1, . . . , n}. This system admits a uniting measure if and only if∑

α∈A

∫
fα(xα) dµα ≥ 0

for all bounded continuous system of functions fα(xα) satisfying
∑

α∈A fα(xα) ≥ 0. We give an
independent proof of this fact for A = Ink in Section 3. Note, however, that this criterion does
not seem to be very practical. We establish some easy-to-check sufficient conditions for existence
of uniting measure in terms of uniform bounds for densities. In particular, we prove the following
(see Theorem 3.10):

Theorem 2.6. For given natural numbers 1 ≤ k < n there exists a constant λnk > 1 which
admits the following property.

Assume we are given a consistent family of probability measures µα ∈ P(Xα), α ∈ Ink, and
another family of probability measures νi ∈ P(Xi), 1 ≤ i ≤ n. Assume that every measure µα,
α ∈ Ink, is absolutely continuous with respect to να =

∏
i∈α νi:

µα = ρα · να.

Finally, assume that there exist constants 0 < m ≤ M such that every density ρα satisfies
m ≤ ρα ≤M να-almost everywhere for all α ∈ Ink.

Then Π(µα) is not empty provided M
m ≤ λnk.

4



Figure 1: The solution is supported on Sierpińsky tetrahedron.

We will give precise bounds for the constant λ32.

Remark 2.7. Solvability of the primal problem. As soon as the set of uniting measures is
not empty, the proof of existence of a solution to the primal problem for a lower semicontinuous
cost is a standard exercise.

Theorem 2.8 ([14]). Assume that the cost function c ≥ 0 is lower semicontinuous. If Π(µα) is
not empty, then there exists a solution to the multistochastic problem.

2.2 Examples. Fractal structure versus smooth structure.

The main example of an explicit solution to a multistochastic problem was found in [14]. The
unexpected beauty of this example was the main motivation for us for subsequent study of the
multistochastic problem.

In the following example we consider a (3, 2)-problem. Denote by Π(µxy, µyz, µxz) the set of
measures with projections Prxyπ = µxy,Prxzπ = µxz,Pryzπ = µyz.

Theorem 2.9 ([14]). Let µxy = λxy, µxz = λxz, µyz = λxz be the two–dimensional Lebesgue
measures [0, 1]2 and let c = xyz. Then there exists a unique solution to the corresponding (3, 2)-
problem ∫

xyz dπ → min, π ∈ Π(µxy, µyz, µxz).

It is concentrated on the set
S = {(x, y, z) : x⊕ y ⊕ z = 0},

where ⊕ is the bitwise addition. See Fig. 1.

The set S is called Sierpińsky tetrahedron.
We stress that some fractal solutions to a multimarginal transportation problem were known

before our work. See, for instance, [10], where multimarginal problem with the cost function of
the type h(

∑n
i=1 xi) and the Lebesgue measure projections was considered. Though we don’t

see any direct relation between these examples, they have something in common: in both cases
the set of feasible measures contains more than one element and the entire construction relies on
the dyadic decomposition.
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Remark 2.10. The (3, 2)-problem can admit not only fractal but also smooth solutions. For
instance, consider measurable functions f(x), g(y) and h(z) on [0, 1]. Assume that h is injective,
the set Γ = {f(x) + g(y) + h(z) = 0} is not empty, and µ is a probability measure concen-
trated on Γ: µ(Γ) = 1. Set µxy = Prxyµ, µxz = Prxzµ, µyz = Pryzµ. Then µ is the unique
element of Π(µxy, µyz, µxz). Indeed, let ν ∈ Π(µxy, µyz, µxz). Clearly,

∫ (
f(x) + g(y) + h(z)

)2
dν

depends solely on the integrals of pairwise products of functions f, g, h with respect to measures
µxy, µyz, µxz. Hence∫ (

f(x) + g(y) + h(z)
)2
dν =

∫ (
f(x) + g(y) + h(z)

)2
dµ = 0,

this implies that ν is concentrated on Γ. Since h is injective, Γ is the graph of the mapping
(x, y)→ h−1(−f(x)−g(y)), hence ν is uniquely determined by its projection µxy, thus coincides
with µ.

In particular, this observation can be applied to construct an example of a solution concen-
trated on a smooth set.

Example 2.11. The Lebesgue measure on [0, 1]3 ∩ {x1 + x2 + x3 = 1} is a solution to the
(3, 2)-problem, where marginals are the two-dimensional Lebesgue measures concentrated on the
set {xi + xj ≤ 1} ⊂ [0, 1]2 and arbitrary cost function.

It is clear, that the smoothness of the solution in this example is just a matter of fact that
Π(µxy, µyz, µxz) contains a unique (smooth) element. However, it is natural to expect that
the solution may have a fractal/non-regular structure provided uniting measures constitute a
sufficiently large set.

The following problem, yet vaguely formulated, seems to be crucial for understanding of the
structure of solutions to (n, k)-problem.

Open problem 1. Is it true that solutions to (n, k)-problem have “fractal structure” provided
Π(µα) contains sufficiently “rich” set of measures?

2.3 Duality and the Kantorovich problem with linear constraints

As in the classical case the multistochastic problem admits the corresponding dual problem:

Problem 2.12 (Dual (n, k)-Monge–Kantorovich problem). Assume we are given Polish spaces
X1, . . . , Xn, a fixed family of measures µα ∈ P(Xα) and a cost function c ∈ CL(X,µα). Find

sup
f≤c

∑
α∈Ink

∫
Xα

fα dµα,

where the supremum is taken among the functions f having the form f(x) =
∑

α∈Ink fα(xα),
where fα ∈ L1(Xα, µα).

Definition 2.13. We say that there is no duality gap for the (n, k)-problem if

min
π∈Π(µα)

∫
c dπ = sup

f≤c

∑
α∈Ink

∫
Xα

fα dµα,

where fα ∈ L1(Xα, µα), f(x) =
∑

α∈Ink fα(xα).

The absence of duality gap was shown in [14] under assumption of compactness of the spaces
Xi. In this work we prove the following result:

Theorem 2.14. There is no duality gap for (n, k)-problem provided Xi are Polish spaces and
c ∈ CL(X,µα).

6



Our approach is based on the result of D. Zaev [33] on duality for the classical Kantorovich
problem with linear constraints. The transportation problem with linear constraints is the
standard Kantorovich problem with additional constraint of the type l(P ) = 0, where l is a
linear functional on the space of measures. The proof of Zaev is based on the general minimax
principle.

2.4 Structure of dual solutions. Monge problem

Our main example of a dual solution is given in the following theorem.

Theorem 2.15 ([14]). Let µxy = λxy, µxz = λxz, µyz = λxz be the two dimensional Lebesgue
measures on [0, 1]2 and c = xyz. Then the triple of functions (f(x, y), f(x, z), f(y, z)), where

f(x, y) =

∫ x

0

∫ y

0
t⊕ s dtds− 1

4

∫ x

0

∫ x

0
t⊕ s dtds− 1

4

∫ y

0

∫ y

0
t⊕ s dtds

solves the corresponding dual multistochastic problem.

Remark 2.16. The uniqueness result for this problem under assumption of continuity of the
dual solution is proved in the present paper in Theorem 2.29

The solution to the dual problem given in Theorem 2.15, has the following relation to the
solution π to the primal problem (see Theorem 2.9): π is concentrated on the graph of the
mapping (x, y) 7→ fxy(x, y), i.e.

z = fxy(x, y) (1)

π-almost everywhere.
Let us note that f admits a non-negative mixed derivative fxy, but derivatives fxx, fyy do

not exist (at least in the classical sense).
The relation (1) can be derived from the fact that the support S of the solution π is a fractal

set. Indeed, function f(x, y) + f(x, z) + f(y, z)−xyz is non positive and equals zero π-a.e. Thus
for π-almost all points the first order condition

fx(x, y) + fx(x, z) = yz (2)

is satisfied.
Next, it is easy to show that for π-almost every point M = (x0, y0, z0) ∈ S the set S contains

points of the type M + tnv, where tn is a sequence tending to zero and vector v belongs to a
set V containing three independent vectors. One can prove this using the fractal structure of S.
Consequently, one can differentiate (2) along V and deduce (1) from these relations.

Thus in this particular case the solution admits the following properties.

(a) The solution is concentrated on the graph of a mapping z = T (x, y).

(b) This mapping T has the form T (x, y) = fxy(x, y), where (f, g, h) is a solution to the dual
problem. The same holds for g, h.

(c) Function f(x, y) is a cumulative distribution function (up to a term depending on x and a
term depending on y) of a positive measure on a plane. Equivalently, fxy(x, y) ≥ 0 almost
everywhere.

Definition 2.17. (Optimal mapping.) Let T satisfy (a). Then we say that T is an optimal
mapping.

One can ask whether any solution to (3, 2)-problem (under natural assumptions on the
marginals) with the cost function xyz does satisfy properties (a), (b), (c). We show that in
fact no one of these properties are satisfies in general.

7



Example 2.18. The solutions to (3, 2)-problems are not always concentrated on
graphs; (a) fails. Consider the sphere S = {x2 + y2 + z2 = 1}, and consider the quarter
sphere S1 = S ∩ {x ≥ 0, y ≥ 0}, S2 = S ∩ {x < 0, y ≥ 0}, S3 = S ∩ {x < 0, y < 0} and
S4 = S∩{x ≥ 0, y < 0}. Let π be the surface measure on the 3/4-part of the sphere S1tS2tS4,
and let µxy, µxz, µyz be the corresponding two-dimensional projections.

Slightly modifying the arguments of Remark 2.10 we prove that if π̂ is a measure with
projections µxy, µxz and µyz, then π̂ is concentrated on the set S1 t S2 t S4. For each point of
S2 there is no other point of S1 t S2 t S4 with the same projection onto the coordinate plane
Oxz, and therefore the restriction of the measure π̂ to S2 is fully determined by its projection
µxz and coincides with π|S2 .

Similarly, the restriction of π̂ to S4 is fully determined by its projection µyz and coincides with
π|S4 . Hence, π̂|S1 = π̂ − π|S2 − π|S4 . Thus, the projections of π̂|S1 and π|S1 to the coordinate
planes are the same, and then π̂|S1 = π|S1 . So we conclude that π is the only measure with
projections µxy, µxz, µyz, and there is no optimal mappings Txy, Txz and Tyz.

See also Example 5.10 for a discrete counterexample.

Example 2.19. Example without dual solutions satisfying (1); (b) fails. This example
is considered in Theorem 6.32. In this example fxy is either zero or not defined.

Example 2.20. Non-uniqueness for the dual problem; (c) fails. In the problem considered
in Example 2.11 there exist many dual solutions. To see this let us note that the following
inequality holds for all (x, y, z) ∈ [0, 1]3 and a fixed constant A > 0, equality holds if and only if
x+ y + z = 1:

(x+ y + z − 1)2(x+ y + z +A) ≥ 0.

Developing the left-hand side we see that this inequality is equivalent to

xyz ≥ fA(x, y) + fA(x, z) + fA(y, z),

where

fA(x, y) = − 1

12
(x3 + y3)− 1

2
xy(x+ y)− (A− 2)

(x2

12
+
xy

3
+
y2

12

)
− 1− 2A

12
(x+ y)− A

18
.

Clearly, the triple (fA(x, y), fA(x, z), fA(y, z)) solves the dual problem for every A ≥ 0. Note
that (1) and (c) fails for all A ≥ 0.

We believe that there are no other dual solution, but can not prove this.

Thus we see that the particular form (1) of the optimal mapping related to (3, 2)-problem
with cost function xyz is related to the fractal structure of the solution. Motivated by these
observations we state the following problem.

Open problem 2. Assume that π is a solution to a (3, 2)-problem with the cost function
xyz. Find general sufficient conditions for presentation of π in the form

z = fxy(x, y),

where f(x, y), g(x, z), h(y, z) solve the corresponding dual multistochastic problem.
It seems quite difficult to describe the general structure of solutions to (3, 2)-problem with

c = xyz, since it is very sensitive to non-local properties of the marginals. Something can be
established under very strong "smoothness" assumptions, as presented in the proposition below.
But we stress that this situation can not pretend to describe a reasonable model case.

Proposition 2.21. Consider a tuple of twice continuously differentiable functions f(x, y),
g(x, z), h(y, z) satisfying f(x, y) + g(x, z) + h(y, z) ≥ xyz. Assume, in addition, that

Γ =
{
f(x, y) + g(x, z) + h(y, z) = xyz

}
8



is a two-dimensional smooth surface.
Let Γx,Γy,Γz be sets defined by equations:

Γx = {x = hyz}, Γy = {y = gxz}, Γz = {z = fxy}.

Then for every point (x0, y0, z0) ∈ Γ the following alternative holds:

(A) (x0, y0, z0) ∈ Γx ∩ Γy ∩ Γz, i.e. at this point

x = hyz, y = gxz, z = fxy.

(B) (x0, y0, z0) /∈ Γx ∪ Γy ∪ Γz and the vector field

N =
( 1

x− hyz
,

1

y − gxz
,

1

z − fxy

)
is orthogonal to Γ at (x0, y0, z0).

Proof. Since every (x, y, z) ∈ Γ is a minimum point of f(x, y) + g(x, z) + h(y, z)− xyz, then the
functions

u = yz − fx(x, y)− gx(x, z), v = xz − fy(x, y)− hy(y, z), w = xy − gz(x, z)− hz(y, z)

vanish on Γ. Hence their gradients

∇u = (−fxx − gxx, z − fxy, y − gxz)

∇v = (z − fxy,−fyy − hyy, x− hyz)

∇w = (y − gxz, x− hyz,−gzz − hzz)

are orthogonal to Γ. Then they are colinear, because Γ is two-dimensional. Hence either all these
coordinates are zero (case (1)) or

fyy + hyy = −(x− hyz)(z − fxy)
y − gxz

(similarly for other coordinates). This gives that N is orthogonal to Γ.

Remark 2.22. Example of (B) is given in Example 2.20. We emphasize that in the main
example we have (A), but neither Γ is not a smooth surface, nor f, g, h are twice differentiable.
In fact, the fractal structure of Γ is exactly the reason why (1) holds (see explanation above).

Remark 2.23. (Vector fields orthogonal to smooth solutions). Assume that π is a solution
to a (3, 2)-problem concentrated on the surface Γ and alternative (B) holds. Let π is given by
its density with respect to the two-dimensional Hausdorff measure

π = p(x, y, z) · H2|Γ.

Denote by ρxy, ρxz, ρyz the density of the corresponding projections µxy, µxz, µyz. Then
ρxy(x, y)| cos(N, (0, 0, 1))| = p(x, y, z) for every (x, y, z) ∈ Γ and

ρxy(x, y) = p(x, y, z)|z − fxy|

√
1

(x− hyz)2
+

1

(y − gxz)2
+

1

(z − fxy)2
.

Similarly for the other densities. This easily leads to the following relations: for every (x, y, z) ∈ Γ
the vector field (sign(x− hyz)

ρyz
,
sign(y − gxz)

ρxz
,
sign(z − fxy)

ρxy

)
9



The slice z = 0. The slice z = 1. The slice z = 2.

Figure 2: The visualization of the primal solution to the problem considered in Example 2.24.
Each picture shows the restriction of the primal solution to the set z = 0, 1, 2. In the white
points the density function is equal to 0, and in the black points it is equal to 3. Almost every
horizontal and vertical section of the black body has a length 1/3. Compare to Fig. 3.

is orthogonal to Γ and

1

p2(x, y, z)
=

1

ρ2
xy(x, y)

+
1

ρ2
xz(x, z)

+
1

ρ2
yz(y, z)

.

In particular, we obtain that one of the vector fields(±1

ρyz
,
±1

ρxz
,
±1

ρxy

)
is (locally) orthogonal to Γ.

Example 2.24. (c) fails; relation to the transportation problem with uniform bound
on density. Consider the (3, 2)-problem with c = xyz and µxy = µx ⊗ µy, µxz = µx ⊗ µz,
µyz = µy ⊗ µz, where µx = µy is the Lebesgue measure on [0, 1], and µz is the uniform discrete
measure on {0, 1, 2}. Then the solution is concentrated on the graph of a function z = T (x, y),
where T takes values in {0, 1, 2}.

In this example we were able to verify numerically that there exists a dual solution
f(x, y), g(x, z), h(y, z) (maybe not unique) which does not satisfy fxy ≥ 0, equivalently
f(x1, y1) + f(x2, y2) − f(x1, y1) − f(x2, y2) ≥ 0 for all x1 < x2, y1 < y2. In particular, re-
lation z = fxy fails again.

Note that some elements of sets {z = 0}, {z = 1} (see Fig. 2) are solutions to an optimal
transportation problem with capacity constraints [25], [24].

Remark 2.25. It worth noting that the condition f(x1, y1)+f(x2, y2)−f(x1, y1)−f(x2, y2) ≥ 0
for all x1 < x2, y1 < y2 corresponds to a bit different primal problem, where assumptions on the
marginals are replaced by assumptions that the marginals are stochastically dominated by
given measures. But we don’t pursue this viewpoint here.

2.5 Solvability of the dual problem

Section 5 is devoted to existence of a solution to the dual problem. We establish a sufficient
existence condition for the dual problem in the spirit of a classical result of Kellerer [21] for the
multistochastic problem, but with a self-contained independent proof.

10



The main assumption on the cost function for solvability of the dual problem is the
following bound:

|c(x)| ≤
∑
α∈Ink

Cα(xα). (3)

for some integrable functions, Cα : Xα → R ∪ {+∞} This is a generalization of the Kellerer’s
assumption.

However, yet another assumption, which is specific for (n, k)-problem, should be done on
marginals. Namely, we have to assume that the system of measures {µα} is reducible. The
latter means that there exists a measure µ ∈ Π(µα) and the system of probability measures
νi ∈ P(Xi) such that for some 0 < c < C

cν ≤ µ ≤ Cν, (4)

where ν =
∏
i νi. Our main existence/nonexistence result is the following Theorem (see details

in Theorem 5.17 and Proposition 5.22):

Theorem 2.26. If the system {µα} is reducible, then under assumption (3) there exists a solution
to the dual multistochastic problem.

Without assumption of reducibility the dual solution may not exist. More precisely, there exists
an example of a probability measure µ on the space X = N3 and the cost function c : X → {0, 1}
such that there is no solution to the dual multistochastic problem for the system

µij = Prijµ.

2.6 Other properties of dual solutions: boundedness and (dis)continuity

In Section 6 we study basic properties of solutions to the dual (3, 2) problem: boundedness
and continuity. It is known that for the classical (multimarginal) problem the dual solution is
bounded provided |c| is bounded. But this is crucial that in the classical case the dual solution
is a sum of independent functions. This is the reason why it is hard to extend the arguments to
the general (n, k)-case. We establish the following result on the boundedness of solutions.

Theorem 2.27. Let X1, X2, X3 be Polish spaces, µi ∈ P(Xi) for 1 ≤ i ≤ 3, and let µij = µi⊗µj
for all {i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. If {fij} is a solution
to the related dual problem, then

f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞

for µ1 ⊗ µ2 ⊗ µ3-almost all points x ∈ X.
Moreover, there exists a solution {fij} to the standard dual problem such that

−26
2

3
‖c‖∞ ≤ fij(xi, xj) ≤ 13

1

3
‖c‖∞ .

Another important feature of the classical Monge–Kantorovich problem: for a cost function
c with nice geometric/regularity properties the corresponding dual solutions are regular. This
happens because the dual functions are related by Legendre transform, which is highly regular-
izing. We can not expect this for the (n, k)-problem, the following example demonstrates that a
solution can be unique and discontinuous even for very simple and nice cost: maximum of two
linear functions.

Example 2.28. Let X = Y = Z = [0, 1]. Consider the (3, 2)-problem with the cost function

c = max(0, x+ y + 3z − 3),

11



where µzy, µxz, µyz are the Lebesgue measures restricted to [0, 1]2. Then the dual problem admits
a unique discontinuous solution, given by the following formulas:

f12(x1, x2) = 0 for all points (x1, x2) ∈ [0, 1]2;

f13(x1, x3) =

{
0, if x3 <

2
3 ,

x1 + 3
2x3 − 3

2 , if x3 ≥ 2
3 ;

f23(x2, x3) =

{
0, if x3 <

2
3 ,

x2 + 3
2x3 − 3

2 , if x3 ≥ 2
3 .

2.7 Uniqueness result for the main example

In Section 6 we establish the following results for our main example: (3, 2)-problem with the
two-dimensional Lebesgue marginals.

Theorem 2.29. If a tuple of functions {fij} is a solution to the problem from Theorem 2.15 and
every fij is continuous for all {i, j} ∈ I3,2, then there exist continuous functions fi : [0, 1] → R,
1 ≤ i ≤ 3, such that

f12(x1, x2) = f(x1, x2) + f1(x1)− f2(x2),

f23(x2, x3) = f(x2, x3) + f2(x2)− f3(x3),

and

f13(x1, x3) = f(x1, x3) + f3(x3)− f1(x1),

where
f(x, y) =

∫ x

0

∫ y

0
s⊕ t dsdt− 1

4

∫ x

0

∫ x

0
s⊕ t dsdt− 1

4

∫ y

0

∫ y

0
s⊕ t dsdt.

Remark 2.30. We believe that this problem admits no other (discontinuous) solutions, but have
no proof of this.

2.8 Relation to other problems

We mentioned already that the multistochastic problem is closely related to the Kantorovich
problem with linear constraints studied by Zaev in [33]. More precisely, our problem can be
reduced to the Kantorovich problem with linear constraints, see explanations in Section 4.

Another related problem is, of course, problem with uniform constraint on the density, some-
times called "the capacity constrained problem" (see [25], [24], [11]). The solution to the problem
from Example 2.24 admits the following structure: there is a partition of the unit square into
several parts, each of them is either a homothetic image of the body shown on Fig. 3 or its
complement. This set is a solution to a capacity constrained problem and appeared for the first
time in [24]: find a function 0 ≤ h ≤ 3 on [0, 1]2 maximizing integral∫

A
xyh(x, y) dxdy

such that h(x, y)dxdy has the Lebesgue projections onto both axes. Then the solution h takes
values in {0, 3} and {h = 3} is the body on Fig. 3. We leave to the reader as an exercise the
precise construction relating these two problems. It seems to be a highly nontrivial task to give
the precise description of this figure. This is especially difficult, because numerical experiments
demonstrate that it coincides up to a very small set with a figure, which boundary is piecewise
smooth and can be parametrized by piecewise elementary functions (polynomials).

12



Figure 3: The support of a solution to a capacity constrained problem (see [25], [24]). Compare
to Fig. 2.

Among the other problems which can be “embedded” into the linearly constrained trans-
portation problem let us mention the martingale transportation problem [19, 3], problems with
symmetries [13, 22, 23].

Finally, there is a connection between the multistochastic problem and the transportation
problem with convex constraints, in particular, problems on the space of measures with given
ordering. In particular, in the (3, 2)-problem with the cost function xyz the natural ordering
on the space of measure is stochastic ordering, i.e. for two measures µ, ν on the plane we say
that µ is bigger than ν if the distribution function Fµ is bigger than Fν (see Remark 2.25). We
plan to study the related modified (3, 2)-problem in the subsequent work. Here we just mention
that there are many recent paper with very interesting results dealing with convex ordering and
optimal transportation, see [17, 16].

3 Existence of a uniting measure for (n, k)-problem.

3.1 Setting of the problem, basic facts

Unlike the classical Monge–Kantorovich problem, existence of a uniting measure for a (n, k)-
problem is a nontrivial task. In the multimarginal Monge–Kantorovich problem, which is a
particular case of (n, k)-problem with k = 1, the uniting measure always exists: this is

∏n
i=1 µi.

In the case of (n, k)-problem one has the following necessary condition:

Proposition 3.1. Assume that the set Π(µα) is not empty. Let µ ∈ Π(µα) be arbitrary uniting
measure. Then for all α, β ∈ Ink the following relation holds:

Prα∩β(µα) = Prα∩β(µβ) = Prα∩β(µ).

Definition 3.2. We say that the set of measures µα ∈ P(Xα) is consistent, if it satisfies
Prα∩β(µα) = Prα∩β(µβ) for all α, β ∈ Ink.

The consistency assumption for n = 3, k = 2 was considered in [14]. In what follows, we
consider only consistent sets of measures. For a consistent set the measures µα are well-defined
for all α ∈ Int, where t ≤ k. Indeed, denote µα = Prα(µβ) for arbitrary β ∈ Ink containing α.
The consistency assumption implies that the result is independent of the choice of β.

Proposition 3.3. Unlike the multimarginal problem, the consistency assumption is not sufficient
for 1 < k < n.

Proof. Let Xi = {0, 1, . . . , k − 1} for all 1 ≤ i ≤ n. For every α ∈ Ink let us construct the
corresponding measure µα on the set Xα. If α = {i1, i2, . . . , ik}, then every point of Xα is
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given by coordinates x = (xi1 , xi2 , . . . , xik), where xit ∈ {0, 1, . . . , k − 1} for all 1 ≤ t ≤ k. Set
µα(x) = k1−k, if

∑k
t=1 xit ≡ 1 (mod k) and µα(x) = 0 in the opposite case.

It is easy to check that the consistency assumption of Definition 3.2 holds: the projection of
any measure µα onto Xβ is uniform if |β| < |α|. Assume that a uniting measure µ exists. Since
the projections are non-zero, µ is not zero itself. Take a point x = (x1, x2, . . . , xn) such that
µ(x) > 0. Then for all α = {i1, . . . , ik} ∈ Ink the relation

∑k
t=1 xit ≡ 1 (mod k) holds, in the

opposite case the µ-mass of the projection of (xi1 , xi2 , . . . , xik) onto Xα is zero, hence projection
of µ does not coincide with µα.

We extract from condition
∑k

t=1 xit ≡ 1 (mod k), which holds for all {i1, . . . , ik} ∈ Ink,
k < n that xi ≡ xj (mod k) for all 1 ≤ i, j ≤ n. Then

∑k
t=1 xit ≡ 0 6≡ 1 (mod k). We obtain a

contradiction.

Another example for n = 3, k = 2 the reader can find in [14].

3.2 Existence of a signed measure

It follows from the previous proposition that the consistency assumption is not sufficient for
existence of a uniting measure. Nevertheless, it is sufficient for existence of a signed measure.

Let νi ∈ P(Xi) be an arbitrary family of probability measures.

Definition 3.4. For all α ∈ Int, 0 ≤ t ≤ k let us extend µα to X in the following way:
µ̃α = µα ×

∏
i 6∈α νi. In addition, set µ̃t =

∑
α∈Int µ̃α, where 0 ≤ t ≤ k.

The following theorem contains a construction of a uniting signed measure.

Theorem 3.5. There exists a linear combination µ =
∑k

t=0 λtµ̃t satisfying Prα(µ) = µα for all
α ∈ Ink. The coefficients of λt do not depend on the choice of νi.

Proof. Fix α ∈ Ink. Introduce the following notations:

µ̃αβ = µβ ×
∏
i 6∈β
i∈α

νi, β ⊂ α,

µ̃αt =
∑
β∈Int
β⊂α

µ̃αβ .

For arbitrary β ∈ Int, where t ≤ k, find a projection µ̃β onto Xα. It is easy to realise that
one obtains µ̃αβ∩α. Let us project µ̃t onto Xα. Applying definition of µ̃t one can get

Prα(µ̃t) =
∑
β∈Int

µ̃αβ∩α =

t∑
i=0

∑
γ∈Ini
γ⊂α

(
n− k
t− i

)
µ̃αγ =

t∑
i=0

(
n− k
t− i

)
µ̃αi .

Thus we express Prα(µ̃t) through µ̃αi with fixed coefficients. We get the following system of
linear equations

k∑
t=0

λtPrα(µ̃t) = µ̃αk = µα.

on λt. The coefficient of µ̃αi equals 0 for i > t and equals 1 for i = t. Thus, the given system
corresponds to a triangular matrix with units on the diagonal. This means that there exist a
unique set of numbers λt, 0 ≤ t ≤ k, satisfying

In addition, we observe that these coefficients do not depend on α. Thus, the signed measure∑k
t=0 λtµ̃t is uniting.

14



Example 3.6. Let us give an example in the (3, 2)-case. One has

µ̃0 = ν1 × ν2 × ν3,

µ̃1 = µ1 × ν2 × ν3 + ν1 × µ2 × ν3 + ν1 × ν2 × µ3,

µ̃2 = µ12 × ν3 + µ13 × ν2 + µ23 × ν1.

The projections of these measures onto X1 ×X2 are given by

Pr12(µ̃0) = ν1 × ν2,

Pr12(µ̃1) = Pr12(µ1 × ν2 × ν3) + Pr12(ν1 × µ2 × ν3) + Pr12(ν1 × ν2 × µ3)

= µ1 × ν2 + ν1 × µ2 + 1 · ν1 × ν2,

Pr12(µ̃2) = Pr12(µ12 × ν3) + Pr12(µ13 × ν2) + Pr12(µ23 × ν1)

= µ12 + µ1 × ν2 + ν1 × µ2.

Thus for arbitrary coefficients λ0, λ1, λ2 one can find projection of λ0µ̃0 + λ1µ̃1 + λ2µ̃2 onto
X1 ×X2:

Pr12(λ0µ̃0 + λ1µ̃1 + λ2µ̃2) = (λ0 + λ1)ν1 × ν2 + (λ1 + λ2)(µ1 × ν2 + ν1 × µ2) + λ2µ12.

In order to have equality Pr12(λ0µ̃0 + λ1µ̃1 + λ2µ̃2) = µ12 it is sufficient to require λ0 + λ1 =
0, λ1 + λ2 = 0, λ2 = 1. This system has a unique solution λ0 = 1, λ1 = −1, λ2 = 1.
Thus Pr12(µ̃0 − µ̃1 + µ̃2) = µ12. By the reason of symmetry Pr13(µ̃0 − µ̃1 + µ̃2) = µ13 and
Pr23(µ̃0 − µ̃1 + µ̃2) = µ23.

3.3 Dual condition for existence of a uniting measure.

The following existence criterion for uniting measure is a particular case of a result obtained by
Kellerer in [20]. We give an independent proof based on the use of the minimax theorem.

Theorem 3.7. Let X1, X2, . . . , Xn be compact metric spaces and let µα ∈ P(Xα), α ∈ Ink
be a fixed family of measures. Then Π(µα) is not empty if and only if for every set of functions
fα ∈ L1(Xα, µα) satisfying assumption

∑
α∈Ink fα(xα) ≥ 0 for all x ∈ X the following inequality

holds: ∑
α∈Ink

∫
Xα

fα dµα ≥ 0.

Proof. The existence of a uniting measure trivially implies the inequality. If µ ∈ Π(µα) and the
set of functions fα satisfies the assumption of the theorem, the function F (x) =

∑
α∈Ink fα(xα)

is integrable with respect to µ and the following inequality holds:∑
α∈Ink

∫
Xα

fα dµα =

∫
X
F dµ ≥

∫
X

0 dµ = 0.

Let us prove the theorem in the other direction. Assume that the set of measures µα does
not satisfy assumptions of Definition 3.2. Then there exists α, β ∈ Ink, such that the measures
ν1 = Prα∩βµα and ν2 = Prα∩βµβ are different. Let A be a subset of Xα∩β satisfying ν1(A) <
ν2(A). Set: fα(xα) = 1 if xα∩β ∈ A and 0 in the opposite case. In addition, set fβ(xβ) = −1 if
xα∩β ∈ A, and 0 in the opposite case; fγ(xγ) = 0, if γ 6∈ {α, β}. Then

∑
γ∈Ink fγ(xγ) = 0 for all

x ∈ X. On the other hand∑
γ∈Ink

∫
Xγ

fγ dµγ =

∫
Xα

fα dµα +

∫
Xβ

fβ dµβ = ν1(A)− ν2(A) < 0.

Thus, one can assume without loss of generality that the set of measures µα satisfies Defini-
tion 3.2. We apply the following version of the minimax theorem (see [6], [31]):
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Theorem 3.8 (Fenchel-Rockafellar Duality). Let E be a normed vector space and E∗ be the
corresponding dual space. Consider convex functions Φ and Ψ on E, taking values in R∪{+∞}.
Let Φ∗ and Ψ∗ be the corresponding Legendre transforms. In addition, assume that there exists
z ∈ E satisfying Φ(z) < +∞, Ψ(z) < +∞. Then

inf
E

[Ψ + Φ] = max
z∈E∗

[−Φ∗(−z)−Ψ∗(z)].

Let E be the space of continuous (bounded) functions on X equipped with the uniform
convergence norm || ||∞. According to Radon theorem E∗ is the space of finite signed measures
on X equipped with the full variation norm. Set:

Φ : u ∈ Cb(X)→

{
0, if u ≥ 0,

+∞ otherwise.

Ψ : u ∈ Cb(X)→

{∑
α∈Ink

∫
Xα

uα dµα, if u(x) =
∑

α∈Ink uα(xα),

+∞ otherwise.

Function Ψ is well-defined, indeed, if µ is a signed measure satisfying Prαµ = µα for all
α ∈ Ink, then

∫
X u dµ =

∑
α∈Ink

∫
Xα

uα dµα. The signed measure µ exists by Theorem 3.5.
It is easy to check that functions Ψ and Φ are convex; in addition, function u ≡ 1 satisfies
assumptions of the minimax theorem. Thus, the following equality holds:

inf
E

[Ψ + Φ] = max
z∈E∗

[−Φ∗(−z)−Ψ∗(z)].

It is easy to check that

inf
E

[Φ + Ψ] = inf∑
fα≥0

∑∫
Xα

fα dµα.

Let us find Φ∗(−π).

Φ∗(−π) = sup
u≥0

[
−
∫
X
u dπ

]
= − inf

u≥0

∫
X
u dπ

If π is nonnegative, then
∫
X u dπ ≥ 0 for all u ≥ 0. Otherwise

∫
X u dπ can take arbitrary small

values. Hence

Φ∗(−π) =

{
0, if π ≥ 0,

+∞, otherwise.

In the same way we check that

Ψ∗(π) =

{
0, if Prαπ = µα,

+∞, otherwise.

Thus the maximum maxπ∈E∗ [−Φ∗(−π) − Ψ∗(π)] equals 0, if there exists a nonnegative unit-
ing measure, otherwise it equals −∞. In particular, if a uniting measure does not exist,
then inf∑ fα≥0

∑∫
Xα

fα dµα = −∞. Hence there exist continuous functions fα satisfying∑∫
Xα

fα dµα < 0.
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3.4 Sufficient condition for existence of a uniting measure

Let us mention the following trivial sufficient condition for existence of uniting measure.

Proposition 3.9. Assume that there exists a family of measures νi ∈ P(Xi), 1 ≤ i ≤ n, such
that µα =

∏
i∈α νi α ∈ Ink . Then the set Π(µα) is non-empty and

∏n
i=1 νi is a uniting measure.

We generalize this sufficient condition using Theorem 3.5.

Theorem 3.10 (Density condition). For given natural numbers 1 ≤ k < n there exists a constant
λnk > 1 which admits the following property.

Assume we are given a consistent family of probability measures µα ∈ P(Xα), α ∈ Ink, and
another family of probability measures νi ∈ P(Xi), 1 ≤ i ≤ n. Assume that every measure µα,
α ∈ Ink, is absolutely continuous with respect to να =

∏
i∈α νi:

µα = ρα · να.

Finally, assume that there exist constants 0 < m ≤ M such that every density ρα satisfies
m ≤ ρα ≤M να-almost everywhere for all α ∈ Ink.

Then Π(µα) is not empty provided M
m ≤ λnk.

Proof. The definition of m implies that µα −m · να is a nonnegative measure for all α ∈ Ink,
hence m ≤ 1, because both µα and να are probability measures. In addition, if m = 1, the
µα − να = 0 for all α ∈ Ink. In this case the measure ν =

∏n
i=1 νi is uniting.

Consider the case m < 1. Note that µ′α = (µα −m · να)/(1 −m) is a probability measure
for all α ∈ Ink, which is absolutely continuous with respect to να and its density is bounded
from above by m

1−m(λnk − 1) > 0. In addition, the family of measures µ′α satisfies consistency
condition. Theorem 3.5 implies that given measures νi and µ′α one can construct a family of
measures µ̃′t and find numbers λt such that the signed measure

∑k
t=0 λtµ̃

′
t is uniting. Note that

µ′α is absolutely continuous with respect to να for all α ∈ Int, 1 ≤ t ≤ k, moreover, its density
is bounded from above by m

1−m(λnk − 1). This means that the same condition holds for µ̃′α,
where we consider the corresponding density with respect to ν =

∏n
i=1 νi. Hence µ̃

′
t is absolutely

continuous with respect to ν and its density is bounded almost everywhere by
(
n
t

)
· m

1−m(λnk−1).
We infer from this that the density of the signed uniting measure µ′ =

∑k
t=0 λkµ̃

′
t is bounded

from below by −
∑k

t=0 |λt|
(
n
t

)
m

1−m(λnk − 1) = −C · m
1−m(λnk − 1), where C depends on (n, k)

only.
Let us prove that the assertion of the theorem holds for λnk = 1 + 1

C . For the set of
measures µ′α we constructed a uniting signed measure µ′ which density with respect to ν is almost
everywhere bounded from below by number −C · m

1−m(λnk−1) = − m
1−m . Then µ = (1−m)µ′+mν

is a uniting measure for the family µα, and its density is nonnegative ν-almost everywhere, hence
µ is nonnegative.

Thus we obtained a sufficient condition for existence of uniting measure for a wide class of
functions. Moreover, the uniting measure obtained in Theorem 3.10 admits a bounded density.
However, it is often helpful to require density to be bounded away from zero.

Definition 3.11. We say that measures µ and ν on the same measurable space (X,F) are
uniformly equivalent, if there exists a Radon–Nicodym density ρ of µ with respect to ν, which is
bounded from above and from below by positive constants: 0 < m ≤ ρ(x) ≤M for all x ∈ X.

In particular, uniformly equivalent measures are absolutely continuous with respect to each
other. Following the proof of Theorem 3.10 one can easily check

Theorem 3.12 (Uniformly equivalent density condition). Under assumption of Theorem 3.10
there exists constant λ̂nk > 1 with the following property. If all α ∈ Ink satisfy m ≤ ρα ≤ M
να−almost everywhere and M

m ≤ λ̂nk, then the set Π(µα) contains at least one measure which is
uniformly equivalent to

∏n
i=1 νi.
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3.5 Estimates for (3, 2)-case

In the (3, 2)-case one can obtain explicit estimates on the optimal value of λ32 from Theorem 3.10.

Proposition 3.13. For λ32 > 2 the conclusion of Theorem 3.10 does not hold.

Proof. Let X1 = X2 = X3 = {0, 1} and let every νi be the uniform probability measure on Xi.
Let us construct measures µ12, µ13, µ23 on spaces X1 ×X2, X1 ×X3 and X2 ×X3 respectively.
Set µij(xi, xj) = M , if xi+xj = 1; and µij(xi, xj) = m otherwise. Here m andM are nonegative
constants such that M

m = λ32 and µij(Xi ×Xj) = 1.
Assume that a uniting measure µ exists. Consider the following sums:

A = 6m = µ12(0, 0) + µ12(1, 1) + µ13(0, 0) + µ13(1, 1) + µ23(0, 0) + µ23(1, 1)

= 3µ(0, 0, 0) + µ(1, 0, 0) + µ(0, 1, 0) + µ(0, 0, 1)

+ µ(1, 1, 0) + µ(1, 0, 1) + µ(0, 1, 1) + 3µ(1, 1, 1),

B = 6M = µ12(0, 1) + µ12(1, 0) + µ13(0, 1) + µ13(1, 0) + µ23(0, 1) + µ23(1, 0)

= 2µ(1, 0, 0) + 2µ(0, 1, 0) + 2µ(0, 0, 1) + 2µ(1, 1, 0) + 2µ(1, 0, 1) + 2µ(0, 1, 1).

On one hand 2A < B, because 2m < M . On the other hand, analyzing expressions on the
right-hand sides we see that 2A ≥ B. We get a contradiction.

Proposition 3.14. The conclusion of Theorem 3.12 holds for λ̂32 = 3
2 . In particular, there

exists a uniting measure µ, which is uniformly equivalent to ν = ν1 × ν2 × ν3.

Proof. Let 0 < m ≤ M be constants from Theorem 3.10: m ≤ ρij ≤ M for all 1 ≤ i < j < M
νij-almost everywhere. Clearly, m ≤ 1 ≤ M . If m = 1 or M = 1, then µij = νij , this means
that ν is a uniting measure itself.

For m < 1 < M , the following measure is uniting:

µ = 4µ1 × µ2 × µ3 − 2 (ν1 × µ2 × µ3 + µ1 × ν2 × µ3 + µ1 × µ2 × ν3)

+ 2 (µ12 × ν3 + µ13 × ν2 + µ23 × ν1)− (µ12 × µ3 + µ13 × µ2 + µ23 × µ1) .

Let us check that µ is nonnegative. To this end we prove that its density with respect to
ν = ν1 × ν2 × ν3 is nonnegative almost everywhere. The density of µ with respect to ν has the
form

dµ

dν
(x1, x2, x3) = 4ρ1(x1)ρ2(x2)ρ3(x3)− 2 (ρ1(x1)ρ2(x2) + ρ1(x1)ρ3(x3) + ρ2(x2)ρ3(x3))

+ 2 (ρ12(x1, x2) + ρ13(x1, x3) + ρ23(x2, x3))

− (ρ12(x1, x2)ρ3(x3) + ρ13(x1, x3)ρ2(x2) + ρ23(x2, x3)ρ1(x1)) .

Assumptionm ≤ ρij(xi, xj) ≤M implies that, for νi-almost all xi the inequalitym ≤ ρi(xi) ≤
M holds, where ρi = dµi

dνi
. The assumption of the theorem implies 1 < M ≤ λ̂32m = 3

2m. Thus,
it is sufficient to check inequality

4p1p2p3 − 2(p1p2 + p1p3 + p2p3) + 2(p12 + p13 + p23)− (p1p23 + p2p13 + p3p12) ≥ 0

for all m ≤ pi, pij ≤ 3
2m, 2

3 < m < 1, and for the proof of uniform boundedness it is sufficient to
prove that there exists constant ε(m) > 0 such that

4p1p2p3 − 2(p1p2 + p1p3 + p2p3) + 2(p12 + p13 + p23)− (p1p23 + p2p13 + p3p12) ≥ ε(m).

This expression is linear in every variable pi, pij , thus for every fixed m every variable equals
m or 3

2m at the minimum point. The coefficient of pij equals 2− pk > 0 provided pk ≤ 3
2m < 3

2 ,
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hence this function is increasing in pij . Then at the minimum point one has pij = m for all
1 ≤ i, j ≤ 3. Finally, we reduce the proof to the following inequality we have to check:

4p1p2p3 − 2(p1p2 + p1p3 + p2p3)−m(p1 + p2 + p3) + 6m ≥ ε(m)

for all m ≤ pi ≤ 3
2m, 2

3 < m < 1.
Since the function is symmetric we have to check the following inequalities:

1. p1 = p2 = p3 = m: 4m3 − 9m2 + 6m > 0 if 2
3 < m < 1;

2. p1 = 3
2m, p2 = p3 = m: 6m3 − 23

2 m
2 + 6m > 0 if 2

3 < m < 1;

3. p1 = p2 = 3
2m, p3 = m: 9m3 − 29

2 m
2 + 6m > 0 if 2

3 < m < 1;

4. p1 = p2 = p3 = 3
2m: 27

2 m
3 − 18m2 + 6m > 0 if 2

3 < m < 1.

Every inequality can be easily checked and we complete the proof of nonnegativity of µ and its
uniform equivalence to ν.

It remains to check that µ is uniting for µij :

Pr12(µ) = 4µ1 × µ2 − 2ν1 × µ2 − 2µ1 × ν2 − 2µ1 × µ2

+ 2µ12 + 2µ1 × ν2 + 2ν1 × µ2 − µ12 − µ1 × µ2 − µ1 × µ2 = µ12.

In the same way we check that the desired identities hold for other projections.

One can prove another estimate for λ32 = 2. Unfortunately, the arguments in our proof can
not be used to prove uniform equivalence of µ and ν.

Proposition 3.15. For the value λ32 = 2 the conclusion of Theorem 3.10 holds.

Proof. Let 0 < m ≤M be constants from Theorem 3.10. Consider the following set:

∆ =

{
ξ – nonnegative measure on X1 ×X2 ×X3 : m ≤ d(µij − Prij(ξ))

dνij

}
.

This set is not empty because it contains the trivial (zero) measure. In addition, ∆ is weakly
closed. From assumption m ≤ d(µij−Prij(ξ))

dνij
we infer that µi ≥ Pri(ξ), hence ∆ is uniformly tight

and the variations of measures from ∆ are uniformly bounded. Then the Prokhorov theorem
implies that ∆ is weakly compact. Hence there exists an extreme measure ξmax, where functional
ξmax(X) attains its maximum.

Lemma 3.16. For ν-almost all x ∈ X at least one of the numbers

d(µij − Prij(ξmax))

dνij
(xi, xj), 1 ≤ i, j ≤ 3

equals m.

Proof. Assume the converse. Then there exists a positive number ε, such that the set

Eε =

{
x ∈ X :

d(µij − Prij(ξm))

dνij
(xi, xj) ≥ m+ ε, 1 ≤ i, j ≤ 3

}
satisfies ν(Eε) > 0. Let ξ∆ be the measure which density (with respect to ν) equals ε on Eε
and 0 otherwise. It is easy to check that ξmax + ξ∆ ∈ ∆, (ξmax + ξ∆)(X) > ξmax(X) and this
contradicts to definition of ξmax.
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Consider the family of probability measures

µ′ij =
µij − Prij(ξmax)

1− ξmax(X)
, 1 ≤ i, j ≤ 3.

Since {µij} is consistent, the family of measures {µ′ij} is consistent too. Since ξmax ∈ ∆, we have
m/α ≤ dµ′ij/dνij ≤ M/α almost everywhere, where α = 1 − ξmax(X). Hence, the family {µ′ij}
satisfies assumptions of Proposition 3.15. Moreover, if a measure µ′ is uniting for µ′ij , then the
measure µ = αµ′+ ξmax is uniting for µij . Thus, it is sufficient to solve the problem only for µ′ij .

Now, we replace µij with µ′ij , m and M with m/α and M/α respectively. We may assume
that densities ρi = dµi

dνi
, ρij =

dµij
dνij

satisfying the following assumptions:

1. m ≤ ρij(xi, xj) ≤M , 1 ≤ i, j ≤ 3 for all x ∈ X.

2.
∫
Xj
ρij(xi, xj) νj(dxj) = ρi(xi) for all xi ∈ Xi.

3. For ν-almost all x ∈ X at least one of the numbers ρij(xi, xj), 1 ≤ i, j ≤ 3, equals m.

Assumptions 1 and 2 are always fulfilled after changing ρi and ρij on a set of zero measure,
and the last one follows from Lemma 3.16. Under these assumptions one can prove the following
lemma:

Lemma 3.17. Assume that ρi, ρij satisfy assumptions 1-3. Then for νij-almost all (xi, xj) ∈ Xij

one of the following conditions holds: ρij(xi, xj) = m or ρi(xi) + ρj(xj) ≤ m+M .

Proof. Let k ∈ {1, 2, 3} \ {i, j}. Let us denote by Xr
ij the set of couples (xi, xj) ∈ Xij such that

for νk-almost all xk ∈ Xk one of the numbers ρij(xi, xj), ρik(xi, xk) and ρjk(xj , xk) equals m.
Assumption 3 implies that Xr

ij has full measure with respect to νij .
Let (xi, xj) ∈ Xr

ij . Assume that ρij(xi, xj) > m. The for νk-almost all xk ∈ Xk at least one of
the numbers ρik(xi, xk) and ρjk(xj , xk) equalsm. In particular, ρik(xi, xk)+ρjk(xj , xk) ≤ m+M
for νk-almost all xk ∈ Xk. Then we infer from 1, 2

ρi(xi) + ρj(xj) =

∫
Xk

ρik(xi, xk) dνk +

∫
Xk

ρjk(xj , xk) dνk ≤ m+M.

Changing, if necessary, density functions ρi, ρij on a set of zero measure, we can assume, in
addition, that the following holds:

4. For all (xi, xj) ∈ Xij one has ρij(xi, xj) = m or ρi(xi) + ρj(xj) ≤ m+M , 1 ≤ i, j ≤ 3.

Lemma 3.18. Let the density functions ρi, ρij satisfy assumptions 1-4. Then for all i 6= j and
all xi ∈ Xi the following inequality holds:

νj (xj ∈ Xj : ρj(xj) ≤ m+M − ρi(xi)) ≥
ρi(xi)−m
M −m

.

Proof. Fix a point xi ∈ Xi, and denote by A be the set of points xj ∈ Xj satisfying ρij(xi, xj) =

m. Then ρi(xi) =
∫
Xj
ρij(xi, xj) dxj ≤ mνj(A)+M(1−νj(A)), which implies νj(A) ≤ M−ρi(xi)

M−m .
On the other hand assumption 4 implies that for all xj ∈ Xj\A the inequality ρi(xi)+ρj(xj) ≤

m+M holds. Hence

νj (xj ∈ Xj : ρj(Xj) ≤ m+M − ρi(xi)) ≥ νj(Xj\A) = 1− νj(A) ≥ ρi(xi)−m
M −m

.

20



Choosing a sequence x(n)
i such that ρi(x

(n)
i )→Mi = supxi∈Xi ρi(xi) and passing to the limit

one gets the following corollary:

Corollary 3.19. Let Mi = supxi∈Xi ρi(xi). Then for all j 6= i the following inequality holds:

νj(xj ∈ Xj : ρj(Xj) ≤ m+M −Mi) ≥
Mi −m
M −m

.

Lemma 3.20. Let ρi, ρij satisfy assumptions 1-4 and M
m ≤ 2. Then inequalities

2

3
≤ m ≤ 1, pi(xi) ≤

m

2

(
3 +

√
3− 2

m

)

hold for all xi ∈ Xi, 1 ≤ i ≤ 3.

Proof. Let Mi = supxi∈Xi ρi(xi). Assume that M1 ≥M2 and M1 ≥M3. It is sufficient to check

that 3
2m ≥ 1 and M1 ≤ m

2

(
3 +

√
3− 2

m

)
.

Assume that 3
2m ≥ M1. Then, since M1 = supx1∈X1

ρ1(x1), one has M1 ≥ 1. This implies
3
2m ≥M1 ≥ 1. Moreover, M1 ≤ 3

2m ≤
m
2

(
3 +

√
3− 2

m

)
.

Consider the caseM1 ≥ 3
2m. Set A = {x2 ∈ X2 : ρ2(x2) ≤ m+M −M1}. Then the following

holds:

1 =

∫
X2

ρ2(X2) dν2 ≤ (m+M −M1)ν2(A) +M2 (1− ν2(A))

≤ (m+M −M1)ν2(A) +M1 (1− ν2(A)) = (m+M − 2M1)ν2(A) +M1.

Corollary 3.19 implies ν2(A) ≥ M1−m
M−m ≥

M1
m −1 (here we useM ≤ 2m). Applying this inequality

and the inequality M1 ≥ 3
2m one gets

1 ≤ (m+M − 2M1)ν2(A) +M1 ≤ (3m− 2M1)ν2(A) +M1

≤ (3m− 2M1)

(
M1

m
− 1

)
+M1 = m

(
−2

(
M1

m

)2

+ 6
M1

m
− 3

)
.

The function −2x2 + 6x− 3 is decreasing on x ≥ 3
2 , hence

1 ≤ m

(
−2

(
M1

m

)2

+ 6
M1

m
− 3

)
≤ m

(
−2

(
3

2

)2

+ 6 · 3

2
− 3

)
=

3

2
m.

Moreover, −2
(
M1
m

)2
+ 6M1

m − 3 ≥ 1
m , thus M1

m ≤
1
2

(
3 +

√
3− 2

m

)
.

Let us describe explicit constructions of uniting measures for m = 2
3 and 2

3 < m ≤ 1. If

m = 2
3 , then ρi(xi) ≤

m
2

(
3 +

√
3− 2

m

)
= 1 for all xi ∈ Xi. Measures µi and νi are probability

measures, dµidνi
≤ 1. Hence µi = νi. The desired measure is given by

µ = µ1 × µ23 + µ2 × µ13 + µ3 × µ12 − 2µ1 × µ2 × µ3.

This measure is nonnegative: dµ
dν (x1, x2, x3) = ρ12(x1, x2)+ρ13(x1, x3)+ρ23(x2, x3)−2 ≥ 0 since

ρij(xi, xj) ≥ m = 2
3 . In addition, it is uniting:

Pr12(µ) = µ1 × µ2 + µ2 × µ1 + µ12 − 2µ1 × µ2 = µ12,

and the same for other projections.
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Let us consider the case 2
3 < m ≤ 1. Set: u =

√
3− 2

m . Then 1
m = 1

2(3 − u2); u satisfies
0 < u ≤ 1 under assumption 2

3 < m ≤ 1. The desired measure is given by

µ =− 8

m2u(u+ 1)3
µ1 × µ2 × µ3 + 2

5u+ 9

u(u+ 1)3
ν1 × ν2 × ν3

+ 4
u+ 3

mu(u+ 1)3
(ν1 × µ2 × µ3 + µ1 × ν2 × µ3 + µ1 × µ2 × ν3)

− 2
5u+ 9

u(u+ 1)3
(µ1 × ν2 × ν3 + ν1 × µ2 × ν3 + ν1 × ν2 × µ3)

+ 2
u+ 2

(u+ 1)2
(µ23 × ν1 + µ13 × ν2 + µ12 × ν3)

− 2

m(u+ 1)2
(µ23 × µ1 + µ13 × µ2 + µ12 × µ3) .

This measure is uniting for µij :

Pr12(µ) =

(
4

u+ 3

mu(u+ 1)3
− 2

5u+ 9

u(u+ 1)3
+ 2

u+ 2

(u+ 1)2

)
(ν1 × µ2 + µ1 × ν2)

+

(
− 8

m2u(u+ 1)3
+ 4

u+ 3

mu(u+ 1)3
− 4

m(u+ 1)2

)
µ1 × µ2

+

(
2

5u+ 9

u(u+ 1)3
− 2

5u+ 9

u(u+ 1)3

)
ν1 × ν2 +

(
2
u+ 2

(u+ 1)2
− 2

m(u+ 1)2

)
µ12

= µ12.

To prove the desired equality we substitute 1
m = 1

2(3− u2) and check that all the terms are zero
except the last one. In addition, the coefficient of µ12 equals 1. We do the same for the other
projections.

To check nonnegativity of µ it is sufficient to check that the following expression is nonneg-
ative:

− 8p1p2p3 + 4m(u+ 3)(p1p2 + p1p3 + p2p3)− 2m2(5u+ 9)(p1 + p2 + p3)

+ 2m2u(u+ 1)(u+ 2)(p12 + p13 + p23)− 2mu(u+ 1)(p1p23 + p2p13 + p3p12)

+ 2m2(5u+ 9),

where pi = ρi(xi), pij = ρij(xi, xj). One has m ≤ pij ≤ 2m by our assumption, m ≤ pi ≤
m
2

(
3 +

√
3− 2

m

)
= m

2 (u+ 3) and 2
3 < m ≤ 1 by Lemma 3.20.

This function is linear in pij with the coefficient

2m2u(u+ 1)(u+ 2)− 2mu(u+ 1)pk ≥ 2m2u(u+ 1)(u+ 2)−m2u(u+ 1)(u+ 3) ≥ 0

(here we use that u ≤ 1), hence one can set pij = m for all 1 ≤ i, j ≤ 3. In this case the
expression is equal to

− 8p1p2p3 + 4m(u+ 3)(p1p2 + p1p3 + p2p3)− 2m2(5u+ 9)(p1 + p2 + p3)

+ 6m3u(u+ 1)(u+ 2)− 2m2u(u+ 1)(p1 + p2 + p3) + 2m2(5u+ 9)

=− 8p1p2p3 + 4m(u+ 3)(p1p2 + p1p3 + p2p3)− 2m2(u+ 3)2(p1 + p2 + p3)

+ 6m3u(u+ 1)(u+ 2)−m3(u2 − 3)(5u+ 9)

= (m(u+ 3)− 2p1)(m(u+ 3)− 2p2)(m(u+ 3)− 2p3) ≥ 0,

this completes the proof of the well-posedness and the proof of Proposition 3.15.
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One can prove many other sufficient conditions of existence of uniting measures. One of the
examples is given in the next theorem.

Theorem 3.21. Assume that a consistent family of measures µij sastisfies µij ≥ 2
3µi × µj,

1 ≤ i, j ≤ 3. Then there exists a uniting measure.

Proof. The desired measure is given by

µ =

(
µ12 −

2

3
µ1 × µ2

)
× µ3 +

(
µ13 −

2

3
µ1 × µ3

)
× µ2 +

(
µ23 −

2

3
µ2 × µ3

)
× µ1.

Indeed, one has

Pr12(µ) = µ12 −
2

3
µ1 × µ2 + µ1 × µ2 −

2

3
µ1 × µ2 + µ2 × µ1 −

2

3
µ1 × µ2 = µ12,

analogously for other projections. Thus µ is uniting.

Note that this construction does not allow to prove existence of a measure which is uniformly
equivalent to something else.

4 Connection to the Monge–Kantorovich problem with linear
constraints.

4.1 Monge–Kantorovich problem with linear constraints: definitions and ba-
sic facts

D. Zaev considered in [33] the multimarginal transportation problem with additional linear con-
straints. In this subsection we formulate basic definitions and theorems of his paper.

Let X1, X2, . . . , Xn be Polish spaces equipped with Borel σ-algebras, X := X1 × · · · × Xn,
µ1, . . . , µn are probability measures on X1, . . . , Xn respectively.

Let W be an arbitrary linear subspace in CL(X,µi). Let us consider the following subspace
in the set of measures:

ΠW (µi) =

{
π ∈ Π(µi) :

∫
ω dπ = 0 for all ω ∈W

}
.

Finally, we are ready to formulate our constrained problem:

Problem 4.1 (Monge–Kantorovich problem with linear constraints). Given Polish spaces X =
X1 × . . . Xn, Borel probability measures µi ∈ P(Xi), a cost function c ∈ CL(X,µi), and a linear
subspace W ⊂ CL(X,µi) find

inf
π∈ΠW (µ)

{∫
X
c(x) dπ

}
.

The following theorems are main results of [33]:

Theorem 4.2. Problem with additional linear constraints has a solution if the set ΠW (µi) is not
empty.

Theorem 4.3 (Kantorovich duality). Let X1, . . . , Xn, X = X1 × · · · ×Xn be Polish spaces, let
µk ∈ P(Xk), k = 1, . . . , n and let W be a linear subspace of CL(X,µk) (or Cb(X)), c ∈ CL(X,µi)
(or Cb(X)). Then

inf
π∈πW (µ)

∫
X
c dπ = sup

f+ω≤c

n∑
k=1

∫
Xk

fk(xk) dµk,

where f(x1, . . . , xn) =
∑n

k=1 fk(xk), fk ∈ CL(Xk, µk) (or Cb(Xk)), ω ∈W .
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4.2 A problem with linear constraints which is equivalent to the multi-
stochastic problem

Let us consider again the multistochastic Monge–Kantorovich problem on Polish spaces
X1, . . . , Xn. We are given

(
n
k

)
probability measures µα on Xα, where α ∈ Ink, and a cost function

c : X → R, X = X1 × · · · × Xn. Our aim is to construct an equivalent Monge–Kantorovich
problem with linear constraints. Then we can apply duality Theorem 4.3.

In what follows we denote
X̃ =

∏
α∈Ink

Xα.

For every α ∈ Ink we define the corresponding natural projection Prα : X̃ → Xα.

Definition 4.4. For all α ∈ Ink and i ∈ α let us consider projection x̃iα := PrXi ◦PrXα . In what
follows x̃iα denotes the projection operator and, at the same time, the image of x̃ ∈ X̃ under
action of this operator. The set {x̃}iα can be viewed as a set of coordinates of x̃ in X̃.

Definition 4.5. The subspace P ⊂ X̃ will be defined as follows:

P =
{
x̃ ∈ X̃ : x̃iα = x̃iβ for all α, β ∈ Ink, i ∈ α ∩ β

}
.

The subspace P can be characterized in terms of a diagonal operator. The space X̃ is
isomorphic to (X1×· · ·×Xn)(

n−1
k−1) = X(n−1

k−1): to verify this it is sufficient to interchange factors in
the product of spaces Xα =

∏
i∈αXi. Let ∆ be the diagonal mapping from X onto X̃ = X(n−1

k−1).
It is easy to see that this mapping is well–defined, because it does not depend on permutation of
spaces in the isomorphism X̃ ∼= (X1 × · · · ×Xn)(

n−1
k−1). Hence P is the image of X under action

∆ and restriction of ∆ on P acts bijectively.
The following properties of ∆ are direct consequences of its definition:

Proposition 4.6. Operator ∆ generates an operator ∆∗ : P(X) → P(X̃) acting on measures,
which has the following properties:

1. For every measure µ ∈ P(X) the support of ∆∗(µ) is a subset of P .

2. Operator ∆∗ is a bijection between P(X) and the set of measures µ ∈ P(X̃) with the
property supp(µ) ⊂ P .

3. Every µ ∈ P(X) and every α ∈ Ink satisfy Prα(µ) = PrXα(∆∗(µ)).

4. Let µ be an arbitrary probability measure on X and let c ∈ L1(X,µ). Let c̃ be a measurable
function on X̃ such that c̃(x̃) = c(∆−1(x̃)) for all x̃ ∈ P . Then c̃ ∈ L1(X̃,∆∗(µ)) and∫
X c dµ =

∫
X̃
c̃ d∆∗(µ) =

∫
P c̃ d∆∗(µ).

The following theorem is an immediate corollary of these properties

Theorem 4.7. Let c ∈ CL(X,µα) be a function on X and c̃ ∈ CL(X̃, µα) be an extension of
c ◦∆−1 : P ⊂ X̃ → R onto the whole space X̃. Then

inf
π∈Π(X,µα)

∫
X
c dπ = inf

ξ∈Π(X̃,µα)
supp(ξ)⊂P

∫
c̃ dξ.

The minimum on the left-hand side is attained if and only if the minimum on the right-hand side
is attained.
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Consider the distance function di on Xi and the family of functions ωiαβ : X̃ → R,

ωiαβ(x̃) := min(di(x̃
i
α, x̃

i
β), 1)

for all α, β ∈ Ink, i ∈ α ∩ β. Note that every ωiαβ is a nonnegative, continuous, bounded from
above function, hence ωiαβ ∈ Cb(X̃) ⊂ CL(X̃, µα). In addition, if some measure µ ∈ P(X̃)

satisfies
∫
ωiαβ dµ = 0, then supp(µ) ⊂ (ωiαβ)−1(0) = {x̃ ∈ X̃ : x̃iα = x̃iβ}.

Let us define the space of linear restrictions:

W := span{ωiαβ} ⊂ Cb(X̃) ⊂ CL(X̃, µα).

It follows from the observations collected above that for every π ∈ P(X̃) the equality
∫
ω dπ = 0

holds for all ω ∈W if and only if supp(π) ⊂ P . Hence

ΠW (X̃, µα) = {π ∈ Π(X̃, µα) : supp(π) ⊂ P}.

Having this in mind, we can give another formulation of Theorem 4.7:

Theorem 4.8. Let c ∈ CL(X,µα) be a function on X and c̃ ∈ CL(X̃, µα) be an extension of
c ◦∆−1 : P ⊂ X̃ → R onto the entire space X̃. Then

inf
π∈Π(X,µα)

∫
X
c dπ = inf

ξ∈ΠW (X̃,µα)

∫
c̃ dξ,

and the minimum on the left-hand side is attained if and only if it is attained on the right-hand
side.

This theorem gives another formulation of the transportation problem with linear constraints
which is equivalent to our multistochastic problem. It remains to prove that there exists a
function c̃ which satisfies our requirement.

Lemma 4.9. a) Let c ∈ Cb(X). There exists a function c̃ ∈ Cb(X̃) which is an extension of
c ◦ ∆−1 onto X̃. b) Let c ∈ CL(X,µα). There exists a function c̃ ∈ CL(X̃, µα) which is an
extension of c ◦∆−1 onto X̃.

Proof. Let pr be the projection of X̃ ∼= X(n−1
k−1) onto a fixed factor. It is easy to see that pr is

continuous and pr ◦∆ = id on X.
a) Assume that c ∈ Cb(X) and |c| ≤M for some number M . Set c̃(x̃) := c(pr(x̃)). Function

c̃ is continuous, |c̃| ≤M and c̃(x̃) = c(∆−1(x̃)) for all x̃ ∈ P . Thus, c̃ is an extension of c ◦∆−1

onto X̃ and c̃ ∈ Cb(X̃).
b) Assume that c ∈ CL(X,µα). Then |c(x)| ≤

∑
α∈Ink fα(xα). Set

c̃(x̃) :=


−
∑

α∈Ink fα(x̃α), if c(pr(x̃)) < −
∑

α∈Ink fα(x̃α),∑
α∈Ink fα(x̃α), if c(pr(x̃)) >

∑
α∈Ink fα(x̃α),

c(pr(x̃)), otherwise.

The function c̃ constructed in this way is continuous, |c̃(x̃)| ≤
∑

α∈Ink fα(x̃α) and c̃(x̃) =

c(∆−1(x̃)) for all x̃ ∈ P . Thus, c̃ is an extension of c ◦∆−1 onto X̃ and c̃ ∈ CL(X̃, µα).

Theorem 4.3 implies the following duality relation:

Proposition 4.10. Under assumptions of the previous theorem

inf
π∈Π(X,µα)

∫
X
c dπ = sup

f+ω≤c̃

∑
α∈Ink

∫
Xα

fα(xα) dµα,

where f(x̃) =
∑

α∈Ink fα(x̃α), fα ∈ CL(Xα, µα) (or Cb(Xα)), ω ∈W .
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Assume that for the family of functions fα there exists ω ∈ W such that
∑

α∈Ink fα(x̃α) +

ω(x̃) ≤ c̃(x̃) for all x̃ ∈ X̃. In particular, this equality holds for all x̃ ∈ P . Then for all x ∈ X∑
α∈Ink

fα(∆(x)α) + ω(∆(x)) ≤ c̃(∆(x)).

Moreover, c̃(∆(x)) = c(x), ω(∆(x)) = 0, ∆(x)α = xα, hence
∑

α∈Ink fα(xα) ≤ c(x) for all x ∈ X.
One gets

sup
f+ω≤c̃

∑
α∈Ink

∫
Xα

fα(xα) dµα ≤ sup
f≤c

∑
α∈Ink

∫
Xα

fα(xα) dµα.

In addition, the following inequality holds:

inf
π∈Π(X,µα)

∫
X
c dπ ≥ sup

f≤c

∑
α∈Ink

∫
Xα

fα(xα) dµα.

Summarizing these results we get the following final version of our duality theorem:

Theorem 4.11 (Kantorovich duality for non-compact spaces). Assume we are given Polish
spaces X1, . . . , Xn and a family of measures µα ∈ P(Xα), where α ∈ Ink. Let c ∈ CL(X,µα) (or
Cb(X)) be a cost function on X. Then

inf
π∈Π(µα)

∫
X
c dπ = sup

f≤c

∑
α∈Ink

∫
Xα

fα dµα,

where the supremum is taken on the set of all fα ∈ CL(X,µα) (or Cb(Xα)), f(x) =∑
α∈Ink f(xα). If the set Π(µα) is non-empty, the infimum on the left-hand side is attained.

5 Sufficient conditions for existence of a dual solution

5.1 Definition and properties of (n, k)-functions

Definition 5.1. Assume we are given Polish spaces X1, . . . , Xn and a positive integer 1 ≤ k < n.
A function F : X → [−∞,+∞) is called an (n, k)-function if there exists a tuple of functions
{fα}α∈Ink , fα : Xα → [−∞,+∞) satisfying

F (x) =
∑
α∈Ink

fα(xα)

for all x ∈ X. If F (x) > −∞ for each x (and therefore fα(xα) > −∞ for all xα ∈ Xα), F is
called a finite (n, k)-function.

This definition is given without any additional assumptions on the functions fα and the
function F . We prove that for every (n, k)-function F there exists a "regular" tuple of functions
{fα} such that F (x) =

∑
α∈Ink fα(xα) for all x ∈ X.

Let us introduce more notations. For xα ∈ Xα, xβ ∈ Xβ , such that α∩ β = ∅, we denote by
xαxβ a point from the space Xαtβ , whose coordinates will be the union of the coordinates xα
and xβ . In addition, we write n = {1, 2, . . . , n}.

Proposition 5.2. Let F be a finite (n, k)-function defined on the space X. Fix y ∈ X. For each
α ∈ In we define a function Fα : xα 7→ F (xαyn\α) on the space Xα.

Then there exists a tuple of real numbers {λi}ki=0 depending only on n and k such that F (x) =∑
α∈Ink f̂α(xα) for each x ∈ X, where

f̂α(xα) =
∑
β⊆α

λ|β|Fβ(xβ), α ∈ Ink.
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This representation of F is regular in the following sense: if F is a measurable / continuous
/ bounded function, then for all α ∈ Ink the function f̂α is measurable / continuous / bounded
too.

Example 5.3. Let F be a finite (n, 1)-function. Fix y = (y1, y2, . . . , yn) ∈ X. Let λ0 = 1
n − 1

and λ1 = 1. Then

f̂i(xi) = Fi(xi)−
n− 1

n
F∅ = Fi(y1, . . . , yi−1, xi, yi+1, . . . , yn)− n− 1

n
F (y1, . . . , yn).

Since F is a finite (n, 1)-function, there exists a tuple of functions fi : Xi → R such that
F (x1, . . . , xn) = f1(x1) + · · ·+ fn(xn) for all x ∈ X. One can easily verify that

f̂i(xi) = fi(xi)− fi(yi) +
1

n
(f1(y1) + · · ·+ fn(yn)),

and therefore F (x) =
∑n

i=1 f̂i(xi) for all x ∈ X.

Example 5.4. Let F be a finite (3, 2)-function. Fix (y1, y2, y3) ∈ X. Let λ0 = 1/3, λ1 = −1/2
and λ2 = 1. Then by construction

f̂12(x1, x2) = F (x1, x2, y3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, x2, y3) +

1

3
F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3)− 1

2
F (y1, x2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3).

Similarly to Example 5.3 we can verify that

F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

for all x ∈ X.

Proof of Proposition 5.2. Consider a function F̂ : X → R defined as follows:

F̂ (x) =
∑
α∈Ink

f̂α(xα).

Since by construction f̂(xα) =
∑

β⊆α λ|β|Fβ(xβ), one has

F̂ (x) =
∑
β∈In

∑
α∈Ink : β⊆α

λ|β|Fβ(xβ).

For every β ∈ In, let us find the amount Aβ of numbers α ∈ Ink satisfying β ⊆ α. If |β| > k,
then there is no such α. Otherwise, it can be easily verified that Aβ =

(n−|β|
k−|β|

)
. Hence,

F̂ (x) =
∑

β∈In : |β|≤k

(
n− |β|
k − |β|

)
λ|β|Fβ(xβ) =

k∑
t=0

λt

(
n− t
k − t

) ∑
β∈Int

Fβ(xβ).

Since F is a finite (n, k)-function, there exists a tuple of functions {fα}α∈Ink , fα : Xα → R,
such that for all x ∈ X we have ∑

α∈Ink

fα(xα) = F (x).

For each β ∈ In the function Fβ(xβ) can be represented as follows:

Fβ(xβ) =
∑
γ,δ∈In

fγtδ(xγyδ),
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where the sum is taken for all pairs of disjoint sets of indices γ, δ ∈ In satisfying γ ⊆ β, δ ⊆ n\β
and |γ|+ |δ| = k. Hence, the function F̂ (x) can be represented as follows:

F̂ (x) =

k∑
t=0

λt

(
n− t
k − t

) ∑
β∈Int

Fβ(xβ) =
∑
γ,δ∈In

cγ,δfγ,δ(xγyδ), (5)

where the last sum is taken for all pairs of disjoint sets of indices γ and δ such that |γ|+ |δ| = k,
and cγ,δ is a linear combination of {λi}ki=0 with constant coefficients.

Let us find the coefficient cγ,δ. To this end, let us find for each 0 ≤ t ≤ k the amount of
indices β ∈ Int satisfying γ ⊆ β and δ ⊆ n\β. If t < |γ|, then this quantity is trivially zero.
Similarly, it is zero if t > n− |δ| = n− k+ |γ|. Otherwise, exactly |γ| indices of β are fixed, and
we need to choose t− |γ| indices from n− |γ| − |δ| = n− k available items. Hence, the amount
of such β is

(
n−k
t−|γ|

)
. Substituting this into equation (5) we get

cγ,δ =

min(k,n−k+|γ|)∑
t=|γ|

λt

(
n− t
k − t

)(
n− k
t− |γ|

)
.

In particular, the coefficient cγ,δ depends only on |γ|.
In order for the equality F (x) = F̂ (x) to hold, it is sufficient to require that the coefficients

cγ,δ satisfy the following equalities:

cγ,δ =

{
1, if |γ| = k,
0, otherwise.

We obtain the system of linear equations on λ

min(k,n−k+a)∑
t=a

λt

(
n− t
k − t

)(
n− k
t− a

)
= 0 for 0 ≤ a < k,

min(k,n−k+k)∑
t=k

λt

(
n− t
k − t

)(
n− k
t− k

)
= λk = 1.

The matrix of this linear system is upper-triangular and all diagonal elements are not equal
to 0. Hence, this system admits a unique solution {λ̂i}ki=0. Thus, if f̂α(xα) =

∑
β⊆α λ̂|β|Fβ(xβ),

then F (x) =
∑

α∈Ink f̂α(xα) for all x ∈ X.

For 1 ≤ i ≤ n, we fix a probability measure µi on the space Xi. For each α ∈ In we denote
by µα the probability measure

∏
i∈α µi on the space Xα, and we denote by µ the probability

measure
∏

1≤i≤n µi on the space X. If a finite (n, k)-function F is integrable (with respect to µ),
we expect that there exists a tuple of integrable functions {fα}α∈Ink (with respect to µα) such
that F (x) =

∑
α∈Ink fα(xα). Using Proposition 5.2, we construct a tuple of integrable functions

{fα} such that ‖fα‖1 differs from ‖F‖1 by no more than a constant factor depending on n and
k.

To achieve this let us verify the following lemma:

Lemma 5.5. Let Xi, 1 ≤ i ≤ n, be Polish spaces equipped with the Borel σ-algebras, and for
every i let µi be a probability measure one Xi. Let c : X → R be an integrable function on X.
Fix a point y ∈ X, and for each α ∈ In let us denote by cα the function xα 7→ c(xαyn\α) defined
on Xα.

Then there exists a point y ∈ X such that ‖cα‖1 ≤ 2n+1 ‖c‖1 for all α ∈ In. For α = ∅ the
function c∅ is a constant function on the one-point space X∅ which is equal to c(y), and ‖c∅‖1
is just the absolute value of c(y).

28



Proof. For each α ∈ In the spaces Xα ×Xn\α and X are canonically isomorphic, and therefore
the function c can be viewed as a function of two arguments c(xα, yn\α), where xα ∈ Xα and
yn\α ∈ Xn\α.

By the Fubini-Tonelli theorem, the function |c(·, yn\α)| is integrable for µn\α-almost all yn\α
and

‖c‖1 =

∫
Xn\α

(∫
Xα

|c(xα, yn\α)|µα(dxα)

)
µn\α(dyn\α). (6)

Consider the internal function from this expression:

Cn\α(yn\α) =

∫
Xα

|c(xα, yn\α)|µα(dxα).

This function is non-negative. In addition, it follows from (6), Cn\α ∈ L1(Xn\α, µn\α) and∥∥Cn\α
∥∥

1
= ‖c‖1. Let

An\α =
{
yn\α ∈ Xn\α : Cn\α(yn\α) > 2n+1 ‖c‖1

}
.

If ‖c‖1 = 0, then Cn\α(yn\α) is equal to 0 for µn\α-almost all points yn\α, and therefore
µn\α(An\α) = 0. Otherwise, it follows from Markov’s inequality that

µn\α(An\α) ≤ 1

2n+1 ‖c‖1

∫
Xn\α

Cn\α(yn\α)µn\α(dn\α) =

∥∥Cn\α
∥∥

1

2n+1 ‖c‖1
=

1

2n+1
.

In both cases we conclude that µn\α(An\α) ≤ 2−n−1.
If y ∈ Pr−1

n\α(Xn\α\An\α), then

Cn\α(yn\α) ≤ 2n+1 ‖c‖ ,

and therefore the function cα : xα 7→ c(xαyn\α) is integrable with respect to µα and

‖cα‖1 = Cn\α(yn\α) ≤ 2n+1 ‖c‖1 .

Thus, if
y ∈ A =

⋂
α∈In

Pr−1
n\α(Xn\α\An\α),

then for all α ∈ In the function cα : xα 7→ c(xαyn\α) is integrable and ‖cα‖1 ≤ 2n+1 ‖c‖1.
We only need to verify that A is non-empty. We have

µ
(

Pr−1
n\α(Xn\α\An\α)

)
= µn\α

(
Xn\α\An\α

)
= 1− µn\α(An\α) ≥ 1− 1

2n+1
,

and therefore
µ(A) ≥ 1− |In|

2n+1
≥ 1− 2n

2n+1
=

1

2
.

Thus, A is a set of positive measure, and therefore A 6= ∅.

Theorem 5.6. For every 1 ≤ i ≤ n, let Xi be a Polish space equipped with the Borel σ-algebra,
and let µi be a probability measure on Xi. There exists a constant C depending only on n and k
such that for any finite (n, k)-function F ∈ L1(X,µ) there exists a tuple of integrable functions
{f̂α}α∈Ink , f̂α ∈ L1(Xα, µα), such that

F (x) =
∑
α∈Ink

f̂α(xα)

for all x ∈ X and ‖f̂α‖1 ≤ C · ‖F‖1 for all α ∈ Ink.
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Proof. Consider a finite (n, k)-function F defined on the space X. By Lemma 5.5 there exists a
point y ∈ X such that the function Fα : xα 7→ F (xαyn\α) is integrable and ‖Fα‖1 ≤ 2n+1 ‖F‖1
for all α ∈ In.

By Proposition 5.2 there exists a tuple of real numbers {λi}ki=0 such that F (x) =∑
α∈Ink f̂α(xα) for all x ∈ X, where

f̂α(xα) =
∑
β⊆α

λ|β|Fβ(xβ), α ∈ Ink.

Since Fβ ∈ L1(Xβ, µβ) for all β ∈ In, we conclude that f̂α ∈ L1(Xα, µα). In addition,∥∥∥f̂α∥∥∥
1
≤
∑
β⊆α

∣∣λ|β|∣∣ · ‖Fβ‖1 ≤ 2n+1 ‖F‖1
∑
β⊆α

∣∣λ|β|∣∣ = 2n+1 ‖F‖1
k∑
t=0

(
k

t

)
|λt| .

Thus, we conclude that
∥∥∥f̂α∥∥∥

1
≤ C · ‖F‖1, where

C = 2n+1
k∑
t=0

(
k

t

)
|λt|,

and this constant depends only on n and k.

Example 5.7. Let us find a constant C explicitly for the case of the (3, 2)-problem. Consider
a finite integrable (3, 2)-function F . There exists a point y ∈ X = X1 × X2 × X3 such that
‖Fα‖1 ≤ 16 ‖F‖1 for all α ∈ I3. By Example 5.4 the functions

f̂12(x1, x2) = F (x1, x2, y3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, x2, y3) +

1

3
F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3)− 1

2
F (y1, x2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3).

satisfy the equation F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) for all (x1, x2, x3) ∈ X.
All functions {f̂ij} are integrable with respect to µi ⊗ µj . In addition,∥∥∥f̃12

∥∥∥
1
≤ ‖F (·, ·, y3)‖1 +

1

2
‖F (·, y2, y3)‖1 +

1

2
‖F (y1, ·, y3)‖1 +

1

3
|F (y1, y2, y3)|

≤ 16

(
1 +

1

2
+

1

2
+

1

3

)
‖F‖1 < 38 ‖F‖1 .

Similarly,
∥∥∥f̂13

∥∥∥
1
< 38 ‖F‖1 and

∥∥∥f̂23

∥∥∥
1
< 38 ‖F‖1, and therefore we can put C = 38. This

constant estimate is crude, but we do not need to know the optimal value.

We want to generalize this property to a wider class of measures that are uniformly equivalent
to the product of their projections to one-dimensional spaces.

Definition 5.8. We call the probability measure µ on the spaceX reducible if for 1 ≤ i ≤ n there
exists a probability measure νi on spaces Xi such that µ is uniformly equivalent to

∏
1≤i≤n νi.

We call the consistent set of probability measures {µα}α∈Ink reducible if there exists a uniting
reducible measure µ ∈ Π(µα).

If the probability measures µ and ν on the space X are uniformly equivalent, then their
projections are also uniformly equivalent: Prαµ is uniformly equivalent to Prαν for all α ∈ In.
In particular, if the set of measures µα is reducible, then µi = Pri(µ) is uniformly equivalent to
νi. Then the measure

∏
1≤i≤n µi is uniformly equivalent to the measure

∏
1≤n νi. Hence, the

following is true:
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Proposition 5.9. A tuple of probability measures {µα}α∈Ink is reducible if and only if there
exists a uniting measure µ ∈ Π(µα), which is uniformly equivalent to

∏
1≤i≤n µi.

If the set of measures µα is reducible, then for all β ∈ Int, t ≤ k, the measure µβ is uniformly
equivalent to

∏
i∈β µi. It is easy to see that this condition is not sufficient.

Example 5.10. Let X1, X2 and X3 be discrete spaces, each consisting of two elements {0, 1}.
Define a probability measure µij on the space Xi ×Xj as follows:

µij(xi, xj) =

{
1
3 , if xi 6= xj ,
1
6 , otherwise.

The tuple of measures {µij} is consistent. In addition, every measure µij , {i, j} ∈ I3,2, is
uniformly equivalent to µi ⊗ µj . The set Π(µij) is non-empty: consider the following measure µ
on the space X1 ×X2 ×X3: µ(x1, x2, x3) = 0 if x1 = x2 = x3, otherwise µ(x1, x2, x3) = 1/6. It
is easy to check that µ ∈ Π(µij).

Let ν ∈ Π(µij). Then the following equations hold:

ν(0, 0, 0) + ν(0, 0, 1) = µ12(0, 0) =
1

6
,

ν(0, 0, 1) + ν(0, 1, 1) = µ13(0, 1) =
1

3
,

ν(0, 1, 1) + ν(1, 1, 1) = µ23(1, 1) =
1

6
.

From these equations we get ν(0, 0, 0)+ν(1, 1, 1) = 0. From the non-negativity of the measure we
get ν(0, 0, 0) = ν(1, 1, 1) = 0, and then we easily verify that ν(x1, x2, x3) = 1/6 for the remaining
points. Thus Π(µij) consists of a single measure that is not uniformly equivalent to µ1⊗µ2⊗µ3.

The following theorem generalizes Theorem 5.6 to reducible tuples of measures.

Theorem 5.11. For 1 ≤ i ≤ n, let Xi be a Polish space equipped with the Borel σ-algebra,
and let µ be a reducible probability measure on X. Denote µα = Prα(µ). Then there exists a
constant Cµ such that for any finite (n, k)-function F ∈ L1(X,µ) there exists a tuple of integrable
functions {f̂α}α∈Ink , f̂α ∈ L1(Xα, µα), such that

F (x) =
∑
α∈Ink

f̂α(xα)

for all x ∈ X and ∥∥∥f̂α∥∥∥
L1(µα)

≤ Cµ · ‖F‖L1(µ)

for all α ∈ Ink.

Proof. Since µ is reducible, there exist probability measures νi ∈ P(Xi) and positive reals m and
M such that m · ν ≤ µ ≤M · ν, where ν =

∏
1≤i≤n νi.

Consider a finite (n, k)-function F ∈ L1(X,µ). Since µ ≥ m · ν, the function F is integrable
with respect to ν and

‖F‖L1(ν) ≤
1

m
‖F‖L1(µ) .

Denote να =
∏
i∈α νi. It follows from Theorem 5.6 that there exists a tuple of integrable

functions {f̂α}α∈Ink , f̂α ∈ L1(Xα, να) such that

F (x) =
∑
α∈Ink

f̂α(xα)
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for all x ∈ X and ∥∥∥f̂α∥∥∥
L1(να)

≤ C · ‖F‖L1(ν) ≤
C

m
‖F‖L1(µ)

for all α ∈ Ink, where C is a constant depending only on n and k
Since M · ν ≥ µ, we have M · να ≥ µα for all α ∈ Ink. Hence, the function f̂α is integrable

with respect to µα and ∥∥∥f̂α∥∥∥
L1(µα)

≤M
∥∥∥f̂α∥∥∥

L1(να)
≤ M

m
C ‖F‖L1(µ)

for all α ∈ Ink. Thus, we can put Cµ = M
mC.

5.2 Existence of a dual solution for reducible tuples of measures

First, we generalize the notion of the proper thickness of the set introduced in [30].

Definition 5.12. Let X1, . . . , Xn be Polish spaces, and for each α ∈ Ink let µα be a probability
measure on the space Xα. For a measurable set A ⊂ X define its proper (n, k)-thickness as

sth(A) = inf

 ∑
α∈Ink

µα(Yα) : Yα ⊆ Xα, A ⊆
⋃

α∈Ink

Pr−1
α (Yα)

 . (7)

We are going to use this notion in the particular case of sets with zero proper thickness.

Proposition 5.13. If sth(A) = 0, then the infimum in (7) is attained: there exist measurable
subsets Yα ⊆ Xα, α ∈ Ink, such that µα(Yα) = 0 and A ⊆

⋃
α∈Ink Pr−1

α (Yα).

Proof. The proof follows the proof of [30, Lemma 2.5.4]. If for a tuple of measurable subsets
{Yα}α∈Ink we have A ⊆

⋃
α∈Ink Pr−1

α (Yα), then fα = 1[Yα] satisfy the inequality∑
α∈Ink

fα(xα) ≥ 1[A](x)

for all x ∈ X, where 1[A] is the characteristic function of the set A. Moreover, it is clear that∑
α∈Ink

∫
Xα

fα(xα)µα(dxα) =
∑
α∈Ink

µα(Yα).

Since sth(A) = 0, we can consider a minimizing sequence of tuples of functions {f (t)
α }α,

f
(t)
α : Xα → [0, 1], such that ∑

α∈Ink

f (t)
α (xα) ≥ 1[A](x)

for all x ∈ X and ∑
α∈Ink

∫
Xα

f (t)
α (xα)µα(dxα) −−−→

t→∞
0.

Since f (t)
α is non-negative for all α ∈ Ink and for all t, we conclude that∫

Xα

f (t)
α (xα)µα(dxα) −−−→

t→∞
0 for all α ∈ Ink.

Let us recall the formulation of the Komlós theorem.
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Theorem 5.14 ([4, Theorem 4.7.24]). Let µ be a finite nonnegative measure on a space X, let
{fn} ⊂ L1(µ), and let

sup
n
‖fn‖L1(µ) <∞.

Then, one can find a subsequence {gn} ⊆ {fn} and a function g ∈ L1(µ) such that, for every
sequence {hn} ⊆ {gn}, the arithmetic means (h1 + · · ·+ hn)/n converge almost everywhere to g.

Using this theorem and passing, if necessary, to subsequences, we may assume that the
sequence

g(t)
α =

1

t

(
f (1)
α + · · ·+ f (t)

α

)
converges to some integrable function gα µα-almost everythere in Xα for all α ∈ Ink. Thus, we
can suppose that

gα(xα) = lim sup
t→∞

g(t)
α (xα) for all xα ∈ Xα.

By construction we obtain 0 ≤ gα(xα) ≤ 1 for all xα ∈ Xα. Also, since
∑

α∈Ink g
(t)
α (xα) ≥

1[A](x) for all x ∈ X and for all t, we conclude that∑
α∈Ink

gα(xα) ≥ 1[A](x) for all x ∈ X. (8)

In addition, since |g(t)
α (xα)| ≤ 1 it follows from the Lebesgue’s dominated convergence theorem

that ∫
Xα

gα(xα)µα(dxα) = lim
t→∞

∫
Xα

g(t)
α (xα)µα(dxα) = lim

t→∞

∫
Xα

f (t)
α (xα)µα(dxα) = 0.

Thus, since the function gα is non-negative, we conclude that gα(xα) = 0 for µα-almost all
xα ∈ Xα.

Consider the tuple of sets {Yα}α∈Ink :

Yα = {xα ∈ Xα : gα(xα) > 0} .

Since gα is equal to 0 almost everywhere on Xα, we have µα(Yα) = 0. In addition, if x ∈ A,
then it follows from inequality (8) that

∑
α∈Ink gα(xα) ≥ 1, and therefore there exists at least

one α ∈ Ink such that gα(xα) > 0 or equivalently xα ∈ Yα. Thus, A ⊆
⋃
α∈Ink Pr−1

α (Yα).

Definition 5.15. We say that a measurable set A ⊂ X is a zero (n, k)-thickness set if sth(A) = 0,
or equivalently if there exist a tuple of measurable subsets Yα ⊂ Xα, α ∈ Ink such that µα(Yα) = 0
for all α and A ⊆ ∪α∈InkPr−1

α (Yα).

In addition to the standard dual multistochastic problem, we consider a more convenient
relaxed dual problem. Let c be a measurable cost function on the space X. Denote by

Ψc(µα)

the set of tuples of integrable functions {fα}α∈Ink , fα : Xα → R such that inequality∑
α∈Ink

fα(xα) ≤ c(xα)

holds at all points x ∈ X except a zero (n, k)-thickness set. Then, in the relaxed dual problem
we are looking for

J = sup

 ∑
α∈Ink

∫
Xα

fα(xα)µα(dxα) : {fα} ∈ Ψc(µα)


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If {fα} ∈ Ψc(µα), then there exists a tuple of measurable subsets Yα ⊂ Xα such that µα(Yα) =
0 and ∑

α∈Ink

fα(xα) ≤ c(x) for all x 6∈
⋃

α∈Ink

Pr−1
α (Yα).

Consider the tuple of functions {f̂α} defined as follows: f̂α(xα) = fα(xα) if xα 6∈ Yα and
f̂α(xα) = −∞ otherwise. For all α ∈ Ink the function f̂α coincides with fα almost everywhere
with respect to µα, and therefore∑

α∈Ink

∫
f̂α(xα)µα(dxα) =

∑
α∈Ink

∫
fα(xα)µα(dxα)

In addition, the inequality
∑

α∈Ink f̂α(xα) ≤ c(x) holds for all x ∈ X. Thus, having a tuple of
functions {fα} ∈ Ψc(µα) one can construct another tuple of (not necessary real-valued) functions
{f̂α} satisfying the conditions of the standard dual problem with the same value of the dual
functional. Therefore the supremum is the same for both standard and relaxed dual problems.

In [21] the following theorem was proved, establishing the existence of a dual solution in the
multi-marginal case.

Theorem 5.16 (Kellerer). For every 1 ≤ i ≤ n, let Xi be a Polish space equipped with a
Borel probability measure µi. Let c : X1 × · · · ×Xn → [−∞,+∞] be a measurable cost function
on the space X1 × · · · × Xn. Suppose that there exists a tuple of integrable functions {ci}ni=1,
ci : Xi → (−∞,+∞] such that inequality

|c(x1, . . . , xn)| ≤
n∑
i=1

ci(xi)

holds for all (x1, . . . , xn) ∈ X.
Then the supremum in the relaxed dual Monge-Kantorovich problem

sup

{
n∑
i=1

∫
Xi

ϕi(xi)µi(dxi) : {ϕi}ni=1 ∈ Ψc(µi)

}

is finite and attained.

We prove the multistochastic generalization of this theorem for the case of reducible tuple of
projections.

Theorem 5.17. For every 1 ≤ i ≤ n, let Xi be a Polish space, let {µα}α∈Ink , µα ∈ P(Xα)
be a reducible tuple of probability measures, and let c : X → [−∞,+∞] be a measurable cost
function on the space X. Suppose that there exists a tuple of integrable functions {cα}α∈Ink ,
cα : Xα → (−∞,+∞] such that the inequality

|c(x)| ≤
∑
α∈Ink

cα(xα)

holds for all x ∈ X.
Then the supremum in the relaxed dual multistochastic Monge-Kantorovich problem

J = sup

 ∑
α∈Ink

∫
Xα

fα(xα)µα(dxα) : {fα}α∈Ink ∈ Ψc(µα)

 (9)

is finite and attained.
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Proof. Replacing cα with |cα| we may assume that the function cα is non-negative for all α ∈ Ink.
Let c∗α : Xα → [0,+∞) be an arbitrary finite integrable function such that c∗α(xα) = cα(xα) for
µα-almost all xα ∈ Xα. Consider a function c∗ on the space X:

c∗(x) =

{
c(x), if c∗α(xα) = cα(xα) for all xα ∈ Xα,

0, otherwise.

It trivially follows from the construction that c∗(x) = c(x) for all x ∈ X except a zero
(n, k)-thickness set. Hence,

Ψc(µα) = Ψc∗(µα).

In addition, |c∗(x)| ≤
∑

α∈Ink c
∗
α(xα) for all x ∈ X. In particular, since c∗α(xα) < +∞ for all

xα ∈ Xα and for all α ∈ Ink, we conclude that |c∗(x)| < +∞ for all x ∈ X. Thus, replacing c
with c∗ and replacing cα with c∗α for all α ∈ Ink, we may assume that |c(x)| < +∞ for all x ∈ X
and 0 ≤ cα(xα) < +∞ for all xα ∈ Xα and for all α ∈ Ink.

Denote
Ĵ =

∑
α∈Ink

∫
Xα

cα(xα)µα(dxα).

The function cα : Xα → [0,+∞) is finite and integrable with respect to µα for all α ∈ Ink; in
addition, ∑

α∈Ink

(−cα(xα)) ≤ c(x) for all x ∈ X.

Thus, {−cα}α∈Ink ∈ Ψc(µα), and therefore the set Ψc(µα) is non-empty and

J ≥
∑
α∈Ink

∫
Xα

(−cα(xα))µα(dxα) = −Ĵ .

Since the tuple of measures {µα} is reducible, there exists a reducible measure µ ∈ Π(µα).
Since cα ∈ L1(Xα, µα), the extension of cα to the space X is integrable with respect to µ. Thus,
since |c(x)| ≤

∑
α∈Ink cα(xα) ∈ L1(X,µ), we conclude that c ∈ L1(X,µ).

Let {fα}α∈Ink ∈ Ψc(µα). Since fα ∈ L1(Xα, µα), the extension of fα to the space X is
integrable with respect to µ. Hence,∑

α∈Ink

∫
Xα

fα(xα)µα(dxα) =

∫
X

∑
α∈Ink

fα(xα)µ(dx)

We have
∑

α∈Ink fα(xα) ≤ c(x) at all points except a zero (n, k)-thickness set. Since µ is a
uniting measure, every set of zero (n, k)-thickness has zero measure with respect to µ. Hence,∑

α∈Ink fα(xα) ≤ c(x) for µ-almost all x ∈ X, and therefore∫
X

∑
α∈Ink

fα(xα)µ(dx) ≤
∫
X
c(x)µ(dx) ≤

∑
α∈Ink

∫
Xα

cα(xα)µα(dxα) = Ĵ .

Thus, we conclude that∑
α∈Ink

∫
Xα

fα(xα)µα(dxα) ≤ Ĵ for all {fα} ∈ Ψc(µα),

and therefore J ≤ Ĵ . In particular, the supremum in (9) is finite.
Consider the maximizing sequence of tuples of functions {f (t)

α }α∈Ink ∈ Ψc(µα) such that∑
α∈Ink

∫
Xα

f (t)
α (xα)µα(dxα) −−−→

n→∞
J.
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We may assume that ∑
α∈Ink

∫
Xα

f (t)
α (xα)µα(dxα) ≥ −Ĵ for all t. (10)

For each t consider a finite (n, k)-function F (t)(x) =
∑

α∈Ink f
(t)
α (xα). Let us bound the norm

of the function F (t) from above. Since F (t)(x) ≤ c(x) for all points except a zero (n, k)-thickness
set, and c(x) ≤

∑
α∈Ink cα(xα) for all x ∈ X, we conclude that F (t)(x) ≤

∑
α∈Ink cα(xα) for

µ-almost all x ∈ X. Finally, since
∑

α∈Ink cα(xα) ≥ 0, we have

F (t)(x) + |F (t)(x)| = max(0, 2F (t)(x)) ≤ 2
∑
α∈Ink

cα(xα)

for µ-almost all x ∈ X. Combining this with inequality (10) we get∥∥∥F (t)
∥∥∥
L1(µ)

=

∫
X
|F (t)(x)|µ(dx) ≤ 2

∑
α∈Ink

∫
Xα

cα(xα)µα(dxα)−
∫
X
F (t)(x)µ(dx) ≤ 3Ĵ .

Since µ is reducible, for each t by Theorem 5.11 there exists a tuple of finite integrable
functions {f̂ (t)

α }α∈Ink such that the equation

F (t)(x) =
∑
α∈Ink

f̂ (t)
α (xα)

holds for all x ∈ X and ∥∥∥f̂ (t)
α

∥∥∥
L1(µα)

≤ Cµ
∥∥∥F (t)

∥∥∥
L1(µ)

≤ 3CµĴ = C

for all α ∈ Ink. In particular, {f̂ (t)
α } ∈ Ψc(µα) for all t, and this sequence of tuples is also

maximizing. Thus, replacing {f (t)
α } with {f̂ (t)

α }, we may assume that the inequality∥∥∥f (t)
α

∥∥∥
L1(µα)

≤ C

holds for all α ∈ Ink and for all t.
In particular,

sup
t

∥∥∥f (t)
α

∥∥∥
L1(µα)

< +∞

for all α ∈ Ink. Hence, using the Komloś theorem and passing, if necessary, to subsequences, we
may assume that the sequence of functions

g(t)
α (xα) =

1

t

(
f (1)
α + · · ·+ f (t)

α

)
, t ∈ N,

converges to some function gα ∈ L1(Xα, µα) µα-almost everywhere in Xα for all α ∈ Ink.
For each t consider the finite (n, k)-function

G(t)(x) =
∑
α∈Ink

g(t)
α (xα) =

1

t

(
F (1)(x) + · · ·+ F (t)(x)

)
.

We have G(t)(x) ≤ c(x) for all x ∈ X except a zero (n, k)-thickness set, and therefore
{g(t)
α }α∈Ink ∈ Ψc(µα) for all t. In addition, it follows from the properties of the Ceśaro mean

that the sequence of tuples {g(t)
α }α∈Ink is maximizing as well as {f (t)

α }α∈Ink .
Let us verify that {gα}α∈Ink ∈ Ψc(µα). For every t there exists a tuple of measurable subsets

{A(t)
α }α∈Ink , A

(t)
α ⊆ Xα such that µα(A

(t)
α ) = 1 and G(t)(x) ≤ c(x) for all x ∈ X such that
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xα ∈ A
(t)
α for all α ∈ Ink. In addition, for each α ∈ Ink there exists a measurable subset

A′α ⊆ Xα such that µα(A′α) = 1 and if xα ∈ A′α, then g(t)(xα)→ gα(xα) as t→∞.
For α ∈ Ink, let

Aα = A′α ∩

( ∞⋂
t=1

A(t)
α

)
.

For any x ∈
⋂
α∈Ink Pr−1

α (Aα) we have
∑

α∈Ink g
(t)
α (xα) ≤ c(x) for all t and∑

α∈Ink

g(t)
α (xα) −−−→

t→∞

∑
α∈Ink

gα(xα).

Thus, if x ∈
⋂
α∈Ink Pr−1

α (Aα), then
∑

α∈Ink gα(xα) ≤ c(x), and therefore, since µα(Aα) = 1, we
conclude that {gα}α∈Ink ∈ Ψc(µα).

Consider the finite (n, k)-function G(x) =
∑

α∈Ink gα(xα). We have

G(t)(x) −−−→
t→∞

G(x)

for all x ∈ X except a zero (n, k)-thickness set, and therefore the sequence of functions {G(t)}
converges pointwise to G µ-almost everywhere. In addition,

G(t)(x) ≤
∑
α∈Ink

cα(xα) ∈ L1(X,µ)

for µ-almost all x, and therefore it follows from the reverse Fatou lemma that

J = lim
t→∞

∫
X
G(t)(x)µ(dx) ≤

∫
X
G(x)µ(dx) =

∑
α∈Ink

∫
Xα

gα(xα)µα(xα).

Thus, the supremum in (9) is attained on the tuple of functions {gα}α∈Ink .

Combining this result with Theorem 4.11, we get the following general duality theorem for
the case of reducible projections.

Theorem 5.18 (General duality theorem). For every 1 ≤ i ≤ n, let Xi be a Polish space, let
{µα}α∈Ink , µα ∈ P(Xα) be a reducible tuple of probability measures, and let c ∈ CL(X,µα) be a
continuous cost function on the space X. Then there exists a uniting measure π ∈ Π(µα) and a
tuple of integrable functions {fα}α∈Ink , fα : Xα → [−∞,+∞), such that∑

α∈Ink

fα(xα) ≤ c(x) for all x ∈ X

and ∫
X
c(x)π(dx) =

∑
α∈Ink

∫
Xα

fα(xα)µα(dxα).

In particular, π is a solution to the related primal (n, k)-problem, and {fα}α∈Ink is a solution to
the related dual (n, k)-problem.

5.3 Unreachability of the supremum in the dual problem in the irreducible
case

In contrast to the multi-marginal case, in the theorem proved above, the essential requirement
is the irreducibility of the set of measures µα. In the following paragraph we construct a mul-
tistochastic (3, 2)-problem with a bounded continuous cost function such that the supremum in
the corresponding dual problem can not be attained.
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Let X1 = X2 = X3 = N. For 1 ≤ i ≤ 3, the space Xi is a Polish space equipped with the
discrete topology. For each n denote

An = {(n+ 1, n, n), (n, n+ 1, n), (n, n, n+ 1)}.

One can easily verify that these sets are pairwise disjoint.
Consider the measure µp on the space X = X1 ×X2 ×X3 defined as follows:

µp(n1, n2, n3) =


2

(πn)2
, if (n1, n2, n3) ∈ An for some n,

0, otherwise.

We have

µp(X) =
∞∑
n=1

|An| ·
2

(πn)2
=

6

π2

∞∑
n=1

1

n2
= 1,

and therefore the measure µp is a probability measure.
Consider another measure µε on the space X: let µε(n1, n2, n3) = 2−n1−n2−n3 for all

(n1, n2, n3) ∈ X. We have

µε(X) =
∑

(n1,n2,n3)∈X

1

2n1+n2+n3
=

( ∞∑
n1=1

1

2n1

)
·

( ∞∑
n2=1

1

2n2

)
·

( ∞∑
n3=1

1

2n3

)
= 1,

and therefore µε is a probability measure too.

Lemma 5.19. Consider the probability measure µ = (1 − α)µp + αµε, where 0 ≤ α ≤ 1. For
{i, j} ∈ I3,2, denote µij = Prij(µ). If γ ∈ Π(µij) is a uniting measure for the tuple of projections
{µij}, which means it has the same projections as µ, then

γ(x) ≥ 2(1− α)

π2

(
1

n2
− 1

(n+ 1)2

)
− α

2n

for all x ∈ An for all n.

Proof. First, let us find µij explicitly. We have

Prij(µε)(ni, nj) =
∞∑
n=1

1

2ni+nj+n
=

1

2ni+nj
for all (ni, nj) ∈ N2.

In addition, one can easily verify that

Prij(µp)(ni, nj) =


0, if |ni − nj | ≥ 2,

2

(πn)2
, if |ni − nj | ≤ 1 and min(ni, nj) = n.

In particular, since µij = (1− α)Prij(µp) + αPrij(µε), we obtain the following equations:

µij(ni, nj) =


α

2ni+nj
if |ni − nj | ≥ 2,

2(1− α)

(πn)2
+

α

2ni+nj
if |ni − nj | ≤ 1 and min(ni, nj) = n.

(11)

Fix a positive integer m. Consider the following functions fij : N2 → R:

f12(n1, n2) =

{
1, if (n1, n2) = (m+ 1,m),

0, otherwise;

f13(n1, n3) =

{
−1, if n1 = m+ 1 and n3 ∈ {m− 1,m+ 1},
0, otherwise;

f23(n2, n3) =

{
−1, if n2 = m and n3 6∈ {m− 1,m,m+ 1},
0, otherwise.
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The function fij is bounded, and therefore is integrable with respect to µij . Using equations
(11) we get∫

f12 dµ12 = µ12(m+ 1,m) =
2(1− α)

π2m2
+

α

22m+1
,∫

f13 dµ13 = −µ13(m+ 1,m− 1)− µ13(m+ 1,m+ 1) = − α

22m
− 2(1− α)

π2(m+ 1)2
− α

22m+2
,∫

f23 dµ23 = −
∑

n6∈{m−1,m,m+1}

µ23(m,n) = −
∞∑
n=1

α

2m+n
+

α

22m−1
+

α

22m
+

α

22m+1
> − α

2m
+

α

22m
.

Summarizing this, we obtain∫
f12 dµ12 +

∫
f13 dµ13 +

∫
f23 dµ23

>
2(1− α)

π2

(
1

m2
− 1

(m+ 1)2

)
+
( α

22m+1
− α

22m+2

)
− α

2m

>
2(1− α)

π2

(
1

m2
− 1

(m+ 1)2

)
− α

2m
.

(12)

Consider the (3, 2)-function

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3).

Let us verify that F (n1, n2, n3) ≤ 0 if (n1, n2, n3) 6= (m + 1,m,m). Indeed, since f13 ≤ 0 and
f23 ≤ 0, we conclude that if F (n1, n2, n3) > 0, then f12(n1, n2) > 0, and therefore (n1, n2) = (m+
1,m). If n3 6∈ {m− 1,m,m+ 1}, then by construction f23(m,n3) = −1, and f13(m+ 1, n3) = 0,
and therefore F (m+ 1,m, n3) = 0. Otherwise, if n3 ∈ {m− 1,m+ 1}, then f13(m+ 1, n3) = −1
and f23(m,n3) = 0, and therefore F (m+ 1,m, n3) = 0 too.

In addition, F (m+ 1,m,m) = 1, and therefore if γ is a probability measure on the space X,
then ∫

X
F (n1, n2, n3) γ(dn1, dn2, dn3) ≤ γ(m+ 1,m,m).

Combining this with inequality (12), we conclude that if γ ∈ Π(µij), then

γ(m+ 1,m,m) ≥
∫
X
F (n1, n2, n3) γ(dn1, dn2, dn3)

=

∫
f12 dµ12 +

∫
f13 dµ13 +

∫
f23 dµ23

>
2(1− α)

π2

(
1

m2
− 1

(m+ 1)2

)
− α

2m
.

For the remaining points of Am the inequality is proved in the same manner.

Corollary 5.20. There exists a real α0 ∈ (0, 1) such that if γ ∈ Π(µij), then γ(x) > 0 for all
x ∈ An for all n, where µij = Prij((1− α0)µp + α0µε).

Proof. By Lemma 5.19 we only need to prove that there exists α0 ∈ (0, 1) such that the inequality

2(1− α0)

π2

(
1

n2
− 1

(n+ 1)2

)
− α0

2n
> 0

holds for all n ∈ N, or equivalently

2(1− α0)

π2α0
>

2−n

1
n2 − 1

(n+1)2

. (13)
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One can easily verify that the function in the right hand-side of the inequality converges to
0, and therefore there exists a constant M such that the inequality

M ≥ 2−n

1
n2 − 1

(n+1)2

holds for all positive integer n. Thus, the inequality (13) follows from

2(1− α0)

π2α0
> M

and therefore every α0 such that 0 < α0 < 2/(Mπ2 + 2) is suitable.

Theorem 5.21. Let α0 be the constant constructed in Corollary 5.20. Let µ = (1−α0)µp+α0µε,
and for {i, j} ∈ I3,2 let µij = Prij(µ). Consider the cost function c : X → {0, 1}: c(x) = 1 if
x ∈ An for some n, and c(x) = 0 otherwise. Then the supremum in the corresponding dual
(3, 2)-problem can not be attained.

Proof. The cost function c is a bounded continuous function on the space X equipped with
the discrete topology. In addition, the set Π(µij) is non-empty, and therefore it follows from
Theorem 4.11 that

min
γ∈Π(µij)

∫
X
c dγ = sup

{∑∫
Xij

fij dµij :
∑

fij(xi, xj) ≤ c(x1, x2, x3)

}
.

Assume that the supremum in the dual problem is attained. Then there exists a uniting measure
γ ∈ Π(µij) and a tuple of integrable functions {fij}{i,j}∈I3,2 , fij : Xij → [−∞,+∞) such that

f12(n1, n2) + f13(n1, n3) + f23(n2, n3) ≤ c(n1, n2, n3)

for all (n1, n2, n3) ∈ X and∫
X12

f12 dµ12 +

∫
X13

f13 dµ13 +

∫
X23

f23 dµ23 =

∫
X
c dγ.

It follows from equation (11) that µij(ni, nj) > 0 for all pairs of positive integers (ni, nj).
Hence, since fij is integrable with respect to µij , we conclude that fij can not take value −∞.

Consider the finite (3, 2)-function

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3). (14)

Since fij is integrable with repsect to µij and the measure γ is uniting, the function F is integrable
with respect to γ and∫

X
F dγ =

∫
X12

f12 dµ12 +

∫
X13

f13 dµ13 +

∫
X23

f23 dµ23 =

∫
X
c dγ.

Since in addition F (n1, n2, n3) ≤ c(n1, n2, n3) for all (n1, n2, n3) ∈ X, we conclude that
F (n1, n2, n3) = c(n1, n2, n3) γ-almost everywhere. It follows from Corollary 5.20 that γ(x) > 0
if x ∈ An for some n, and therefore

F (n+ 1, n, n) = F (n, n+ 1, n) = F (n, n, n+ 1) = 1 (15)

for all n ∈ N.
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One can easily verify using equation (14) that for all n ∈ N we have

F (n+ 1,n+ 1, n+ 1)− F (n, n, n)

= F (n, n+ 1, n+ 1) + F (n+ 1, n, n+ 1) + F (n+ 1, n+ 1, n)

− F (n+ 1, n, n)− F (n, n+ 1, n)− F (n, n, n+ 1).

Since, F (n1, n2, n3) ≤ c(n1, n2, n3) and c(n1, n2, n3) = 0 if the point (n1, n2, n3) is not contained
in the set t∞n=1An, the inequality

F (n, n+ 1, n+ 1) + F (n+ 1, n, n+ 1) + F (n+ 1, n+ 1, n) ≤ 0

holds for every positive integer n. In addition, it follows from equation (15) that

F (n+ 1, n, n) + F (n, n+ 1, n) + F (n, n, n+ 1) = 3.

Summarizing this, we conclude that F (n+ 1, n+ 1, n+ 1) ≤ F (n, n, n)− 3, and therefore

F (n, n, n) ≤ F (1, 1, 1)− 3(n− 1) ≤ c(1, 1, 1)− 3(n− 1) = −3(n− 1).

for all n ∈ N.
In particular, we conclude that for all n ∈ N the following inequality holds:

|f12(n, n)|+ |f13(n, n)|+ |f23(n, n)| ≥ 3(n− 1).

Using this inequality and equation (11), we can bound from below the
∑
‖fij‖L1(µij)

:

‖f12‖L1(µ12) + ‖f13‖L1(µ13) + ‖f23‖L1(µ23)

≥
∞∑
n=1

(|f12(n, n)| · µ12(n, n) + |f13(n, n)| · µ13(n, n) + |f23(n, n)| · µ23(n, n))

>
2(1− α0)

π2

∞∑
n=1

1

n2
(|f12(n, n)|+ |f13(n, n)|+ |f23(n, n)|)

≥ 2(1− α0)

π2

∞∑
n=1

3(n− 1)

n2
= +∞.

Thus, at least one the functions fij is not integrable, and this contradiction proves Theorem 5.21.

The measure µ constructed in Theorem 5.21 is strictly positive at every point of the space
X. In particular, this means that µ is equivalent to Pr1(µ)⊗ Pr2(µ)⊗ Pr3(µ). Thus, we obtain
the following proposition, which demonstrates that we cannot replace “uniform equivalence” with
simple equivalence.

Proposition 5.22. Let X1 = X2 = X3 = N. There exists a probability measure µ on the space
X = X1 ×X2 ×X3 and a cost function c : X → {0, 1} such that the following conditions hold:

(i) measure µ is equivalent (but not uniformly equivalent) to µ1 ⊗ µ2 ⊗ µ3, where µi = Priµ;

(ii) there is no optimal solution to the dual problem for the cost function c and projections µij,
where µi = Priµ.

In the classical Monge-Kantorovich problem the dual solution may not exist provided c is
unbounded. In [29, 2] authors introduce the concept of strong c-monotonicity, which generalizes
the c-monotonicity and allows us to find a generalized dual solution.

41



Definition 5.23. A Borel set Γ ⊆ X ×Y is strongly c-monotone if there exist Borel measurable
functions ϕ : X → [−∞,+∞), ψ : Y → [−∞,+∞) such that ϕ(x) + ψ(y) ≤ c(x, y) for all
(x, y) ∈ X × Y and ϕ(x) + ψ(y) = c(x, y) holds if (x, y) ∈ Γ. A transport plan π ∈ Π(µ, ν) is
strongly c-monotone if π is concentrated on a strongly c-monotone Borel set.

One can easily verify that strong c-monotonicity implies c-monotonicity, and if there exists
a solution to the dual problem, then every optimal transport plan is strongly c-monotone. In
[2] authors prove that under general assumptions on the cost function the transport plan π is
optimal if and only if π is strongly c-monotone.

Theorem 5.24 ([2, Theorem 3]). Let X, Y be Polish spaces equipped with Borel probability
measures µ, ν, and let c : X × Y → [0,∞] be Borel measurable and µ ⊗ ν-a.e. finite. Then a
finite transport plan π ∈ Π(µ, ν) is optimal if and only if it is strongly c-monotone.

In particular, for every finite optimal transport plan π there exist (not necessary integrable)
functions ϕ, ψ such that ϕ(x) + ψ(x) ≤ c(x, y) and the equaility holds π-a.e. We can natu-
rally generalize the concept of strong c-monotonicity to the multistochastic Monge-Kantorovich
problem as follows.

Definition 5.25. A Borel set Γ ⊂ X is strongly c-monotone if there exist Borel measurable
functions {fα}α∈Ink , fα : Xα → [−∞,+∞) such that the inequality∑

α∈Ink

fα(xα) ≤ c(x)

holds for all x ∈ X and the equality is achieved if x ∈ Γ. A transport plan π ∈ Π(µα) is strongly
c-monotone if π is concentrated on a strongly c-monotone Borel set Γ.

We do not know whether exists a strongly c-monotone transport plan in the problem consid-
ered in Theorem 5.21. In what follows, we construct another example of the (3, 2)-problem and
prove that in this example there is no strongly c-monotone optimal transport plan.

As in the previous example, let X1 = X2 = X3 = N. For each n denote

Bn = {(n, n+ 1, n+ 1), (n+ 1, n, n+ 1), (n+ 1, n+ 1, n)}.

Consider the following measure µ defined on the space X1 ×X2 ×X3 as follows:

µ(n1, n2, n3) =


1

(πn)2
if (n1, n2, n3) ∈ An tBn for some n,

0 otherwise.
(16)

One can check that µ is a probability measure. Finally, for {i, j} ∈ I3,2 denote µij = Prij(µ).

Lemma 5.26. The measure µ is the only uniting measure for the tuple of projections {µij}.

Proof. Let γ ∈ Π(µij). For {i, j} ∈ I3,2, the projection µij is concentrated on the set {(ni, nj) ∈
N2 : |ni − nj | ≤ 1}, and therefore the transport plan γ is concentrated on the set

S = {(n1, n2, n3) ∈ N3 : max{n1, n2, n3} −min{n1, n2, n3} ≤ 1} =

∞⊔
k=1

({(k, k, k)} tAk tBk) .

One can easily verify that γ is uniquely defined by its values on the diagonal, and if we denote
ak = γ(k, k, k), then we have

γ(n1, n2, n3) =

{
µ(n1, n2, n3)− (a1 + · · ·+ an) if (n1, n2, n3) ∈ An for some n,
µ(n1, n2, n3) + (a1 + · · ·+ an) if (n1, n2, n3) ∈ Bn for some n.

(17)

We have µ(n1, n2, n3) = (πn)−2 for all (n1, n2, n3) ∈ An, and therefore a1 + · · · + an ≤ (πn)−2

for all n. Thus, since all an are nonnegative, we conclude that γ(k, k, k) = ak = 0 for all k, and
therefore γ = µ by equation (17).
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It follows from the previous lemma that µ is the unique optimal solution to the multistochastic
problem with arbitrary bounded cost function. Next, we construct the cost function c such that
µ is not strongly c-monotone. The existence of this example demonstrates that we can not
generalize the equivalence of optimality and strongly c-monotonicity to the multistochastic case.

Theorem 5.27. Let µ be the measure on N3 defined in equation (16), and let µij = Prij(µ).
Consider the cost function c : N3 → {0, 1}: c(x) = 1 if x ∈ Bn for some n, and c(x) = 0
otherwise. Then there are no functions {fij}, fij : N2 → [−∞,+∞) such that

f12(n1, n2) + f13(n1, n3) + f23(n2, n3) ≤ c(n1, n2, n3)

for all (n1, n2, n3) ∈ N3 and the equality holds µ-a.e.

Proof. Assuming the opposite, consider the following (3, 2)-function:

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3). (18)

Since {fij} satisfy the assumptions of the theorem, we have F (n1, n2, n3) = c(n1, n2, n3)
µ-a.e. Hence, since µ(n1, n2, n3) > 0 for all (n1, n2, n3) ∈ An tBn, we get

F (n+ 1, n, n) = F (n, n+ 1, n) = F (n, n, n+ 1) = 0,

F (n, n+ 1, n+ 1) = F (n+ 1, n, n+ 1) = F (n+ 1, n+ 1, n) = 1
(19)

for all n ∈ N.
Applying (18) one can easily verify the following equation:

F (n, n, n) + F (n, n+ 1, n+ 1) + F (n+ 1, n, n+ 1) + F (n+ 1, n+ 1, n)

= F (n+ 1, n+ 1, n+ 1) + F (n+ 1, n, n) + F (n, n+ 1, n) + F (n, n, n+ 1).

Combining this with equation (19), we get F (n, n, n) + 3 = F (n+ 1, n+ 1, n+ 1) for all n, and
therefore the inequality

F (n, n, n) = F (n+ k, n+ k, n+ k)− 3k ≤ c(n+ k, n+ k, n+ k)− 3k ≤ 1− 3k

holds for all n, k ∈ N. Thus, F (n, n, n) = −∞ for all n. In particular, F (1, 1, 1) = −∞, and
therefore fij(1, 1) = −∞ for some {i, j} ∈ I3,2. Without loss of generality we may assume that
f12(1, 1) = −∞. Then F (1, 1, 2) is also equal to −∞, and this contradicts equation (19).

6 Properties of the dual solution in (3, 2)-problem

6.1 Boundedness of the dual solution

In the classical Monge-Kantorovich problem for the bounded cost function c(x, y) we can trans-
form every solution to the dual problem to the bounded one, using Legendre transformation.

Proposition 6.1. Let X and Y be Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ), and let c : X×Y →
R+ be a cost function. If c is a bounded continuous cost function, then there exists a solution
(ϕ,ψ) to the related dual problem such that both ϕ(x), ψ(y) lie between −‖c‖∞ and ‖c‖∞ for all
x ∈ X and y ∈ Y .

Proof. The proof is an adaptation of the argument from the proof of [31, Theorem 1.3]. Let
(ϕ,ψ) be a solution to the dual problem provided by [27, Theorem 2.4.3]. If π is a solution to
the related primal problem, then ϕ(x) + ψ(y) = c(x, y) π-a.e. In particular, there exists a point
(x0, y0) ∈ X × Y such that ϕ(x0) + ψ(y0) = c(x0, y0) ≥ 0. For any real number s the pair of

43



functions (ϕ− s, ψ + s) is also a solution to the dual problem. By a proper choice of s, we can
ensure

ϕ(x0) ≥ 0, ψ(y0) ≥ 0.

Since ϕ(x) + ψ(y) ≤ c(x, y), we have ϕ(x) ≤ c(x, y0) − φ(y0) ≤ c(x, y0) for all x, and
ψ(y) ≤ c(x0, y) − ϕ(x0) ≤ c(x0, y) for all y. Consider the Legendre transformation of the
function ϕ:

ϕ(x) = inf
y∈Y

(c(x, y)− ψ(y)).

By construction, ϕ(x) + ψ(y) ≤ c(x, y) for all x ∈ X and for all y ∈ Y . From the inequality
ϕ(x) ≤ c(x, y)−ψ(y) we see that ϕ(x) ≥ ϕ(x) for all x. Since ϕ(x) ≤ c(x, y)−ψ(y) for all y, we
have

ϕ(x) ≤ c(x, y0)− ψ(y0) ≤ ‖c‖∞ ,

and it follows from the inequality ψ(y) ≤ c(x0, y) that

ϕ(x) ≥ inf
y∈Y

(c(x, y)− c(x0, y)) ≥ −‖c‖∞ .

Hence, ϕ is an integrable function; since ϕ(x) ≥ ϕ(x) for all x, we have∫
X
ϕ(x)µ(dx) +

∫
Y
ψ(y) ν(dy) ≥

∫
X
ϕ(x)µ(dx) +

∫
Y
ψ(y) ν(dy),

and therefore (ϕ,ψ) is a solution to the dual problem.
Finally, define

ψ(y) = inf
x∈X

(c(x, y)− ϕ(x)).

By the same arguments we conclude that (ϕ,ψ) is a solution to the dual problem and −‖c‖∞ ≤
ψ(y) ≤ ‖c‖∞ for all y ∈ Y .

We want to generalize this observation to the multistochastic case.

Definition 6.2. Given finite measures µ and ν on the space X, we say that µ �B ν if there
exists a positive real M such that µ ≤M · ν.

The following properties trivially follow from the definition.

Proposition 6.3. Let µ and ν be finite measures on the space X. Suppose that µ�B ν. Then

(a) µ is absolutely continuous with respect to ν;

(b) L1(X,µ) ⊇ L1(X, ν);

(c) if X = X1 × · · · ×Xn, then Prαµ�B Prαν for all α ∈ In.

Definition 6.4. Let X1, . . . , Xn be Polish spaces, let π ∈ P(X), and let να be a probability
measure on Xα for some α ∈ In such that να �B πα. Let ρ be a density function of να with
respect to πα. Then denote by Upα(να, π) the measure ρ∗(x) · π, where ρ∗(x) = ρ(xα) for all
x ∈ X.

Proposition 6.5. Let X1, . . . , Xn be Polish spaces, let π ∈ P(X), and let να be a probability
measure on Xα for some α ∈ In such that να �B πα. Then

(a) the measure Upα(να, π) is well-defined;

(b) Upα(να, π)�B π;
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(c) if β ⊇ α, then Prβ(Upα(να, π)) = Upα(να, πβ);

(d) if β ⊆ α, then Prβ(Upα(να, π)) = Prβ(να);

(e) if π = µα ⊗ µβ for µα ∈ P(Xα) and µβ ∈ P(Xβ), then Upα(να, π) = να ⊗ µβ.

Proof. Assertion 6.5(a) is trivial: if να = ρ1 · πα = ρ2 · πα, then ρ1(xα) = ρ2(xα) for πα-a.e.
xα ∈ Xα, and therefore ρ∗1(x) = ρ∗2(x) for π-a.e. x ∈ X. In addition, since να �B πα, there
exists a positive real M such that ρ(xα) ≤M for πα-a.e. xα ∈ Xα, and therefore ρ∗(x) ≤M for
π-a.e. x ∈ X. Hence, ρ∗ ∈ L1(X,π) and the measure ρ∗ · π is well-defined. Furthermore, since
ρ∗ ≤M π-a.e, we have Up(να, π) ≤M · π; thus, Up(να, π)�B π and assertion 6.5(b) holds.

We have Up(να, π) = ρ(xα)·π. The function ρ does not depend on coordinates xi for all i 6∈ α.
Hence, if β ⊇ α and β ∈ In, then Prβ(ρ(xα) · π) = ρ(xα) · πβ . Since Prα(πβ) = πα, we conclude
that Upα(να, πβ) = ρ(xα) · πβ . Thus, if β ⊇ α, then Prβ(Upα(να, π)) = Upα(να,Pr), and this
implies assertion 6.5(c). In addition, we have Prα(ρ(xα) · π) = ρ(xα) · πα = να, and therefore
Prα(Upα(να, π)) = να. Hence, if β ⊆ α, then Prβ(Upα(να, π)) = Prβ ◦ Prα(Upα(να, π)) =
Prβ(να), and this implies assertion 6.5(d).

Finally, suppose that π = µα ⊗ µβ . Then πα = µα, and therefore να = ρ · πα = ρ · µα. Thus,
να ⊗ µβ = (ρ(xα) · µα)⊗ µβ = ρ(xα) · π = Upα(να, π), and this implies assertion 6.5(e).

Let X1, X2, X3 be Polish spaces, let µi ∈ P(Xi) for 1 ≤ i ≤ i, and let µij = µi ⊗ µj for all
{i, j} ∈ I3,2. Let c : X → R+ be a nonnegative bounded continuous cost function. The space
Π(µij) is non-empty, since µ1 ⊗ µ2 ⊗ µ3 ∈ Π(µij), and therefore by Theorem 4.11 there is no
duality gap. In addition, since the family of measures {µij} is reducible, by Theorem 5.17 there
exists a solution to the related dual problem. Thus, there exists a solution π ∈ Π(µij) to the
primal problem and a solution {fij}, fij ∈ L1(Xij , µij) to the dual problem, and∫

X
c dπ =

∫
X12

f12 dµ12 +

∫
X13

f13 dµ13 +

∫
X23

f23 dµ23.

Lemma 6.6. Let π̃ be a probability measure on X. Suppose that there exists γ ∈ Π(µij) such
that π̃ �B γ. Then extensions of all f12, f13 and f23 to the space X are integrable with respect
to the measure π̃.

Proof. The extension of fij is integrable with respect to π̃ if and only if fij ∈ L1(Xij ,Prij(π̃)).
Since π̃ �B γ, by assertion 6.3(c) we have Prij(π̃) �B Prij(γ) = µij , and therefore by asser-
tion 6.3(b) we conclude that L1(Xij ,Prij(π̃)) ⊇ L1(Xij , µij) 3 fij .

Denote F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3).

Lemma 6.7. Let π̃ be a probability measure on X. Suppose that there exists γ ∈ Π(µij) such
that π̃ �B γ. Then

(a) the function F and the extensions of all f12, f13 and f23 to the space X are integrable with
respect to the measure π̃;

(b)
∫
X
F dπ̃ ≤ ‖c‖∞;

(c) if π̃ �B π, then
∫
X
F dπ̃ ≥ 0.

Proof. Assertion 6.7(a) trivially follows from Lemma 6.6. Since {fij} is a solution to the dual
problem, we have F (x1, x2, x3) ≤ c(x1, x2, x3) for all x ∈ X. In particular,∫

X
F dπ̃ ≤

∫
X
c dπ̃ ≤ ‖c‖∞ ,
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and this implies assertion 6.7(b).
Since Prij(π) = µij , by assertion 6.7(a) the function F ∈ L1(X,π) and∫

X
F dπ =

∫
X12

f12 dπ +

∫
X13

f13 dπ +

∫
X23

f23 dπ

=

∫
X12

f12 dµ12 +

∫
X13

f13 dµ13 +

∫
X23

f23 dµ23 =

∫
X
c dπ.

Since in addition F (x1, x2, x3) ≤ c(x1, x2, x3) for all x ∈ X, we conclude that F (x1, x2, x3) =
c(x1, x2, x3) for π-a.e. x ∈ X. Thus, if π̃ �B π, then F (x1, x2, x3) = c(x1, x2, x3) π̃-a.e., and
therefore ∫

X
F dπ̃ =

∫
X
c dπ̃ ≥ 0

since c ≥ 0. This implies assertion 6.7(c).

Lemma 6.8. Let (i, j, k) be a permutation of indices (1, 2, 3). Let νi be a probability measure on
Xi such that νi �B µi. Then F ∈ L1(X, νi ⊗ µj ⊗ µk) and∫

X
F d(νi ⊗ µj ⊗ µk) ≥

∫
X
F dπ − ‖c‖∞ .

Proof. Since νi �B µi, we have νi �B Pri(π), and therefore the measure Upi(νi, π) is well-
defined. Consider the following measure:

γ = νi ⊗ µj ⊗ µk −Upi(νi, π) + µi ⊗ Prjk(Upi(νi, π))− π. (20)

We claim that all the projections of γ to the spaces Xij , Xik and Xjk are zero measures. First,
by assertions 6.5(c) and 6.5(e) we have

Prij(Upi(νi, π)) = Upi(νi,Prij(π)) = Upi(νi, µi ⊗ µj) = νi ⊗ µj ,
Prik(Upi(νi, π)) = Upi(νi,Prik(π)) = Upi(νi, µi ⊗ µk) = νi ⊗ µk.

Next, we find the projections of Upi(νi, π) to the spaces Xj and Xk:

Prj(Upi(νi, π)) = Prj ◦ Prij(Upi(νi, π)) = Prj(νi ⊗ µj) = µj ,

Prk(Upi(νi, π)) = Prk ◦ Prik(Upi(νi, π)) = Prk(νi ⊗ µk) = µk.

Finally, we find the projections of γ to the spaces Xij , Xik and Xjk:

Prij(γ) = Prij(νi ⊗ µj ⊗ µk)− Prij(Upi(νi, π)) + Prij(µi ⊗ Prjk(Upi(νi, π)))− Prij(π)

= νi ⊗ µj − νi ⊗ µj + µi ⊗ Prj(Upi(νi, π))− µi ⊗ µj
= νi ⊗ µj − νi ⊗ µj + µi ⊗ µj − µi ⊗ µj = 0;

Prik(γ) = Prik(νi ⊗ µj ⊗ µk)− Prik(Upi(νi, π)) + Prik(µi ⊗ Prjk(Upi(νi, π)))− Prik(π)

= νi ⊗ µk − νi ⊗ µk + µi ⊗ Prk(Upi(νi, π))− µi ⊗ µk
= νi ⊗ µk − νi ⊗ µk + µi ⊗ µk − µi ⊗ µk = 0;

Prjk(γ) = Prjk(νi ⊗ µj ⊗ µk)− Prjk(Upi(νi, π)) + Prjk(µi ⊗ Prjk(Upi(νi, π)))− Prjk(π)

= µj ⊗ µk − Prjk(Upi(νi, π)) + Prjk(Upi(νi, π))− µj ⊗ µk = 0.

Since νi �B µi, we have

νi ⊗ µj ⊗ µk �B µi ⊗ µj ⊗ µk ∈ Π(µij).

Next, it follows from assertion 6.5(b) that

Upi(νi, π)�B π ∈ Π(µij).
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In addition, by assertion 6.3(c) we have Prjk(Upi(νi, π))�B Prjk(π) = µj ⊗ µk, and therefore

µi ⊗ Prjk(Upi(νi, π))�B µi ⊗ µj ⊗ µk ∈ Π(µij).

Thus, it follows from assertion 6.7(a) that the function F and the extension of all f12, f13, and
f23 to the space X are integrable with respect to all of the summands of equation (20), and
therefore that functions are integrable with respect to γ. In particular,∫

X
F dγ =

∫
Xij

fij dPrij(γ) +

∫
Xik

fik dPrik(γ) +

∫
Xjk

fjk dPrjk(γ) = 0.

On the other hand, we have∫
X
F dγ =

∫
X
F d(νi ⊗ µj ⊗ µk)−

∫
X
F dUpi(νi, π) +

∫
X
F d(µi ⊗ Prjk(Upi(νi, π)))−

∫
X
F dπ.

Since Upi(νi, π)�B π, by assertion 6.7(c) we have∫
X
F dUpi(νi, π) ≥ 0.

By assertion 6.7(b) we have ∫
X
F d(µi ⊗ Prjk(Upi(νi, π))) ≤ ‖c‖∞ .

Thus, we get

0 =

∫
X
F dγ ≤

∫
X
F d(νi ⊗ µj ⊗ µk)−

∫
X
F dπ + ‖c‖∞ .

Lemma 6.9. For 1 ≤ i ≤ 3, let νi be a probability measure on Xi such that νi �B µi. Then
F ∈ L1(X, ν1 ⊗ ν2 ⊗ ν3) and ∫

X
F d(ν1 ⊗ ν2 ⊗ ν3) ≥ −12 ‖c‖∞ .

Proof. The proof is similar to the proof of Lemma 6.8. We have νi⊗νj �B µi⊗µj = Prij(π), and
therefore the measure Upij(νi ⊗ νj , π) is well-defined for all {i, j} ∈ I3,2. Consider the following
measures:

γ(0) =
∑

{i,j}∈I3,2

Upij(νi ⊗ νj , π);

γ(1) =
∑

(i,j,k)∈S3

µi ⊗ Prjk(Upij(νi ⊗ νj , π));

γ(2) =
∑

{i,j}∈I3,2
{i,j,k}={1,2,3}

µi ⊗ µj ⊗ Prk(Upij(νi ⊗ νj , π));

γ(3) =
∑

{i,j}∈I3,2
{i,j,k}={1,2,3}

µi ⊗ µj ⊗ νk;

γ = ν1 ⊗ ν2 ⊗ ν3 − γ(0) + γ(1) − γ(2) − γ(3) + 2π.

We claim that Prij(γ) = 0 for all {i, j} ∈ I3,2. Let (i, j, k) be a permutation of indices
(1, 2, 3). By construction,

γ(0) = Upij(νi ⊗ νj , π) + Upik(νi ⊗ νk, π) + Upjk(νj ⊗ νk, π).
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It follows from assertion 6.5(c) that

Prij(Upij(νi ⊗ νj , π)) = νi ⊗ νj ,

and therefore

Prij(γ
(0)) = νi ⊗ νj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π)). (21)

Next, let us find the projection of γ(1) onto the space Xij . The measure γ(1) can be written
as follows:

γ(1) = µi ⊗ Prjk(Upij(νi ⊗ νj , π)) + µj ⊗ Prik(Upij(νi ⊗ νj , π))

+ µi ⊗ Prjk(Upik(νi ⊗ νk, π)) + µk ⊗ Prij(Upik(νi ⊗ νk, π))

+ µj ⊗ Prik(Upjk(νj ⊗ νk, π)) + µk ⊗ Prij(Upjk(νj ⊗ νk, π)).

It follows from assertion 6.5(d) that

Prij(µi ⊗ Prjk(Upij(νi ⊗ νj , π))) = µi ⊗ Prj(Upij(νi ⊗ νj , π)) = µi ⊗ νj ,
Prij(µj ⊗ Prik(Upij(νi ⊗ νj , π))) = Pri(Upij(νi ⊗ νj , π))⊗ µj = νi ⊗ µj ,

and we trivially have

Prij(µi ⊗ Prjk(Upik(νi ⊗ νk, π))) = µi ⊗ Prj(Upik(νi ⊗ νk, π)),

Prij(µk ⊗ Prij(Upik(νi ⊗ νk, π))) = Prij(Upik(νi ⊗ νk, π)),

Prij(µj ⊗ Prik(Upjk(νj ⊗ νk, π))) = Pri(Upjk(νj ⊗ νk, π))⊗ µj ,
Prij(µk ⊗ Prij(Upjk(νj ⊗ νk, π))) = Prij(Upjk(νj ⊗ νk, π)).

Thus, we get

Prij(γ
(1)) = µi ⊗ νj + νi ⊗ µj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π))

+ Pri(Upjk(νj ⊗ νk, π))⊗ µj + µi ⊗ Prj(Upik(νi ⊗ νk, π))
(22)

Finally, by construction

γ(3) = νi ⊗ µj ⊗ µk + µi ⊗ νj ⊗ µk + µi ⊗ µj ⊗ νk,

so we get
Prij(γ

(3)) = νi ⊗ µj + µi ⊗ νj + µi ⊗ µj . (23)

Similarly, we conclude that

Prij(γ
(2)) = Pri(Upjk(νj ⊗ νk, π))⊗ µj + µi ⊗ Prj(Upik(νi ⊗ νk, π)) + µi ⊗ µj . (24)

Thus, from equations (21)–(24) we get

Prij(γ) = Prij(νi ⊗ νj ⊗ νk)− Prij(γ
(0)) + Prij(γ

(1))− Prij(γ
(2))− Prij(γ

(3)) + 2Prij(π)

= νi ⊗ νj − νi ⊗ νj − Prij(Upik(νi ⊗ νk, π))− Prij(Upjk(νj ⊗ νk, π))

+ µi ⊗ νj + νi ⊗ µj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π))

+ Pri(Upjk(νj ⊗ νk, π))⊗ µj + µi ⊗ Prj(Upik(νi ⊗ νk, π))

− Pri(Upjk(νj ⊗ νk, π))⊗ µj − µi ⊗ Prj(Upik(νi ⊗ νk, π))− µi ⊗ µj
− νi ⊗ µj − µi ⊗ νj − µi ⊗ µj + 2µi ⊗ µj
= 0.
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Let us verify that the functions F and the extensions of fij to the space X for all {i, j} ∈ I3,2

are integrable with respect to γ. First, since νt �B µt for 1 ≤ t ≤ 3, we have

ν1 ⊗ ν2 ⊗ ν3 �B µ1 ⊗ µ2 ⊗ µ3 ∈ Π(µij).

Let (i, j, k) be a permutation of indices (1, 2, 3). It follows from assertion 6.5(b) that Upij(νi⊗
νj , π) �B π, and therefore γ(0) �B π. Next, since Upij(νi ⊗ νj , π) �B π, it follows from
assertion 6.3(c) that Prjk(Upij(νi⊗ νj , π))�B Prjk(π) = µj ⊗ µk and Prk(Upij(νi⊗ νj , π))�B

Prk(π) = µk. Hence, µi ⊗ Prjk(Upij(νi ⊗ νj , π))�B µ1 ⊗ µ2 ⊗ µ3 and µi ⊗ µj ⊗ Prk(Upij(νi ⊗
νj , π))�B µ1 ⊗ µ2 ⊗ µ3, and therefore

γ(1) �B µ1 ⊗ µ2 ⊗ µ3 ∈ Π(µij) and γ(2) �B µ1 ⊗ µ2 ⊗ µ3 ∈ Π(µij).

Finally, since νk �B µk, we have µi ⊗ µj ⊗ νk �B µ1 ⊗ µ2 ⊗ µ3, and therefore

γ(3) �B µ1 ⊗ µ2 ⊗ µ3 ∈ Π(µij).

Thus, by assertion 6.7(a) the function F and the extension of fij to the space X for all
{i, j} ∈ I3,2 are integrable with respect to all summands from the definition of γ, and therefore
that functions are integrable with respect to γ. In particular,∫

X
F dγ =

∫
X12

f12 dPr12(γ) +

∫
X13

f13 dPr13(γ) +

∫
X23

f23 dPr23(γ) = 0.

Since Upij(νi ⊗ νj , π)�B π for all {i, j} ∈ I3,2, it follows from assertion 6.7(c) that∫
X
F dγ(0) ≥ 0.

Applying assertion 6.7(b) to all terms of the definition of γ(1), we conclude that∫
X
F dγ(1) ≤ 6 ‖c‖∞ .

Finally, applying Lemma 6.8 to all terms of γ(2) and γ(3), we get∫
X
F dγ(2) ≥ 3

∫
X
F dπ − 3 ‖c‖∞ and

∫
X
F dγ(3) ≥ 3

∫
X
F dπ − 3 ‖c‖∞ .

Thus, we get the following inequality:∫
X
F dγ ≤

∫
X
F d(ν1 ⊗ ν2 ⊗ ν3) + 6 ‖c‖∞ + 2

(
3 ‖c‖∞ − 3

∫
X
F dπ

)
+ 2

∫
X
F dπ

= 12 ‖c‖∞ − 4

∫
X
F dπ +

∫
X
F d(ν1 ⊗ ν2 ⊗ ν3),

and therefore ∫
X
F d(ν1 ⊗ ν2 ⊗ ν3) ≥ 4

∫
X
F dπ − 12 ‖c‖∞ .

It follows from assertion 6.7(c) that
∫
X F dπ ≥ 0; hence,∫

X
F d(ν1 ⊗ ν2 ⊗ ν3) ≥ 4

∫
X
F dπ − 12 ‖c‖∞ ≥ −12 ‖c‖∞ .
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Theorem 6.10. Let X1, X2, X3 be Polish spaces, let µi ∈ P(Xi) for 1 ≤ i ≤ 3, and let
µij = µi ⊗ µj for all {i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. If
{fij} is a solution to the related dual problem, then

f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞

for µ1 ⊗ µ2 ⊗ µ3-a.e. points x ∈ X.

Proof. Denote F (x1, x2, x3) = f12(x1, x2)+f13(x1, x3)+f23(x2, x3), and denote µ = µ1⊗µ2⊗µ3.
For 1 ≤ i ≤ 3, let Ai ∈ Bi be a measurable subset of Xi. If µi(Ai) = 0 for some 1 ≤ i ≤ 3, then
µ(A1 ×A2 ×A3) = 0, and therefore

∫
A1×A2×A3

F dµ = 0.
Suppose otherwise that µi(Ai) > 0 for all 1 ≤ i ≤ 3. Denote νi = (1[Ai]/µi(Ai)) · µi,

where 1[A] is an indicator function of the set A. The measure νi is a probability measure and
νi ≤ (1/µi(Ai)) · µi, and therefore νi �B µi. By Lemma 6.8 we conclude that

∫
X F d(ν1 ⊗ ν2 ⊗

ν3) ≥ −12 ‖c‖∞. By construction,∫
X
F d(ν1 ⊗ ν2 ⊗ ν3) =

∫
A1×A2×A3

F dµ

µ1(A1)µ2(A2)µ3(A3)
.

Thus, we get ∫
A1×A2×A3

F dµ ≥ −12 ‖c‖∞ · µ(A1 ×A2 ×A3) for all Ai ∈ Bi. (25)

Consider the measure (F + 12 ‖c‖∞) · µ. By equation (25) this measure is non-negative on
a semialgebra A0 = {A1 × A2 × A3 : Ai ∈ Bi}, and therefore this measure is non-negative on
every element of σ(A0), and this σ-algebra coincides with the Borel σ-algebra on the space X.
Thus, the measure (F + 12 ‖c‖∞) · µ is non-negative, and therefore F (x1, x2, x3) + 12 ‖c‖∞ ≥ 0
for µ-a.e. points x ∈ X.

Theorem 6.11. Let X1, X2, X3 be Polish spaces, let µi ∈ P(Xi) for 1 ≤ i ≤ 3, and let
µij = µi ⊗ µj for all {i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. Then

(a) there exists a solution {fij} to the relaxed dual problem such that

−17 ‖c‖∞ ≤ fij(xi, xj) ≤ 13
1

3
‖c‖∞ ;

(b) there exists a solution {fij} to the standard dual problem such that

−26
2

3
‖c‖∞ ≤ fij(xi, xj) ≤ 13

1

3
‖c‖∞ .

Proof. First, it follows from Theorem 5.17 that there exists a (real-valued) solution {fij} to the
relaxed dual problem. By Theorem 6.10 we conclude that the inequality

‖c‖∞ ≥ f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞ (26)

holds for µ1 ⊗ µ2 ⊗ µ3-almost all points.
Consider a finite (3, 2)-function F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3). Let A

be the set of points (x1, x2, x3) ∈ X such that either F (x1, x2, x3) < −12 ‖c‖∞ or F (x1, x2, x3) >
‖c‖∞. By inequality (26) we have µ1 ⊗ µ2 ⊗ µ3(A) = 0. Applying Lemma 5.5 to the indicator
function of the set A, we conclude that there exists a point (y1, y2, y3) ∈ X such that for each
α ∈ I3 the set Aα = {xα ∈ Xα : (xα, y{1,2,3}\α) ∈ A} have a zero measure with respect to µα.
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For each α ∈ I3 consider the function Fα : xα 7→ F (xαy{1,2,3}\α). If xα 6∈ Aα, then ‖c‖∞ ≥
Fα(xα) ≥ −12 ‖c‖∞, and therefore this inequality holds for µα-almost all xα ∈ Xα. Consider
the functions

f̂12(x1, x2) = F (x1, x2, y3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, x2, y3) +

1

3
F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3)− 1

2
F (x1, y2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3)− 1

2
F (y1, x2, y3)− 1

2
F (y1, y2, x3) +

1

3
F (y1, y2, y3).

By Example 5.4 the equation F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) holds for all
(x1, x2, x3) ∈ X. In addition, one can easily verify that the inequality

−17 ‖c‖∞ ≤ f̂ij(xi, xj) ≤ 13
1

3
‖c‖∞

holds for µij-almost all (xi, xj) ∈ Xij .
Thus, there exists a tuple of bounded measurable functions {gij} such that gij = f̂ij almost

everywhere and

−17 ‖c‖∞ ≤ gij(xi, xj) ≤ 13
1

3
‖c‖∞

for all (xi, xj) ∈ Xij . The inequality

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = F (x1, x2, x3) ≤ c(x1, x2, x3)

holds at all points except a zero (3, 2)-thickness set, and therefore {ĝij} ∈ Ψc(µij). Finally, we
have∫

X12

g12 dµ12 +

∫
X13

g13 dµ13 +

∫
X23

g23 dµ23 =

∫
X
F dµ

=

∫
X12

f12 dµ12 +

∫
X13

f13 dµ13 +

∫
X23

f23 dµ23,

and therefore {gij} is a solution to the relaxed dual problem satisfying assertion 6.11(a).
Since {gij} ∈ Ψc(µij), there exists a tuple of subsets Yij ⊂ Xij such that µij(Yij) = 0 and if

(xi, xj) 6∈ Yij for all {i, j}, then

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) ≤ c(x1, x2, x3).

Consider the tuple of functions {ĝij}: ĝij(xi, xj) = g(xi, xj) if (xi, xj) 6∈ Yij , and ĝij(xi, xj) =
−262

3‖c‖∞ otherwise. We have ĝij(xi, xj) = gij(xi, xj) almost everywhere, and one can easily
verify that the inequality

ĝ12(x1, x2) + ĝ13(x1, x3) + ĝ23(x2, x3) ≤ c(x1, x2, x3)

holds for all points (x1, x2, x3) ∈ X. Thus, {ĝij} is a solution to the standard dual problem
satisfying assertion 6.11(b).

6.2 Uniqueness of a continuous dual solution for the cost function x1x2x3

Let us recall to the reader our main example of the multistochastic (3, 2)-problem:

Problem 6.12. For 1 ≤ i ≤ 3, let Xi = [0, 1], let µij be the restriction of the Lebesgue measure
to the square [0, 1]2, and let c(x1, x2, x3) = x1x2x3.
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Primal problem. Find a uniting measure π ∈ Π(µij) such that∫
x1x2x3 dπ → min .

Dual problem. Find a tuple of functions {fij} ⊂ L1([0, 1]2) such that∑
{i,j}∈I3,2

fij(xi, xj) ≤ x1x2x3 for all (x1, x2, x3) ∈ [0, 1]3,

∑
{i,j}∈I3,2

∫ 1

0

∫ 1

0
fij(xi, xj) dxidxj → max .

In [14] the authors describe solutions to this problems. First, we define a binary operator
⊕ (called "bitwise exclusive or" or just "xor") on the segment [0, 1]. Given x and y on [0, 1],
we consider their binary representations x = 0,x1x2x3 . . .2, y = 0,y1y2y3 . . .2. We agree that
every dyadic rational number less then 1 has a finite numbers of units in its decomposition.
The number 1 will be always decomposed as follows: 1 = 0,111 . . .2. Then we define x ⊕ y =
0,x1 ⊕ y1 x2 ⊕ y2 . . .2, where ⊕ is an addition in F2. Using this binary operation, the solutions
to the primal problem can be described as follows:

Theorem 6.13 (Primal problem solution). Consider the mapping T : [0, 1]2 → [0, 1]3, (x, y) 7→
(x, y, x⊕y). Denote by π the image of the Lebesgue measure restricted to the square [0, 1]2 under
the mapping T . Then π is a solution to primal Problem 6.12.

In [14] the authors show that π is concentrated on the set

{(x, y, z) ∈ [0, 1]3 : x⊕ y ⊕ z = 0},

and this set is a self-similar fractal, which is called "Sierpińsky tetrahedron". Let us verify for
the completeness of the picture the following description of the support of π.

Definition 6.14. Denote by Ja1,a2,a3n the image of [0, 1]3 under the mapping

(x1, x2, x3) 7→
(
a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
.

Let
Jn =

⋃
0≤ai<2n

a1⊕a2⊕a3=0

Ja1,a2,a3n ,

One can find images of J1, J2 and J3 on Fig. 4. Denote

S =
⋂
n≥1

Jn.

The set S is called Sierpińsky tetrahedron.

Lemma 6.15. The set Jn contains a point (x1, x2, x3) if and only if there exist binary represen-
tations of each coordinates xi =

∑∞
k=1 xi,k/2

k such that x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n.

Proof. First, suppose that (x1, x2, x3) ∈ Jn. By construction, there exist integers a1, a2, a3 such
that 0 ≤ ai < 2n, bitwise xor of a1, a2 and a3 is zero, and (x1, x2, x3) ∈ Ja1,a2,a3n . Since

Ja1,a2,a3n =

[
a1

2n
,
a1 + 1

2n

]
×
[
a2

2n
,
a2 + 1

2n

]
×
[
a3

2n
,
a3 + 1

2n

]
,
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Figure 4: The sets J1, J2 and J3

we conclude that xi = (ai + yi)/2
n for all 1 ≤ i ≤ 3, where 0 ≤ yi ≤ 1.

Since ai < 2n, the binary representation of ai contains at most n digits. Let ai,1ai,2 . . . ai,n2
be the binary representation of ai supplemented by zeros up to length n. Since a1⊕ a2⊕ a3 = 0,
we have a1,k ⊕ a2,k ⊕ a3,k = 0 for all 1 ≤ k ≤ n. Hence, if yi =

∑∞
k=1 yi,k/2

k, then

xi =

n∑
k=1

ai,k
2k

+

∞∑
k=n+1

yi,k−n
2k

provided by xi = (ai+yi)/2
n. This equation provides a binary representation of each coordinates

xi =
∑∞

k=1 xi,k/2
k such that x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n.

Suppose that (x1, x2, x3) is a point on [0, 1]3 and xi =
∑∞

k=1 xi,k/2
k for 1 ≤ i ≤ 3, where all

xi,k are 0 or 1, and x1,k⊕x2,k⊕x3,k = 0 for all 1 ≤ k ≤ n. Denote by ai an integer formed by the
first n digits of xi after radix point. We have xi = (ai + yi)/2

n for 1 ≤ i ≤ 3, where 0 ≤ yi ≤ 1,
and therefore (x1, x2, x3) ∈ Ja1,a2,a3n . In addition, 0 ≤ ai < 2n, and since x1,k ⊕ x2,k ⊕ x3,k = 0
for all 1 ≤ k ≤ n, we conclude that a1 ⊕ a2 ⊕ a3 = 0. Thus, (x1, x2, x3) ∈ Ja1,a2,a3n ⊂ Jn.

Using that, we can describe all points of the Sierpińsky tetrahedron in terms of their binary
representations.

Proposition 6.16. The Sierpińsky tetrahedron S contains a point (x1, x2, x3) if and only if there
exist binary representations of each coordinates xi =

∑∞
k=1 xi,k/2

k such that

x1,k ⊕ x2,k ⊕ x3,k = 0 for all k;

Proof. Suppose that (x1, x2, x3) is a point on [0, 1]3 and xi =
∑∞

k=1 xi,k/2
k for 1 ≤ i ≤ 3, where

all xi,k are 0 or 1, and x1,k ⊕ x2,k ⊕ x3,k = 0 for all k. Then it follows from Lemma 6.15 that
(x1, x2, x3) is contained in Jn for all n. Thus,

(x1, x2, x3) ∈
⋂
n≥1

Jn = S.

Suppose that (x1, x2, x3) ∈ S. Then (x1, x2, x3) ∈ Jn for all n, and therefore there exist
binary representations of each coordinates xi =

∑∞
k=1 x

n
i,k/2

k such that xn1,k ⊕xn2,k ⊕xn2,k = 0 for
all 1 ≤ k ≤ n. For any nonnegative real number, there are at most two binary representations
of this number, and therefore there exist at most eight tuples of binary representations of the
point (x1, x2, x3). Hence, there exists at least one of them xi =

∑∞
k=1 xi,k/2

k such that the
property x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n holds for an infinite number of n. Thus,
x1,k ⊕ x2,k ⊕ x3,k = 0 for all k.

53



Proposition 6.17. The Sierpińsky tetrahedron S has the following properties:

(a) the set S a closed subset of [0, 1]3;

(b) a point (x, y, x⊕ y) is contained in S for all x, y ∈ [0, 1];

(c) if Sa1,a2,a3n is the image of S under a mapping

(x1, x2, x3) 7→
(
a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
,

then

S =
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Sa1,a2,a3n

Proof. The set Jn is closed since Jn is a finite union of closed sets. Thus, since S is an intersection
of the closed sets Jn, we conclude that S is closed too, and this implies assertion 6.17(a).

Assertion 6.17(b) trivially holds by Proposition 6.16.
Let us verify assertion 6.17(c). Suppose that (x1, x2, x3) ∈ S. By Proposition 6.16, there

exist binary representations xi =
∑n

k=1 xi,k/2
k such that x1,k ⊕ x2,k ⊕ x3,k = 0 for all k. Denote

by ai an integer formed by the first n digits of xi after radix point. We have 0 ≤ ai < 2n,
and since x1,k ⊕ x2,k ⊕ x3,k = 0 for all k, we conclude that a1 ⊕ a2 ⊕ a3 = 0. In addition,
xi = (ai+yi)/2

n, where yi =
∑n

k=1 xi,n+k/2
k. By Proposition 6.16 (y1, y2, y3) ∈ S, and therefore

(x1, x2, x3) ∈ Sa1,a2,a3n . Thus
S ⊆

⋃
0≤ai<2n,

a1⊕a2⊕a3=0

Sa1,a2,a3n

Suppose that (x1, x2, x3) ∈ Sa1,a2,a3n , where 0 ≤ ai < 2n and a1 ⊕ a2 ⊕ a3 = 0. Since ai < 2n,
the binary representation of ai contains at most n digits. Let ai,1ai,2 . . . ai,n2 be the binary
representation of ai supplemented by zeros up to length n. Since a1 ⊕ a2 ⊕ a3 = 0, we have
a1,k ⊕ a2,k ⊕ a3,k = 0 for all 1 ≤ k ≤ n.

By construction, there exists a point (y1, y2, y3) ∈ S such that xi = (ai + yi)/2
n. By Propo-

sition 6.16, there exist binary representations yi =
∑∞

k=1 yi,k/2
k such that y1,k ⊕ y2,k ⊕ y3,k = 0.

Hence,

xi =
ai + yi

2n
=

n∑
k=1

ai,k
2k

+
∞∑

k=n+1

yi,k−n
2k

,

and therefore by Proposition 6.16 (x1, x2, x3) ∈ S. Thus,

S ⊇
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Sa1,a2,a3n ,

and this completes the proof of assertion 6.17(c).

Following the proof of the main result in [14] the reader can extract the following statement:

Theorem 6.18. For 1 ≤ i ≤ 3, let Xi = [0, 1], let µij be the Lebesgue measure restricted to
the square [0, 1]2, and let c(x1, x2, x3) = x1x2x3. If the measure π is uniting for {µij} and
supp(π) * Jn for some n, then there exists a measure π̃ ∈ Π(µij) such that∫

[0,1]3
x1x2x3 π̃(dx1, dx2, dx3) <

∫
[0,1]3

x1x2x3 π(dx1, dx2, dx3).
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If π is a solution to primal Problem 6.12, then it follows from Theorem 6.18 that supp(π) ⊆ Jn
for all n. Hence, supp(π) ⊆ ∩n≥1Jn, and this implies the following proposition.

Proposition 6.19. If π is a solution to primal Problem 6.12, then supp(π) ⊆ S, where S is the
Sierpińsky tetrahedron.

Using that, let us prove that there exists a unique solution to primal Problem 6.12.

Lemma 6.20. There exists at most one measure π on [0, 1]3 such that supp(π) ⊆ S and Pr12(π)
coincides with the Lebesgue measure µ12 on the square [0, 1]2.

Proof. Let Γ = {(x, y, x ⊕ y) : (x, y) ∈ [0, 1]2}. It follows from assertion 6.17(b) that Γ ⊆ S.
Consider the set Sb = S\Γ, and consider a point (x1, x2, x3) ∈ Sb. Suppose that both points
x1 and x2 are not dyadic rationals. If x is not a dyadic rational, then there exists a unique
binary representation of x. Hence, it follows from Proposition 6.16 that there exists at most
one z ∈ [0, 1] such that (x1, x2, z) ∈ S. By assertion 6.17(b) we have (x1, x2, x1 ⊕ x2) ∈ S, and
therefore x3 = x1 ⊕ x2. Thus, (x1, x2, x3) ∈ Γ, and this contradicts the point selection.

This contradiction proves that if (x1, x2, x3) ∈ Sb, then at least one of x1 and x2 is a dyadic
rational. Hence, µ12(Pr12(Sb)) = 0, and therefore π(Sb) = 0 provided by Pr12(π) = µ12. Thus,
since supp(π) ⊆ S, we get π(Γ) = 1.

Let A be a measurable subset of [0, 1]3. Since π(Γ) = 1, we have π(A\Γ) = 0, and therefore

π(A) = π(A ∩ Γ). (27)

Denote AΓ = A ∩ Γ. The set AΓ is a measurable subset of Γ. Since for each (x1, x2) ∈ [0, 1]2

there exists exactly one x3 such that (x1, x2, x3) ∈ Γ, we get

AΓ = (Pr12(AΓ)×X3) ∩ Γ.

Applying equation (27) to the set Pr12(AΓ)×X3, we get

π((Pr12(AΓ)×X3) ∩ Γ) = π(Pr12(AΓ)×X3) = µ12(Pr12(AΓ))

provided by Pr12(π) = µ12. From all equations above we get

π(A) = π(AΓ) = π((Pr12(AΓ)×X3) ∩ Γ) = µ12(Pr12(AΓ)).

Thus, the measure of the set A with respect to π is independent on π, and therefore there
exists at most one measure π such that supp(π) ⊆ S and Pr12(π) = µ12.

Theorem 6.21. There exists a unique solution π to primal Problem 6.12.

Proof. If π is a solution to the problem, then Pr12(π) = µ12, and it follows from Proposition 6.19
that supp(π) ⊆ S. By Lemma 6.20, there exists at most one measure π with that properties.
Thus, there exists at most one solution to primal Problem 6.12.

The existence of a solution follows from Theorem 2.8.

Finally, let us find exactly the support of the solution to primal Problem 6.12.

Proposition 6.22. If π is the solution to primal Problem 6.12, then supp(π) = S.

Proof. It follows from Proposition 6.19 that supp(π) ⊆ S ⊂ Jn for all n, and therefore π(Jn) = 1.
By definition of Jn,

Jn =
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Ja1,a2,a3n .
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We have
Pr12(Ja1,a2,a3n ) =

[
a1

2n
,
a1 + 1

2n

]
×
[
a2

2n
,
a2 + 1

2n

]
.

For each pair a1, a2 such that 0 ≤ a1, a2 < 2n there exists a unique a3 such that 0 ≤ a3 < 2n

and a1⊕ a2⊕ a3 = 0. Hence, projections to X1×X2 of all components of Jn overlapping by the
sets of measure zero with respect to µ12, and therefore

π(Ja1,a2,a3n ) = µ12(Pr12(Ja1,a2,a3n )) =
1

4n
if a1 ⊕ a2 ⊕ a3 = 0. (28)

Suppose that supp(π) 6= S. Since supp(π) is closed, there exist a point x0 ∈ S and a non-
negative integer n such that if |x − x0| < 21−n, then x is not contained in supp(π). Since
x0 ∈ S ⊂ Jn, there exist integers a1, a2, a3 such that 0 ≤ a1, a2, a3 < 2n, bitwise xor of a1, a2, a3

is zero, and x0 ∈ Ja1,a2,a3n . We have

Ja1,a2,a3n =

[
a1

2n
,
a1 + 1

2n

]
×
[
a2

2n
,
a2 + 1

2n

]
×
[
a3

2n
,
a3 + 1

2n

]
;

hence, diam(Ja1,a2,a3n ) < 21−n, and therefore supp(π) ∩ Ja1,a2,a3n = ∅. This contradicts equation
(28).

In [14] the authors also found a solution to the dual Problem 6.12.

Theorem 6.23 (Dual problem solution). Denote

f(x, y) =

∫ x

0

∫ y

0
s⊕ t dsdt− 1

4

∫ x

0

∫ x

0
s⊕ t dsdt− 1

4

∫ y

0

∫ y

0
s⊕ t dsdt.

Then the tuple of functions fij : (xi, xj) 7→ f(xi, xj) is a solution to dual Problem 6.12.

This solution to the dual problem is not unique. First, for 1 ≤ i ≤ 3 let fi be an integrable
function on the segment [0, 1]. Consider the following functions

f̂12(x1, x2) = f12(x1, x2) + f1(x1)− f2(x2),

f̂23(x2, x3) = f23(x2, x3) + f2(x2)− f3(x3),

f̂13(x1, x3) = f13(x1, x3) + f3(x3)− f1(x1).

Clearly ∑
{i,j}∈I32

f̂ij(xi, xj) =
∑

{i,j}∈I32

fij(xi, xj) for all (x1, x2, x3) ∈ [0, 1]3

and ∑
{i,j}∈I32

∫ 1

0

∫ 1

0
f̂ij(xi, xj) dxidxj =

∑
{i,j}∈I32

∫ 1

0

∫ 1

0
fij(xi, xj) dxidxj ,

and therefore the functions {f̂ij} are also the solution to the dual problem.
In what follows, we prove that there is no other continuous solutions to the related dual

problem.

Lemma 6.24. If a tuple of functions {fij} is a solution to dual Problem 6.12, function fij
is continuous for all {i, j} ∈ I3,2, and a1, a2 and a3 are non-negative integers such that 0 ≤
a1, a2, a3 < 2n and a1 ⊕ a2 ⊕ a3 = 0, then

|F (x1, x2, x3)− x1x2x3| ≤
13

23n
for all (x1, x2, x3) ∈ Ja1,a2,a3n ,
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where

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

and

Ja1,a2,a3n =

[
a1

2n
,
a1 + 1

2n

]
×
[
a2

2n
,
a2 + 1

2n

]
×
[
a3

2n
,
a3 + 1

2n

]
.

Proof. Since {fij} is a solution to the dual problem, we have

F (x1, x2, x3) ≤ x1x2x2 for all (x1, x2, x3) ∈ [0, 1]3. (29)

Let π be the solution to primal Problem 6.12. We have
∫
F dπ =

∫
x1x2x2 dπ, and therefore

F (x1, x2, x3) = x1x2x3 for π-a.e. (x1, x2, x3) ∈ [0, 1]3.

The function F (x1, x2, x3)−x1x2x3 is continuous; hence, the equation holds for all (x1, x2, x3) ∈
supp(π). By Proposition 6.22, the support of π coincides with the Sierpińsky tetrahedron S, and
therefore

F (x1, x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S. (30)

Consider the following functions:

f̂12(x1, x2) = 23nf12

(
a1 + x1

2n
,
a2 + x2

2n

)
− a1a2a3

3
− a2a3x1 + a1a3x2

2
− a3x1x2,

f̂13(x1, x3) = 23nf13

(
a1 + x1

2n
,
a3 + x3

2n

)
− a1a2a3

3
− a2a3x1 + a1a2x3

2
− a2x1x3,

f̂23(x2, x3) = 23nf23

(
a2 + x2

2n
,
a3 + x3

2n

)
− a1a2a3

3
− a1a3x2 + a1a2x3

2
− a1x2x3,

where 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 3. We claim that {f̂ij} is a solution to the dual problem.
First, one can easily verify that

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) =

23n

[
F

(
a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
− a1 + x1

2n
· a2 + x2

2n
· a3 + x3

2n

]
+ x1x2x3. (31)

Using inequality (29), we conclude that

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) ≤ x1x2x3 for all (x1, x2, x3) ∈ [0, 1]3. (32)

If (x1, x2, x3) ∈ S, then (
a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
∈ Sa1,a2,a3n .

By assertion 6.17(c), Sa1,a2,a3n ⊂ S; hence, if (x1, x2, x3) ∈ S, then by (30) we get

F

(
a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
=
a1 + x1

2n
· a2 + x2

2n
· a3 + x3

2n
,

and therefore

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S.
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Since supp(π) = S, we have∫
[0,1]2

f̂12(x1, x2) dx1dx2 +

∫
[0,1]2

f̂13(x1, x3) dx1dx3 +

∫
[0,1]2

f̂23(x2, x3) dx2dx3

=

∫
[0,1]3

(
f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

)
dπ =

∫
[0,1]3

x1x2x3 dπ. (33)

By equations (32) and (33) we conclude that {f̂ij} is a solution to dual Problem 6.12.
The cost function x1x2x3 is non-negative and µij = µi ⊗ µj for all {i, j} ∈ I3,2. Thus, we

are under assumptions of Theorem 6.10. We have ‖x1x2x3‖∞ = 1, where 0 ≤ xi ≤ 1 for all
1 ≤ i ≤ 3, and therefore

−12 ≤ f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) ≤ x1x2x3 ≤ 1

for almost all (x1, x2, x3) ∈ [0, 1]3. Since all f̂ij are continuous, we conclude that inequalities
holds for all points, and therefore∣∣∣f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

∣∣∣ ≤ 12 for all (x1, x2, x3) ∈ [0, 1]3.

Using equation (31), we conclude that∣∣∣∣F (a1 + x1

2n
,
a2 + x2

2n
,
a3 + x3

2n

)
− a1 + x1

2n
· a2 + x2

2n
· a3 + x3

2n

∣∣∣∣ ≤ 12 + x1x2x3

23n
≤ 13

23n

for all (x1, x2, x3) ∈ [0, 1]3, and therefore

|F (x1, x2, x3)− x1x2x3| ≤
13

23n
for all (x1, x2, x3) ∈ Ja1,a2,a3n .

Lemma 6.25. Let {fij} be a solution to the dual Problem 6.12. If {i, j} ∈ I3,2, a number n is
a positive integer, numbers ai and aj are non-negative integers such that 0 ≤ ai, aj < 2n, and
(xi, xj) and (yi, yj) are arbitrary points in the square[

ai
2n
,
ai + 1

2n

]
×
[
aj
2n
,
aj + 1

2n

]
,

then ∣∣∣∣∣fij(xi, xj)− fij(yi, xj)− fij(xi, yj) + fij(yi, yj)−
∫ yi

xi

∫ yj

xj

s⊕ t dsdt

∣∣∣∣∣ ≤ 54

23n
.

Without loss of generality it can be assumed that {i, j} = {1, 2}. Let a3 = a1 ⊕ a2, and let
(x1, x2, x3) and (y1, y2, y3) be arbitrary points of the cube Ja1,a2,a3n . We have

F (x1, x2, x3)− F (y1, x2, x3)− F (x1, y2, x3) + F (y1, y2, x3)

= f12(x1, x2)− f12(y1, x2)− f12(x1, y2) + f12(y1, y2). (34)

In addition,
x1x2x3 − y1x2x3 − x1y2x3 + y1y2x3 = x3(x1 − y1)(x2 − y2). (35)

On the other hand, it follows from Lemma 6.24 that

|F (x1, x2, x3) + F (y1, y2, x3)− x1x2x3 − y1y2x3

− F (y1, x2, x3)− F (x1, y2, x3) + y1x2x3 + x1y2x3| ≤ 4 · 13

23n
=

52

23n
.
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Thus, taking into account equations (34) and (35), we get

|f12(x1, x2)− f12(y1, x2)− f12(x1, y2) + f12(y1, y2)− x3(x1 − y1)(x2 − y2)| ≤ 52

23n
. (36)

Since (x1, x2, x3) ∈ Ja1,a2,a3n , we have |a3/2
n − x3| ≤ 2−n. Since (y1, y2, y3) ∈ Ja1,a2,a3n , we

also have |x1 − y1| ≤ 2−n and |x2 − y2| ≤ 2−n. Thus,∣∣∣x3(x1 − y1)(x2 − y2)− a3

2n
(x1 − y1)(x2 − y2)

∣∣∣ =
∣∣∣a3

2n
− x3

∣∣∣ · |x1 − y1| · |x2 − y2| ≤
1

23n
. (37)

Next, let t be a point on the interval (a1/2
n, (a1 + 1)/2n), and let s be a point on an interval

(a2/2
n, (a2 + 1)/2n). One can easily verify that

a1 ⊕ a2

2n
≤ s⊕ t ≤ (a1 ⊕ a2) + 1

2n
,

and therefore, since a1 ⊕ a2 = a3, we get∣∣∣∣∫ y1

x1

∫ y2

x2

s⊕ t dsdt− a3

2n
(x1 − y1)(x2 − y2)

∣∣∣∣ ≤ 1

2n
· |x1 − y1| · |x2 − y2| ≤

1

23n
. (38)

Summarizing inequalities (36), (37), and (38), we conclude that∣∣∣∣f12(x1, x2)− f12(y1, x2)− f12(x1, y2) + f12(y1, y2)−
∫ y1

x1

∫ y2

x2

s⊕ t dsdt
∣∣∣∣ ≤ 54

23n
.

Lemma 6.26. If a tuple of functions {fij} is a solution to dual Problem 6.12 and fij is continuous
for all {i, j} ∈ I3,2, then

fij(xi, xj)− fij(xi, 0)− fij(0, xj) + fij(0, 0) =

∫ xi

0

∫ xj

0
s⊕ t dsdt

for all (xi, xj) ∈ [0, 1]3.

Proof. Let {uk}Nk=0 and {vl}Ml=0 be arbitrary points on the segment [0, 1]. One can easily verify
that

N∑
k=1

M∑
l=1

(fij(uk, vl)− fij(uk−1, vl)− fij(uk, vl−1) + fij(uk−1, vl−1))

= fij(uN , vM )− fij(u0, vM )− fij(uN , v0) + fij(u0, v0)

(39)

and
N∑
k=1

M∑
l=1

∫ uk

uk−1

∫ vl

vl−1

s⊕ t dsdt =

∫ uN

u0

∫ vM

v0

s⊕ t dsdt. (40)

Let (xi, xj) be an arbitrary point on the square [0, 1]2. Let N = d2nxie, and let M = d2nxje.
Finally, let uk = k/2n for all 0 ≤ k < N and uN = xi, and similarly let vl = l/2n for all
0 ≤ l < M and vM = xj . By construction, both points (uk−1, vl−1) and (uk, vl) belong to the
square [

k − 1

2n
,
k

2n

]
×
[
l − 1

2n
,
l

2n

]
,

and therefore by Lemma 6.25 we have∣∣∣∣∣fij(uk, vl)− fij(uk−1, vl)− fij(uk, vl−1) + fij(uk−1, vl−1)−
∫ uk

uk−1

∫ vl

vl−1

s⊕ t dsdt

∣∣∣∣∣ ≤ 54

23n
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for all 1 ≤ k ≤ N and for all 1 ≤ l ≤M .
Taking into account equations (39) and (40), we conclude that∣∣∣∣fij(xi, xj)− fij(xi, 0)− fij(0, xj) + fij(0, 0)−

∫ xi

0

∫ xj

0
s⊕ t dsdt

∣∣∣∣
≤

N∑
k=1

M∑
l=1

∣∣∣fij(uk, vl)− fij(uk−1, vl)− fij(uk, vl−1)

+ fij(uk−1, vl−1)−
∫ uk

uk−1

∫ vl

vl−1

s⊕ t dsdt
∣∣∣

≤
N∑
k=1

M∑
l=1

54

23n
=

54 ·N ·M
23n

.

Thus, since N,M ≤ 2n, we get∣∣∣∣fij(xi, xj)− fij(xi, 0)− fij(0, xj) + fij(0, 0)−
∫ xi

0

∫ xj

0
s⊕ t dsdt

∣∣∣∣ ≤ 54

2n

for all (xi, xj) ∈ [0, 1]2 and for every positive integer n, and therefore

fij(xi, xj)− fij(xi, 0)− fij(0, xj) + fij(0, 0) =

∫ xi

0

∫ xj

0
s⊕ t dsdt.

Theorem 6.27. If a tuple of functions {fij} is a solution to Problem 6.12 and fij is continuous
for all {i, j} ∈ I3,2, then there exist continuous functions fi : [0, 1]→ R, 1 ≤ i ≤ 3, such that

f12(x1, x2) = f(x1, x2) + f1(x1)− f2(x2),

f23(x2, x3) = f(x2, x3) + f2(x2)− f3(x3),

and

f13(x1, x3) = f(x1, x3) + f3(x3)− f1(x1),

where
f(x, y) =

∫ x

0

∫ y

0
s⊕ t dsdt− 1

4

∫ x

0

∫ x

0
s⊕ t dsdt− 1

4

∫ y

0

∫ y

0
s⊕ t dsdt.

Proof. First, consider the function

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3).

It follows from equation (30) that

F (x1, x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S.

By assertion 6.17(b), all the points (0, x, x), (x, 0, x) and (x, x, 0) are contained in S, and therefore

F (0, x, x) = F (x, 0, x) = F (x, x, 0) = 0 for all x ∈ [0, 1]. (41)

In particular, taking x = 0, we conclude that

f12(0, 0) + f13(0, 0) + f23(0, 0) = F (0, 0, 0) = 0. (42)

Denote f̂ij(xi, xi) = fij(xi, xj)− fij(0, 0). We have f̂ij(0, 0) = 0; it follows from (42) that

F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3).
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By Lemma 6.26 we have

f̂ij(xi, xj) =

∫ xi

0

∫ xj

0
s⊕ t dsdt+ f̂ij(xi, 0) + f̂ij(0, xj), (43)

and therefore

F (x1, x2, x3) =

∫ x1

0

∫ x2

0
s⊕ t dsdt+

∫ x1

0

∫ x3

0
s⊕ t dsdt+

∫ x2

0

∫ x3

0
s⊕ t dsdt

+ ϕ1(x1) + ϕ2(x2) + ϕ3(x3),

(44)

where

ϕ1(x1) = f̂12(x1, 0) + f̂13(x1, 0),

ϕ2(x2) = f̂12(0, x2) + f̂23(x2, 0),

ϕ3(x3) = f̂13(0, x3) + f̂23(0, x3).

(45)

Since f̂i,j(0, 0) = 0 for all {i, j} ∈ I3,2, we have ϕi(0) = 0 for all 1 ≤ i ≤ 3. Hence, using
equations (41) and (44) we get

0 = F (0, x, x) =

∫ x

0

∫ x

0
s⊕ t dsdt+ ϕ2(x) + ϕ3(x),

0 = F (x, 0, x) =

∫ x

0

∫ x

0
s⊕ t dsdt+ ϕ1(x) + ϕ3(x),

0 = F (x, x, 0) =

∫ x

0

∫ x

0
s⊕ t dsdt+ ϕ1(x) + ϕ2(x)

for all x ∈ [0, 1]. Thus, we obtain

ϕi(x) = −1

2

∫ x

0

∫ x

0
s⊕ t dsdt (46)

for all x ∈ [0, 1] for 1 ≤ i ≤ 3.
Consider the functions fi(xi), 1 ≤ i ≤ 3, satisfying the following equations:

f̂12(x1, 0) = f1(x1)− 1

4

∫ x1

0

∫ x1

0
s⊕ t dsdt,

f̂23(x2, 0) = f2(x2)− 1

4

∫ x2

0

∫ x2

0
s⊕ t dsdt,

f̂13(0, x3) = f3(x3)− 1

4

∫ x3

0

∫ x3

0
s⊕ t dsdt.

(47)

The function fi is continuous for 1 ≤ i ≤ 3. Combining equations (45) and (46) we get

f̂12(0, x2) = ϕ2(x2)− f̂23(x2, 0) = −1

2

∫ x2

0

∫ x2

0
s⊕ t dsd− f̂23(x2, 0),

and using the representation of f̂23 from equation (47) we get

f̂12(0, x2) = −f2(x2)− 1

4

∫ x2

0

∫ x2

0
s⊕ t dsdt. (48)

Substituting equations (47) and (48) into (43) we obtain the following relation:

f̂12(x1, x2) =

∫ x1

0

∫ x2

0
s⊕ t dsdt+ f̂12(x1, 0) + f̂12(0, x2)

=

∫ x1

0

∫ x2

0
s⊕ t dsdt− 1

4

∫ x1

0

∫ x1

0
s⊕ t dsdt− 1

4

∫ x2

0

∫ x2

0
s⊕ t dsdt+ f1(x1)− f2(x2)

= f(x1, x2) + f1(x1)− f2(x2).
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Similarly, we conclude that f̂23(x2, x3) = f(x2, x3)+f2(x2)−f3(x3) and f̂13(x1, x3) = f(x1, x3)+
f3(x3)− f1(x1).

Finally, since f12(0, 0)+f13(0, 0)+f23(0, 0) = 0, there exist real numbers C1, C2 and C3 such
that f12(0, 0) = C1 − C2, f23(0, 0) = C2 − C3 and f13(0, 0) = C3 − C1. Thus,

f12(x1, x2) = f̂12(x1, x2) + f12(0, 0) = f(x1, x2) + (f1(x1) + C1)− (f2(x2) + C2),

f23(x2, x3) = f̂23(x2, x3) + f23(0, 0) = f(x2, x3) + (f2(x2) + C2)− (f3(x3) + C3),

f11(x1, x3) = f̂13(x1, x3) + f13(0, 0) = f(x1, x3) + (f3(x3) + C3)− (f1(x1) + C1).

6.3 Example of a discontinuous solution to a dual problem

It is known that any dual multimarginal problem admits a regular solution provided the cost
function is regular. For instance, applying the Legendre-type transformation, the reader can
easily verify that for a Lipschitz cost functions there exists a Lipschitz dual solution. In this
section we prove that a natural solution to the dual (3, 2)-problem can be even discontinuous
and (in a sense) unique.

Consider the following (3, 2)-problem.

Problem 6.28. For 1 ≤ i ≤ 3, let Xi = [0, 1], let µij be the restriction of the Lebesgue measure
onto the square [0, 1]2, and let c(x1, x2, x3) = max(0, x1 + x2 + 3x3 − 3).

Primal problem. Find a uniting measure π ∈ Π(µij) such that∫
c(x1, x2, x3) dπ → min .

Dual problem. Find a tuple of functions {fij} ⊂ L1([0, 1]2) such that∑
{i,j}∈I3,2

fij(xi, xj) ≤ c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3,

∑
{i,j}∈I3,2

∫ 1

0

∫ 1

0
fij(xi, xj) dxidxj → max .

The cost function c(x1, x2, x3) = max(0, x1 + x2 + 3x3 − 3) is Lipschitz continuous, and the
tuple of measures {µij} is redicible; hence, there is no duality gap, and solutions to both primal
and dual problems exist.

Proposition 6.29. Let

f12(x1, x2) = 0 for all points (x1, x2) ∈ [0, 1]2;

f13(x1, x3) =

{
0, if x3 <

2
3 ,

x1 + 3
2x3 − 3

2 , if x3 ≥ 2
3 ;

f23(x2, x3) =

{
0, if x3 <

2
3 ,

x2 + 3
2x3 − 3

2 , if x3 ≥ 2
3 .

Denote F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3). Then

(a) F (x1, x2, x3) ≤ c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3;

(b) if the value of x1 + x2 + 3x3 is integer and (x1, x2, x3) 6= (0, 0, 2/3), then F (x1, x2, x3) =
c(x1, x2, x3).
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Proof. First, one can easily verify the following representation for the function F :

F (x1, x2, x3) =

{
0, if x3 <

2
3 ,

x1 + x2 + 3x3 − 3, if x3 ≥ 2
3 .

(49)

Thus, F (x1, x2, x3) ≤ max(0, x1 + x2 + 3x3 − 3) = c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3, and
this implies assertion 6.29(a).

Suppose that the value of x1 + x2 + 3x3 is integer. Consider the case x3 < 2/3. Equation
(49) implies that F (x1, x2, x3) = 0. Since x1, x2 ≤ 1, we have x1 + x2 + 3x3 < 4, and therefore
x1 + x2 + 3x3 ≤ 3. Thus, c(x1, x2, x3) = max(x1 + x2 + 3x3 − 3, 0) = 0 = F (x1, x2, x3).

Consider the case x3 ≥ 2/3. By equation (49), F (x1, x2, x3) = x1 + x2 + 3x3 − 3. If
(x1, x2, x3) 6= (0, 0, 2/3), then x1 + x2 + 3x3 > 2, and therefore, since x1 + x2 + 3x3 is integer,
x1 + x2 + 3x3 ≥ 3. Thus, if (x1, x2, x3) 6= (0, 0, 2/3), then c(x1, x2, x3) = x1 + x2 + 3x3 − 3 =
F (x1, x2, x3), and this implies assertion 6.29(b).

We claim that the constructed tuple of functions {fij} is a solution to the dual Problem 6.28.
By Proposition 6.29 it is enough to find a measure π ∈ Π(µij) such that π is concentrated on
the set {(x1, x2, x3) : frac(x1 + x2 + 3x3) = 0}. The proof of the following lemma is easy and is
left to the reader.

Lemma 6.30. There exists a measure π1,1,1 concentrated on the set

{(x1, x2, x3) : frac(x1 + x2 + x3) = 0}

such that Prij(π) coincides with the Lebesgue measure restricted to the square [0, 1]2 for all
{i, j} ∈ I3,2.

Using this lemma, we prove a more general statement.

Proposition 6.31. Assume we are given positive integers a1, a2 and a3. Then there exists a
measure πa1,a2,a3 ∈ Π(µij) concentrated on the set

{(x1, x2, x3) : frac(a1x1 + a2x2 + a3x3) = 0}.

Proof. Let t1, t2 and t3 be non-negative integers such that 0 ≤ ti < ai for 1 ≤ i ≤ 3. Consider
the mapping

T : (x1, x2, x3) 7→
(
x1 + t1
a1

,
x2 + t2
a2

,
x3 + t3
a3

)
.

Let πt1,t2,t3a1,a2,a3 be the image of the measure π1,1,1 under the mapping T . First, if (y1, y2, y3) =
T (x1, x2, x3), then a1y1 + a2y2 + a3y3 = (x1 + x2 + x3) + (t1 + t2 + t3). Hence,

frac(x1 + x2 + x3) = frac(a1y1 + a2y2 + a3y3),

and therefore, since π1,1,1 is concentrated on the set {(x1, x2, x3) : frac(x1 + x2 + x3) = 0}, the
measure πt1,t2,t3a1,a2,a3 is concentrated on the set {(y1, y2, y3) : frac(a1y1 + a2y2 + a3y3) = 0}.

In addition, for all {i, j} ∈ I3,2 the measure Prij(π
t1,t2,t3
a1,a2,a3) is the image of Prij(π1,1,1) under

the mapping

(xi, xj) 7→
(
xi + ti
ai

,
xj + tj
aj

)
.

Thus, Prij(π
t1,t2,t3
a1,a2,a3) is proportional to the Lebesgue measure restricted to the square[

ti
ai
,
ti + 1

ai

]
×
[
tj
aj
,
tj + 1

aj

]
. (50)
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x2

x1

x3

Figure 5: The support of the solution π described in Proposition 6.33. The support of the
measure π1 is red, and support of π̂1,1,2 is blue.

Let
πa1,a2,a3 =

1

a1a2a3

∑
0≤ti<ai

πt1,t2,t3a1,a2,a3 .

The measure πa1,a2,a3 is a probability measure concentrated on the set

{(y1, y2, y3) : frac(a1y1 + a2y2 + a3y3) = 0}.

In addition, it follows from (50) that Prij(πa1,a2,a3) is the Lebesgue measure restricted to the
square [0, 1]2.

Using this proposition, we immediately obtain the following theorem.

Theorem 6.32. The tuple of functions {fij} described in Proposition 6.29 is a solution to the
dual Problem 6.28, and the measure π1,1,3 ∈ Π(µij), concentrated on the set

{(x1, x2, x3) : frac(x1 + x2 + 3x3) = 0},

is a solution to the primal Problem 6.28.

Unlike Problem 6.12, a solution to the primal Problem 6.28 is non-unique.

Proposition 6.33. Let π1 be the restriction of the Lebesgue measure to the set {(x1, x2, x3) : 0 ≤
x1, x2 ≤ 1, 0 ≤ x3 ≤ 1/3}, and let π2 be the image of the measure π̂1,1,2 described in Proposi-
tion 6.31 under the mapping

T : (x1, x2, x3) 7→
(
x1, x2,

2

3
x3 +

1

3

)
.

Then the measure π = π1 + 2
3 π̂1,1,2 is uniting and the function F (x1, x2, x3) described in

Proposition 6.29 satisfies: F (x1, x2, x3) = c(x1, x2, x3) π-a.e. Consequently, the measure π is a
solution to the primal Problem 6.28 (see Fig. 5).
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Proof. By construction, Pr12(π1) is proportional to the restriction of the Lebesgue measure to
the square [0, 1]2. The mapping T does not change the projection of a measure onto the space
X12, and therefore Pr12(π̂1,1,2) is also proportional to the restriction of the Lebesgue measure to
the square [0, 1]2. Thus, Pr12(π) = µ12.

The measure Pr13(π1) coincides with the restriction of the Lebesgue measure to the rectangle
{(x1, x3) : 0 ≤ x1 ≤ 1, 0 ≤ x3 ≤ 1/3}. The measure Pr13(π̂1,1,2) is the image of Pr13(π1,1,2) under
the mapping

(x1, x3) 7→
(
x1,

2

3
x3 +

1

3

)
.

Thus, 2
3Pr13(π̂1,1,2) coincides with the restriction of the Lebesgue measure to the rectangle

{(x1, x3) : 0 ≤ x1 ≤ 1, 1/3 ≤ x3 ≤ 1}, and therefore Pr13(π) = µ13. Similarly, Pr23(π) = µ23,
and we conclude that π ∈ Π(µij).

Let (x1, x2, x3) be a point in [0, 1]3 such that x3 ≤ 1/3. By equation (49) we have
F (x1, x2, x3) = 0. In addition, x1 +x2 + 3x3−3 ≤ 0, and therefore c(x1, x2, x3) = 0. Thus, since
supp(π1) = {(x1, x2, x3) ∈ [0, 1]3 : 0 ≤ x3 ≤ 1/3}, we conclude that F (x1, x2, x3) = c(x1, x2, x3)
π1-a.e.

Let (x1, x2, x3) be an arbitrary point in the cube [0, 1]2, and let (y1, y2, y3) = T (x1, x2, x3).
We have y1 + y2 + 3y3 = x1 + x2 + 2x3 + 1, and therefore

frac(y1 + y2 + 3y3) = frac(x1 + x2 + 2x3).

Hence, we conclude that π̂1,1,2 is concentrated on the set {(x1, x2, x3) : frac(x1 + x2 + 3x3) = 0},
and therefore by assertion 6.29(b) F (x1, x2, x3) = c(x1, x2, x3) π̂1,1,2-a.e.

Thus, F (x1, x2, x3) = c(x1, x2, x3) for π-almost all points (x1, x2, x3) ∈ [0, 1]3, and the mea-
sure π is a solution to the primal Problem 6.28.

Unlike the primal problem, the dual problem admits a unique solution in the following sense.

Proposition 6.34. Let {gij} be a solution to the relaxed dual Problem 6.28. Then the equation

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

holds for almost all (x1, x2, x3) ∈ [0, 1]3, where the tuple of functions {fij} is defined in Proposi-
tion 6.29.

First, let us verify the following statement.

Lemma 6.35. Let {gij} be a solution to the relaxed dual Problem 6.28. Then there exist integrable
functions ϕ1 and ϕ2 such that g12(x1, x2) = ϕ1(x1) + ϕ2(x2) almost everywhere.

Proof. Consider the finite (3, 2)-function

G(x1, x2, x3) = g12(x1, x2) + g13(x1, x3) + g23(x2, x3).

Since {gij} is a solution to the relaxed dual problem, the equation G(x1, x2, x3) = c(x1, x2, x3)
holds π-almost everywhere, where π is a solution to the primal problem defined in Proposi-
tion 6.33. In particular, G(x1, x2, x3) = c(x1, x2, x3) for almost all points (x1, x2, x3) ∈ [0, 1]3

such that 0 ≤ x3 ≤ 1/3. Since c(x1, x2, x3) = max(x1 + x2 + 3x3 − 3, 0) = 0 if x3 ≤ 1/3, we
conclude that G(x1, x2, x3) = 0 for almost all (x1, x2, x3) ∈ [0, 1]3 such that 0 ≤ x3 ≤ 1/3.

In particular, there exists a point 0 ≤ x
(0)
3 ≤ 1/3 such that the equation G(x1, x2, x

(0)
3 ) = 0

holds for almost all (x1, x2) ∈ [0, 1]2. Hence, if we denote ϕ1(x1) = −g13(x1, x
(0)
3 ) and ϕ2(x2) =

−g23(x2, x
(0)
3 ), then the equation

g12(x1, x2) = −g13(x1, x
(0)
3 )− g23(x2, x

(0)
3 ) = ϕ1(x1) + ϕ2(x2)
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holds for almost all (x1, x2) ∈ [0, 1]2.
Let us verify that ϕ1 and ϕ2 are integrable. Since g12 is integrable, it follows from the Fubini-

Tonelli theorem that for almost all x(0)
2 ∈ [0, 1] the function x1 7→ g12(x1, x

(0)
2 ) = ϕ(x1)+ϕ2(x

(0)
2 )

is also integrable. Since ϕ2(x
(0)
2 ) is a constant, we conclude that ϕ1(x1) is integrable. The

integrability of ϕ2 is proven in the same manner.

It follows from Lemma 6.35 that if {gij} is a solution to the relaxed dual problem, then we
can set ĝ12(x1, x2) = 0, ĝ13(x1, x3) = g13(x1, x3) +ϕ1(x1) and ĝ23(x2, x3) = g23(x2, x3) +ϕ2(x2).
Then the equation

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = ĝ12(x1, x2) + ĝ13(x1, x3) + ĝ23(x2, x3)

holds for all (x1, x2, x3) ∈ [0, 1]3 except a zero (3, 2)-thickness set, and therefore the tuple of
functions {ĝij} is also a solution to the relaxed dual problem. Thus, in Proposition 6.34 we may
additionally assume that g12(x1, x2) = 0 for all (x1, x2) ∈ [0, 1]2.

Lemma 6.36. Let ϕ1 and ϕ2 be integrable functions defined on the segment [0, 1]. Suppose that
there exists a real ε > 0 such that the inequality ϕ1(x1) + ϕ2(x2) ≤ 0 holds for almost all points
(x1, x2) such that 0 ≤ x1 + x2 ≤ 1 + ε. Then∫ 1

0
ϕ1(x1) dx1 +

∫ 1

0
ϕ2(x2) ≤ 0.

Moreover, if the equality is achieved, then ϕ1(x1)+ϕ2(x2) = 0 for almost all (x1, x2) ∈ [0, 1]2.
The same is true if we replace the inequality 0 ≤ x1 + x2 ≤ 1 + ε with 1− ε ≤ x1 + x2 ≤ 2.

Proof. Without loss of generality we may assume that ε = 1/n for some positive integer n.
Consider the set A1 = {(x1, x2) ∈ [0, 1]2 : min(x1, x2) ≤ 1/(2n)}. Let µ1 be the restriction of the
Lebesgue measure to the set A1. One can easily verify that if ρ is the density of the projection
of µ1 to the axis, then ρ(x) = 1 if 0 ≤ x ≤ 1/(2n) and ρ(x) = 1/(2n) if 1/(2n) < x ≤ 1. In
addition, if min(x1, x2) ≤ 1/(2n), then 0 ≤ x1 + x2 ≤ 1 + 1/(2n), and therefore the inequality
ϕ1(x1) + ϕ2(x2) ≤ 0 holds µ1-almost everywhere.

Consider the set A2 = {(x1, x2) ∈ [0, 1]2 : b2nx1c + b2nx2c = 2n}. Let µ2 be the restriction
of the Lebesgue measure to the set A2. If b2nx1c + b2nx2c = 2n, then 2nx1 + 2nx2 < 2n + 2,
and therefore x1 + x2 < 1 + 1/n. Hence, ϕ1(x1) + ϕ2(x2) ≤ 0 for µ2-almost all points (x1, x2).
In addition, the projection of µ2 to the axis is proportional to the restriction of the Lebesgue
measure to the segment [1/(2n), 1], and the density of this projection is equal to 1/(2n) on this
segment. See Fig. 6 for the visualization of the sets A1 and A2.

Consider the measure µ = µ1 + (2n − 1)µ2. The projections of this measure to the axes
coincides with the restriction of the Lebesgue measure to the segment [0, 1]. In addition,
supp(µ) ⊂ {(x1, x2) ∈ [0, 1]2 : 0 ≤ x1 + x2 ≤ 1 + 1/n}. Thus, we have∫ 1

0
ϕ1(x1) dx1 +

∫ 1

0
ϕ2(x2) dx2 =

∫
[0,1]2

(ϕ1(x1) + ϕ2(x2))µ(dx1, dx2) ≤ 0.

Assume that the equality holds. Then ϕ1(x1) +ϕ2(x2) = 0 µ-almost everywhere. In particu-
lar, ϕ1(x1) +ϕ2(x2) = 0 for almost all points (x1, x2) ∈ A1, and therefore this equation holds for
almost all points (x1, x2) such that 0 ≤ x2 ≤ 1/(2n). Thus, by the Fubini-Tonelli theorem there
exists a point x(0)

2 ∈ [0, 1/(2n)] such that the equation ϕ1(x1) +ϕ2(x
(0)
2 ) = 0 holds for almost all

x1 ∈ [0, 1], and therefore there exists a constant C1 = −ϕ2(x
(0)
2 ) such that ϕ1(x1) = C1 almost

everywhere.
Similarly, there exists a constant C2 such that ϕ2(x2) = C2 almost everywhere. Then

0 =

∫ 1

0
ϕ1(x1) dx1 +

∫ 1

0
ϕ2(x2) dx2 = C1 + C2,
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Figure 6: The supports of the measures µ1 and µ2 for the case ε = 1
4 . The set A1 is colored red,

and the set A2 is blue.

and therefore ϕ1(x1) + ϕ2(x2) = 0. The case of the inequality 1− ε ≤ x1 + x2 ≤ 2 is proven in
the same manner.

Proof of Proposition 6.34. By Lemma 6.35 we may assume that g12 ≡ 0. Consider the finite
(3, 2)-function

G(x1, x2, x3) = g13(x1, x3) + g23(x2, x3).

The function G is integrable and the inequality G(x1, x2, x3) ≤ c(x1, x2, x3) holds for almost
all points (x1, x2, x3) ∈ [0, 1]3. Hence, there exists a set A ⊆ [0, 1] with full measure such
that if x(0)

3 ∈ A, then the function G(·, ·, x(0)
3 ) is integrable and the inequality G(x1, x2, x

(0)
3 ) ≤

c(x1, x2, x
(0)
3 ) holds for almost all (x1, x2) ∈ [0, 1]2.

Assume that x(0)
3 ∈ A and that x(0)

3 < 2/3. Consider the (3, 2)-function

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3) = f13(x1, x3) + f23(x2, x3).

By equation (49) we have F (x1, x2, x
(0)
3 ) = 0 for all (x1, x2) ∈ [0, 1]2.

Denote ε = 2− 3x
(0)
3 . We have ε > 0. If x1 + x2 ≤ 1 + ε, then x1 + x2 + 3x

(0)
3 − 3 ≤ 0, and

therefore
c(x1, x2, x

(0)
3 ) = max(x1 + x2 + 3x

(0)
3 − 3) = 0 = F (x1, x2, x

(0)
3 ).

In addition, since G(x1, x2, x
(0)
3 ) ≤ c(x1, x2, x

(0)
3 ) for almost all points (x1, x2), we conclude

that the inequality G(x1, x2, x
(0)
3 ) ≤ F (x1, x2, x

(0)
3 ) holds for almost all points (x1, x2) such that

0 ≤ x1 + x2 ≤ 1 + ε.
Consider the functions

ϕ1(x1) = g13(x1, x
(0)
3 )− f13(x1, x

(0)
3 ) and ϕ2(x2) = g23(x2, x

(0)
3 )− f23(x2, x

(0)
3 ). (51)

We have
ϕ1(x1) + ϕ2(x2) = G(x1, x2, x

(0)
3 )− F (x1, x2, x

(0)
3 ).

Hence, the function ϕ1(x1) +ϕ2(x2) is integrable on [0, 1]2, and therefore both functions ϕ1 and
ϕ2 are integrable on [0, 1]. In addition, the inequality ϕ1(x1) + ϕ2(x2) ≤ 0 holds for almost all
points (x1, x2) such that 0 ≤ x1 + x2 ≤ 1 + ε. Thus, it follows from Lemma 6.36 that∫

[0,1]2

(
G(x1, x2, x

(0)
3 )− F (x1, x2, x

(0)
3 )
)
dx1dx2 =

∫ 1

0
ϕ1(x1) dx1 +

∫ 1

0
ϕ2(x2) dx2 ≤ 0.

Moreover, if the equality holds, then G(x1, x2, x
(0)
3 ) = F (x1, x2, x

(0)
3 ) almost everywhere.
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Assume that x(0)
3 ∈ A and that x(0)

3 > 2/3. By equation (49) we have

F (x1, x2, x
(0)
3 ) = x1 + x2 + 3x

(0)
3 − 3.

Denote ε = 3x
(0)
3 − 2 > 0. If x1 + x2 > 1− ε, then x1 + x2 + 3x3 − 3 > 0, and therefore

c(x1, x2, x
(0)
3 ) = max(x1 + x2 + 3x

(0)
3 − 3, 0) = x1 + x2 + 3x

(0)
3 − 3 = F (x1, x2, x

(0)
3 ).

Hence, since G(x1, x2, x
(0)
3 ) ≤ c(x1, x2, x

(0)
3 ) for almost all (x1, x2), we conclude that ϕ1(x1) +

ϕ2(x2) ≤ 0 for almost all points (x1, x2) such that 1− ε ≤ x1 + x2 ≤ 2, where the functions ϕ1

and ϕ2 are defined in equation (51). Thus, it follows from Lemma 6.36 that∫
[0,1]2

G(x1, x2, x
(0)
3 ) dx1dx2 ≤

∫
[0,1]2

F (x1, x2, x
(0)
3 ) dx1dx2, (52)

and if the equality holds, then G(x1, x2, x
(0)
3 ) = F (x1, x2, x

(0)
3 ) for almost all (x1, x2).

Summarizing this results, we conclude that if x(0)
3 ∈ A and if x(0)

3 6= 2/3, then inequality (52)
holds, and therefore, since A is a set of full measure, we have∫

[0,1]3
G(x1, x2, x3) dx1dx2dx3 ≤

∫
[0,1]3

F (x1, x2, x3) dx1dx2dx3.

Since {gij} is a solution to the relaxed dual problem, the equality holds, and therefore the equality
in inequality (52) is achieved for almost all x(0)

3 . Thus, for almost all x(0)
3 ∈ [0, 1] the equation

F (x1, x2, x
(0)
3 ) = G(x1, x2, x

(0)
3 ) holds for almost (x1, x2) ∈ [0, 1]2, and therefore

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

almost everywhere.
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