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The multistochastic Monge—Kantorovich problem*

Nikita A. Gladkov' Alexander V. Kolesnikov ¥ Alexander P. Zimin$

Abstract

The multistsochastic Monge-Kantorovich problem on the product X = [[/_, X; of n
spaces is a generalization of the multimarginal Monge—Kantorovich problem. For a given
integer number 1 < k < n we consider the minimization problem [ c¢dm — inf of the space
of measures with fixed projections onto every X;, x --- x X;, for arbitrary set of k indices
{i1,...,ix} C {1,...,n}. In this paper we study basic properties of the multistochastic
problem, including well-posedness, existence of a dual solution, boundedness and continuity
of a dual solution.

Contents

1 Introduction 2

2 The multistochastic Monge—Kantorovich problem. Preliminaries, examples,
and open questions. 3
2.1 Feasibility of the problem, Latin squares and descriptive geometry. . . . . . . .. 4
2.2 Examples. Fractal structure versus smooth structure. . . . . . . .. ... ... .. 5)
2.3 Duality and the Kantorovich problem with linear constraints . . . . . . . . .. .. 6
2.4 Structure of dual solutions. Monge problem . . . . . ... ... ... ... .. .. 7
2.5 Solvability of the dual problem . . . . . . .. .. .. ... ... ... ... ... 10
2.6 Other properties of dual solutions: boundedness and (dis)continuity . . . . . . . . 11
2.7 Uniqueness result for the main example . . . . ... .. ... ... ... ... .. 12
2.8 Relation to other problems . . . . . . . . ... oo 12
Existence of a uniting measure for (n,k)-problem. 13
3.1 Setting of the problem, basic facts . . . . . . . .. ... ... L. 13
3.2 Existence of a signed measure . . . . . . ... .. 0L 14
3.3 Dual condition for existence of a uniting measure. . . . . . ... ... 15
3.4 Sufficient condition for existence of a uniting measure. . . . . . . ... ... ... 17
3.5 Estimates for (3,2)-case . . . . . ... 18
Connection to the Monge—Kantorovich problem with linear constraints. 23
4.1 Monge—Kantorovich problem with linear constraints: definitions and basic facts . 23

4.2 A problem with linear constraints which is equivalent to the multistochastic problem 24

Sufficient conditions for existence of a dual solution 26
5.1 Definition and properties of (n, k)-functions . . . . ... ... ... 0L 26
5.2  Existence of a dual solution for reducible tuples of measures . . . . . . .. .. .. 32
5.3 Unreachability of the supremum in the dual problem in the irreducible case . . . 37

*The article was prepared within the framework of the HSE University Basic Research Program. The second

named author was supported by RFBR project 20-01-00432.

TUCLA Department of Mathematics, Los Angeles
tFaculty of Mathematics, HSE University, Russian Federation
§Faculty of Mathematics, HSE University, Russian Federation & Center for Advanced Studies, Skoltech,

Moscow, Russian Federation



6 Properties of the dual solution in (3,2)-problem 43

6.1 Boundedness of the dual solution . . . . . . . ... . ... ... ... ... ... 43
6.2 Uniqueness of a continuous dual solution for the cost function zizoxz3 . . . . . . . 51
6.3 Example of a discontinuous solution to a dual problem . . . . .. ... ... ... 62

1 Introduction

This paper is a continuation of our previous work [14], where we studied a natural generalization
of the transportation or Monge-Kantorovich problem.

Let ¢ and v be probability measures on measurable spaces X and Y, and let ¢c: X xY — R
be a measurable function. The classical Kantorovich problem is the minimization problem

/ c(z,y) dm — inf
XxY

on the space II(p, ) of probability measures on X x Y with fixed marginals p and v.
It is well-known that this problem is closely related to another linear programming problem,
which is called “dual transportation problem”

/fdu+/gdu%sup.

The dual transportation problem is considered on the couples of integrable functions (f,g),
satisfying f(z) + g(y) < c(z,y) forallz € X, y € Y.

Nowadays, the Monge—Kantorovich theory attracts growing attention. The reader can find
huge amount of information in the following books and surveys papers: [1], [5], [9],[12], [18], [19],
27, 125, [31], (321

A particular case of the multistochastic problem is the multimarginal transportation prob-
lem. In the multimarginal problem one considers the product of n > 2 spaces and n independent
marginals pq, ..., tn. Some classical results on the multimarginal problem is contained in book
[27], in particular, functional-analytical duality theorems, applications to probability etc. Nev-
ertheless, till recent, only the case of two marginals was in focus of research. A revival of interest
in the case of many marginals is partially motivated by applications in economics and quantum

physics [7], [2], [10], [26]. Our motivation to study the cost function zyz in R? is partially related
to the multimarginal problem considered in [15].
In [14] we introduce a more general problem, which we call “multistochastic problem”. Com-

pare to the classical (multimarginal) case this new problem is genuinely more difficult. Even its
well-posedness depends on the structure of the marginals in a complicated way. The aim of this
work is to fill many gaps related to basic properties of the problem.

The paper is organized as follows: the reader can consider Section 2 as an extended introduc-
tion, where we present the results of the paper, our previous results, open questions, examples,
and discuss relations to other problems. In Section 3 we study sufficient conditions for existence
of a feasible measure for the multistochastic problem. In Section 4 we give a proof of a duality
theorem which is based on the duality theory for linearly constrained transportation problem.
In Section 5 we study sufficient conditions for existence of a dual solution and construct an ex-
ample of non-existence. In Section 6 we give explicit uniform bounds for the dual solution under
assumption that the cost function is bounded. Then we prove uniqueness of the primal and dual
solutions in our main example studied in [1]. Finally, we give an example showing that a dual
solution can be discontinuous even for a nice cost function c.



2 The multistochastic Monge—Kantorovich problem. Preliminar-
ies, examples, and open questions.

We start with the formulation of the multistochastic problem in the most general setting. Let
X1, Xo, ..., X,, be measurable spaces equipped with o-algebras By, ..., B,. It will be assumed
throughout that X; are Polish spaces and B; are Borel sigma algebras.

Definition 2.1. Let p, ¢ be nonnegative integers, ¢ < p. Let us denote by Z,, the family of
subsets {1,2,...,p} of cardinality ¢. In addition, the family of all subsets of {1,2,...,p} will be
denoted by Z, = Uy _Zpq-

Definition 2.2. For all o € Z,, let us set X, = [[;c,, Xi. The product of all spaces X =[]\, X;
will be denoted by X. For a fixed o € Z,, the projection of X onto X, will be denoted by Pr,,.

In addition, for arbitrary € X the image of x under projection Pr, will be denoted by z4:
o = Pro(z).

For arbitrary space X let us denote by P(X) the space of all probability measures on X.

Problem 2.3 (Primal (n,k)-Monge—Kantorovich problem). Given Polish spaces Xi,...,Xp,
fized family of measures po € P(Xa), @ € Lnk, and a measurable cost function c. Assume
in addition that there exist integrable functions cq € Li(Xa,pa), @ € Ly, such that |c(z)| <
> aez,, Ca(Ta). Then we are looking for

inf /Cdﬂ',
m€ll(pa) J X

where infimum is taken among the all uniting measures 7.

Note that under that assumptions the cost function c is integrable with respect to every
uniting measure p € Il(py). Indeed, one has [y [cldu < 3 o7 [y ca(®a) dpa, if |c(z)] <

Zaelnk Ca <l'a)
In what follows, we will additionally assume that c is continuous, and we will work with the
following functional spaces

CL(Xavl’LCI) - C<X0t) N Ll(:u’Oé)7
Cr(X, o) =4 ceC(X):|e(x)| < Z ca(xq) for some ¢, € CL(Xq, i)
aeInk
In addition, Cp(X) is the space of all continuous bounded functions on X, Cp(X) C Cr(X).

Definition 2.4. Assume that for every a € 7, we are given a probability measure p, on X,.
We say that a measure p € P(X) is uniting if Pro(u) = po for all @ € Z,;. The set of all
uniting measures will be denoted by IT(14).

Example 2.5. ((3,2)-problem) Consider a product of three spaces X = X; x X3 X X3, prob-
ability measures pio, pog, 113 on X1 X Xo, Xo x X3, X7 x X3 respectively. Then pu € TI(uq) if
and only if p is a measure on X such that

Pria(p) = p12, Priz(p) = 13, Praz(p) = pas.

In this introductory section we briefly describe several aspects of this problem. In particular,
we discuss previously known results, examples, open problems, and relation to other research.



2.1 Feasibility of the problem, Latin squares and descriptive geometry.

The multistochastic problem is overdetermined and a uniting measure does not always exist. It
is clear that a necessary condition for existence of a uniting measure is the following consistency
condition:

Praﬂﬁ(ﬂa) = Praﬂﬁ(ﬂ,@) = Promﬁ(lu‘)'

This condition is not sufficient (see [11] and other examples below), but we show that this
condition is sufficient for existence of a signed uniting measure (see Theorem 3.5).

Nevertheless, in certain situations the set of feasible measures is very rich. This happens, for
instance, if X; are finite sets of the same cardinality and all the measures u, are uniform. The
natural continuous generalization is: X; = [0,1] and p, are the Lebesgue measures on [0, 1]*
of the corresponding dimension k. A natural related discrete combinatorial object is a Latin
square. To see the relation let us consider an n x n Latin square S containing first n integers.
Then the discrete measure 1

3D %i3.0)
0.

on [1,...,n]® has uniform projections to discrete xy, xz, yz planes.
More generally, the (n, k)-multistochastic problem is always feasible for the system of mea-
sures
Ha = H,uia a € Lyg,
1€a
where p1, ..., b, are fixed measures on Xq,..., X,.

We believe that this example provides a natural source of applications, this is why a big part
of our results is related to this particular case.

Other source of applications might arise from the engineering, in particular, the descriptive
geometry. One of the founding fathers of descriptive geometry, Gaspard Monge, developed
a method of reconstruction of a three-dimensional body using its two-dimensional orthogonal
projections. This procedure is known as “projection de Monge”, in our language it gives a
recipe of finding a uniting measure in (3, 2)-problem.

A necessary and sufficient condition for existence of a measure with a given system of marginal
distributions in the spirit of linear programming duality was established by H. Kellerer [20].
Assume we are given a system of marginal distributions p,, where o belongs to some system A
of subsets of {1,...,n}. This system admits a uniting measure if and only if

> [ falea)dua 2 0

a€cA

for all bounded continuous system of functions fo(z4) satisfying Y 4 fa(2a) > 0. We give an
independent proof of this fact for A = Z,; in Section 3. Note, however, that this criterion does
not seem to be very practical. We establish some easy-to-check sufficient conditions for existence
of uniting measure in terms of uniform bounds for densities. In particular, we prove the following
(see Theorem 3.10):

Theorem 2.6. For given natural numbers 1 < k < n there exists a constant Apr > 1 which
admits the following property.

Assume we are given a consistent family of probability measures jo € P(Xa), a € Ly, and
another family of probability measures v; € P(X;), 1 < i < n. Assume that every measure [iq,
a € Ty, 1s absolutely continuous with respect to v, = ||

ica Vi-

Ha = Pa " Va-

Finally, assume that there exist constants 0 < m < M such that every density p, satisfies
m < po < M vy-almost everywhere for all o € L.
Then I1(uy) is not empty provided % < A\k-
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Figure 1: The solution is supported on Sierpinisky tetrahedron.

We will give precise bounds for the constant Ass.

Remark 2.7. Solvability of the primal problem. As soon as the set of uniting measures is
not empty, the proof of existence of a solution to the primal problem for a lower semicontinuous
cost is a standard exercise.

Theorem 2.8 ([11]). Assume that the cost function ¢ > 0 is lower semicontinuous. If II(j1q) is
not empty, then there exists a solution to the multistochastic problem.

2.2 Examples. Fractal structure versus smooth structure.

The main example of an explicit solution to a multistochastic problem was found in [I1]. The
unexpected beauty of this example was the main motivation for us for subsequent study of the
multistochastic problem.

In the following example we consider a (3, 2)-problem. Denote by II(fizy, fy2, pizz) the set of
measures with projections Pry,m = pigy, Pro.m = pig., Pry.m = 1y

Theorem 2.9 ([11]). Let pzy = Aay, flaz = Agzy flyz = Az be the two-dimensional Lebesgue
measures [0,1)* and let ¢ = xyz. Then there exists a unique solution to the corresponding (3,2)-
problem

/:cyz dr — min, 7 € I(fagy, thyz, faz)-

It is concentrated on the set
S={(z,y,2): 2Dy dz=0}

where @ is the bitwise addition. See Fig. 1.

The set S is called Sierpirisky tetrahedron.

We stress that some fractal solutions to a multimarginal transportation problem were known
before our work. See, for instance, |[10], where multimarginal problem with the cost function of
the type h(3>_;_, z;) and the Lebesgue measure projections was considered. Though we don’t
see any direct relation between these examples, they have something in common: in both cases
the set of feasible measures contains more than one element and the entire construction relies on
the dyadic decomposition.



Remark 2.10. The (3,2)-problem can admit not only fractal but also smooth solutions. For
instance, consider measurable functions f(x), g(y) and h(z) on [0,1]. Assume that h is injective,
the set I' = {f(z) + g(y) + h(z) = 0} is not empty, and p is a probability measure concen-
trated on I': p(I") = 1. Set pizy = Proyp, praz = Pro.p, py. = Pry.p. Then p is the unique
element of I1(ay, fyz, ttoz). Indeed, let v € I(pay, fy=, pa=). Clearly, [(f(z) + g(y) + h(z))2dy
depends solely on the integrals of pairwise products of functions f, g, h with respect to measures

Hays Moz, Haz- Hence

/ (F(@) + g(y) + h(=)) dv = / (F(z) + g(u) + h(=)) dp = 0,

this implies that v is concentrated on I'. Since h is injective, I' is the graph of the mapping
(z,y) = h1(=f(z) — g(y)), hence v is uniquely determined by its projection i, thus coincides
with p.

In particular, this observation can be applied to construct an example of a solution concen-
trated on a smooth set.

Example 2.11. The Lebesgue measure on [0,1]° N {21 4+ x2 + 23 = 1} is a solution to the
(3,2)-problem, where marginals are the two-dimensional Lebesgue measures concentrated on the
set {z; +2; <1} C [0,1]* and arbitrary cost function.

It is clear, that the smoothness of the solution in this example is just a matter of fact that
I(ptzy, fhyz, Ha=) contains a unique (smooth) element. However, it is natural to expect that
the solution may have a fractal/non-regular structure provided uniting measures constitute a
sufficiently large set.

The following problem, yet vaguely formulated, seems to be crucial for understanding of the
structure of solutions to (n, k)-problem.

Open problem 1. Is it true that solutions to (n, k)-problem have “fractal structure” provided
II(1q) contains sufficiently “rich” set of measures?

2.3 Duality and the Kantorovich problem with linear constraints

As in the classical case the multistochastic problem admits the corresponding dual problem:

Problem 2.12 (Dual (n, k)-Monge-Kantorovich problem). Assume we are given Polish spaces
X1,...,Xn, a fixed family of measures po € P(Xqo) and a cost function ¢ € Cp(X, ua). Find

sup Z /X fa dua,

f<c o€l

where the supremum is taken among the functions f having the form f(x) = EaeInk fa(za),
where fo € LY (Xa, tta)-

Definition 2.13. We say that there is no duality gap for the (n, k)-problem if

min /c dm = sup Z fa dita,
mEll(pta) fScaeI . Xa

where fa € Ll(onaMa)’ f(l') = Zaeznk fa(xa)'

The absence of duality gap was shown in [14]| under assumption of compactness of the spaces
X;. In this work we prove the following result:

Theorem 2.14. There is no duality gap for (n,k)-problem provided X; are Polish spaces and
ce (g, (X, ,ua).



Our approach is based on the result of D. Zaev [33] on duality for the classical Kantorovich
problem with linear constraints. The transportation problem with linear constraints is the
standard Kantorovich problem with additional constraint of the type I[(P) = 0, where [ is a
linear functional on the space of measures. The proof of Zaev is based on the general minimax
principle.

2.4 Structure of dual solutions. Monge problem
Our main example of a dual solution is given in the following theorem.

Theorem 2.15 ([11]). Let fizy = Mgy, oz = Azzs fyz = Agz e the two dimensional Lebesque
measures on [0, 1]2 and ¢ = zyz. Then the triple of functions (f(x,y), f(x, 2), f(y, z)), where

z ry 1 [* [o 1 (v (v
f(:n,y):/ /t@sdtds—/ / t@sdtds—/ /t@sdtds
o Jo 4 Jo Jo 4 Jo Jo

solves the corresponding dual multistochastic problem.

Remark 2.16. The uniqueness result for this problem under assumption of continuity of the
dual solution is proved in the present paper in Theorem 2.29

The solution to the dual problem given in Theorem 2.15, has the following relation to the
solution 7 to the primal problem (see Theorem 2.9): 7 is concentrated on the graph of the
mapping (z,y) — foy(z,y), ie.

= fxy(x’y) (1)

m-almost everywhere.

Let us note that f admits a non-negative mixed derivative f;,, but derivatives f.., fy, do
not exist (at least in the classical sense).

The relation (1) can be derived from the fact that the support S of the solution 7 is a fractal
set. Indeed, function f(z,y)+ f(z,2) + f(y, z) — zyz is non positive and equals zero m-a.e. Thus
for m-almost all points the first order condition

fo(®,y) + fo(w, 2) = y2 (2)

is satisfied.

Next, it is easy to show that for m-almost every point M = (zg, yo, z0) € S the set S contains
points of the type M + t,v, where t, is a sequence tending to zero and vector v belongs to a
set V' containing three independent vectors. One can prove this using the fractal structure of S.
Consequently, one can differentiate (2) along V' and deduce (1) from these relations.

Thus in this particular case the solution admits the following properties.

(a) The solution is concentrated on the graph of a mapping z = T'(z, y).

(b) This mapping T has the form T'(z,y) = fuy(x,y), where (f, g, h) is a solution to the dual
problem. The same holds for g, h.

(¢) Function f(z,y) is a cumulative distribution function (up to a term depending on x and a
term depending on y) of a positive measure on a plane. Equivalently, f,(z,y) > 0 almost
everywhere.

Definition 2.17. (Optimal mapping.) Let T satisfy (a). Then we say that T" is an optimal
mapping.

One can ask whether any solution to (3,2)-problem (under natural assumptions on the
marginals) with the cost function xyz does satisfy properties (a), (b), (¢). We show that in
fact no one of these properties are satisfies in general.



Example 2.18. The solutions to (3,2)-problems are not always concentrated on
graphs; (a) fails. Consider the sphere S = {22 + 3% + 22 = 1}, and consider the quarter
sphere S1 = SN{x > 0,y > 0}, So = SN{xr <0,y >0}, S3=5SnN{z <0,y <0} and
Sy =SN{z >0,y < 0}. Let w be the surface measure on the 3/4-part of the sphere S; L1 So 1Sy,
and let pizy, fizz, ly- be the corresponding two-dimensional projections.

Slightly modifying the arguments of Remark 2.10 we prove that if 7 is a measure with
projections fyy, ty- and fi,., then 7 is concentrated on the set S; U Sp L Sy. For each point of
S9 there is no other point of S; U Sy US4 with the same projection onto the coordinate plane
Oxz, and therefore the restriction of the measure 7 to So is fully determined by its projection
pz> and coincides with 7|g,.

Similarly, the restriction of 7 to Sy is fully determined by its projection f,, and coincides with
7|s,. Hence, 7T|s, = T — 7|s, — 7|s,. Thus, the projections of 7|s, and 7|s, to the coordinate
planes are the same, and then 7|s, = 7|s,. So we conclude that 7 is the only measure with
projections fizy, flzz, fly=, and there is no optimal mappings 17, T, and T)..

See also Example 5.10 for a discrete counterexample.

Example 2.19. Example without dual solutions satisfying (1); (b) fails. This example
is considered in Theorem 6.32. In this example f,, is either zero or not defined.

Example 2.20. Non-uniqueness for the dual problem; (c) fails. In the problem considered
in Example 2.11 there exist many dual solutions. To see this let us note that the following
inequality holds for all (x,v,2) € [0,1]? and a fixed constant A > 0, equality holds if and only if
r+y+z=1

(z+y+z—1D)*r+y+z+A4)>0.

Developing the left-hand side we see that this inequality is equivalent to

Yz > fA(xvy) + fA(:B,Z) + fA(yaz)a
where
22y 2 1-2A A

1 1
falwy) = 5@ +y) —saye+y) - (A=) (G+ T+ 5) -5 @+ -

Clearly, the triple (fa(x,y), fa(x, 2), fa(y, z)) solves the dual problem for every A > 0. Note
that (1) and (c) fails for all A > 0.

We believe that there are no other dual solution, but can not prove this.

Thus we see that the particular form (1) of the optimal mapping related to (3,2)-problem
with cost function zyz is related to the fractal structure of the solution. Motivated by these
observations we state the following problem.

Open problem 2. Assume that 7 is a solution to a (3,2)-problem with the cost function
xyz. Find general sufficient conditions for presentation of 7 in the form

z = fIy(x7y>7

where f(z,y),g(z, 2), h(y, z) solve the corresponding dual multistochastic problem.

It seems quite difficult to describe the general structure of solutions to (3,2)-problem with
¢ = xyz, since it is very sensitive to non-local properties of the marginals. Something can be
established under very strong "smoothness" assumptions, as presented in the proposition below.
But we stress that this situation can not pretend to describe a reasonable model case.

Proposition 2.21. Consider a tuple of twice continuously differentiable functions f(x,y),
g(x, z), h(y, z) satisfying f(x,y) + g(x, z) + h(y, 2) > zyz. Assume, in addition, that

D= {f@y) +g(@,2) +hly,2) = oyz}

8



1$ a two-dimensional smooth surface.
Let T'y,I'y, I, be sets defined by equations:

'y = {x = hyz}’ I‘y = {y = gxz}v I, = {Z = fxy}
Then for every point (o, Yo, 20) € I' the following alternative holds:

(A) (z0,y0,20) €Ty NIy NI, i.e. at this point
xr = hyza Y=0Gzz, 2= fzy~

(B) (x0,y0,20) ¢ Ty UL, UL, and the vector field

1 1 1
Y- (e )
m_hyz Y — Gzz Z_fary
is orthogonal to T' at (xo, Yo, 20)-

Proof. Since every (x,y,z) € I' is a minimum point of f(z,y) + g(z, 2) + h(y, z) — zyz, then the
functions

u=yz = fo(2,y) = ga(2, 2), v =22 = fy(2,y) = hy(y, 2), w =2y — g:(x,2) — h=(y, 2)
vanish on I'. Hence their gradients
Vu = (—foz — 9oz, 2 — fxyay — Gaz)
Vo = (2 = fay, —fyy — hyy>® — hyz)

Vw = (y —YGzz, T — hyz; —Y9zz — hzz)

are orthogonal to I'. Then they are colinear, because I' is two-dimensional. Hence either all these
coordinates are zero (case (1)) or

(z — hyZ)(Z - f:vy)
Y — Ggzz

fyy+hyy =

(similarly for other coordinates). This gives that N is orthogonal to T'. O

Remark 2.22. Example of (B) is given in Example 2.20. We emphasize that in the main
example we have (A), but neither I' is not a smooth surface, nor f, g, h are twice differentiable.
In fact, the fractal structure of I' is exactly the reason why (1) holds (see explanation above).

Remark 2.23. (Vector fields orthogonal to smooth solutions). Assume that 7 is a solution
to a (3,2)-problem concentrated on the surface I' and alternative (B) holds. Let 7 is given by
its density with respect to the two-dimensional Hausdorff measure

™= p(:L’,y, Z) : H2|F'

Denote by puy,psz, py. the density of the corresponding projections figy, flzz, fty..  Then
pey(@, )] c0s(N, (0,0,1))| = p(, 9, 2) for every (z,y,2) € T and

1 1 1
pxy(xay) = p(l',y, Z)‘Z - f$y|\/(x _ hyz)2 + (y — gmz)2 + (Z - fmy)2.

Similarly for the other densities. This easily leads to the following relations: for every (z,y,z) € T
the vector field

)

(Sign(fb - hyz) Sign(y - ng) Sign(z - fmy))
Pyz ’ Pxz Pxy

9



4y,

The slice z = 0. The slice z = 1. The slice z = 2.

Figure 2: The visualization of the primal solution to the problem considered in Example 2.24.
Each picture shows the restriction of the primal solution to the set z = 0,1,2. In the white
points the density function is equal to 0, and in the black points it is equal to 3. Almost every
horizontal and vertical section of the black body has a length 1/3. Compare to Fig. 3.

is orthogonal to I' and

LN SRS SR
p*(xy,2)  phy(wy)  pi(w,2)  pp(y,2)

In particular, we obtain that one of the vector fields

(:I:l +1 :i:l)
Pyz’ Paz’ Pay
is (locally) orthogonal to I'.

Example 2.24. (c) fails; relation to the transportation problem with uniform bound
on density. Consider the (3,2)-problem with ¢ = zyz and pyy = pe @ fy, foz = fo @ [z,
Pyz = fy @ fiz, Where p, = p, is the Lebesgue measure on [0, 1], and p, is the uniform discrete
measure on {0,1,2}. Then the solution is concentrated on the graph of a function z = T'(z,y),
where T' takes values in {0, 1, 2}.

In this example we were able to verify numerically that there exists a dual solution
f(x,y),9(x,2),h(y,z) (maybe not unique) which does not satisfy f,, > 0, equivalently
flzi,y1) + f(z2,y2) — f(z1,11) — f(x2,y2) > 0 for all 1 < z2, y1 < yo. In particular, re-
lation z = f,, fails again.

Note that some elements of sets {z = 0}, {z = 1} (see Fig. 2) are solutions to an optimal
transportation problem with capacity constraints [25], [24].

Remark 2.25. It worth noting that the condition f(x1,y1)+ f(z2,y2) — f(x1,y1) — f(22,92) > 0
for all 1 < x3, y1 < y2 corresponds to a bit different primal problem, where assumptions on the
marginals are replaced by assumptions that the marginals are stochastically dominated by
given measures. But we don’t pursue this viewpoint here.

2.5 Solvability of the dual problem

Section 5 is devoted to existence of a solution to the dual problem. We establish a sufficient
existence condition for the dual problem in the spirit of a classical result of Kellerer [21] for the
multistochastic problem, but with a self-contained independent proof.

10



The main assumption on the cost function for solvability of the dual problem is the
following bound:

le(@)] < Y Calwa). (3)

a€lyk

for some integrable functions, Cy: X, — R U {+oc} This is a generalization of the Kellerer’s
assumption.

However, yet another assumption, which is specific for (n, k)-problem, should be done on
marginals. Namely, we have to assume that the system of measures {ju,} is reducible. The
latter means that there exists a measure p € II(i,) and the system of probability measures
v; € P(X;) such that for some 0 < ¢ < C

cv < < Cu, (4)

where v = [[, ;. Our main existence/nonexistence result is the following Theorem (see details
in Theorem 5.17 and Proposition 5.22):

Theorem 2.26. If the system {{1q} is reducible, then under assumption (3) there exists a solution
to the dual multistochastic problem.

Without assumption of reducibility the dual solution may not exist. More precisely, there exists
an exzample of a probability measure p on the space X = N3 and the cost function c: X — {0,1}
such that there is no solution to the dual multistochastic problem for the system

pij = Prijp.

2.6 Other properties of dual solutions: boundedness and (dis)continuity

In Section 6 we study basic properties of solutions to the dual (3,2) problem: boundedness
and continuity. It is known that for the classical (multimarginal) problem the dual solution is
bounded provided |c| is bounded. But this is crucial that in the classical case the dual solution
is a sum of independent functions. This is the reason why it is hard to extend the arguments to
the general (n, k)-case. We establish the following result on the boundedness of solutions.

Theorem 2.27. Let X1, X2, X3 be Polish spaces, p1; € P(X;) for1 <i <3, and let pijj = p1; @
for all {i,j} € T3 2. Let c: X — Ry be a bounded continuous cost function. If { fi;} is a solution
to the related dual problem, then

Ji2(w1, 22) + fi3(w1, 23) + foz(xe, 3) > —12||c[|

for 1 ® po ® ps-almost all points x € X.
Moreover, there exists a solution {f;;} to the standard dual problem such that

2 1
—263 lello < fij(ziszy) < 135 llell oo -

Another important feature of the classical Monge—Kantorovich problem: for a cost function
¢ with nice geometric/regularity properties the corresponding dual solutions are regular. This
happens because the dual functions are related by Legendre transform, which is highly regular-
izing. We can not expect this for the (n, k)-problem, the following example demonstrates that a
solution can be unique and discontinuous even for very simple and nice cost: maximum of two
linear functions.

Example 2.28. Let X =Y = Z = [0, 1]. Consider the (3,2)-problem with the cost function

¢ =max(0,z 4+ y + 3z — 3),

11



where fi.y, fhzz, fly- are the Lebesgue measures restricted to [0, 1]2. Then the dual problem admits
a unique discontinuous solution, given by the following formulas:

fra(x1, x2) = 0 for all points (1, z2) € [0,1]%;

0, if x3 < g,

fis(x1,23) = 5
3 . 2

x1+§x3—%, if 3 > 55

0, if x3 < g,

fos(w2, 23) = . 5
’ $2+%$3—%, 1fx32%.

2.7 Uniqueness result for the main example

In Section 6 we establish the following results for our main example: (3,2)-problem with the
two-dimensional Lebesgue marginals.

Theorem 2.29. If a tuple of functions { fi;} is a solution to the problem from Theorem 2.15 and
every fi; is continuous for all {i,j} € I3 2, then there exist continuous functions f;: [0,1] — R,
1 <1i <3, such that

fi2(z1,22) = f(21,22) + fi(z1) — fa(22),
fas(w2,x3) = f(22,73) + fa(w2) — f3(23),

and

J13(z1,23) = f(21,23) + f3(x3) — fi(z1),

rory 1 [* (7 1 [Y [v
f(x,y)—/ / s@tdsdt—/ / s@tdsdt—/ / s D tdsdt.
0o Jo 4 Jo Jo 4 Jo Jo

Remark 2.30. We believe that this problem admits no other (discontinuous) solutions, but have
no proof of this.

where

2.8 Relation to other problems

We mentioned already that the multistochastic problem is closely related to the Kantorovich
problem with linear constraints studied by Zaev in [33]. More precisely, our problem can be
reduced to the Kantorovich problem with linear constraints, see explanations in Section 4.

Another related problem is, of course, problem with uniform constraint on the density, some-
times called "the capacity constrained problem" (see [25], [24], |1 1]). The solution to the problem
from Example 2.24 admits the following structure: there is a partition of the unit square into
several parts, each of them is either a homothetic image of the body shown on Fig. 3 or its
complement. This set is a solution to a capacity constrained problem and appeared for the first
time in [24]: find a function 0 < h < 3 on [0, 1]? maximizing integral

/ xyh(z,y) dxdy
A

such that h(z,y)dxdy has the Lebesgue projections onto both axes. Then the solution h takes
values in {0,3} and {h = 3} is the body on Fig. 3. We leave to the reader as an exercise the
precise construction relating these two problems. It seems to be a highly nontrivial task to give
the precise description of this figure. This is especially difficult, because numerical experiments
demonstrate that it coincides up to a very small set with a figure, which boundary is piecewise
smooth and can be parametrized by piecewise elementary functions (polynomials).

12



Figure 3: The support of a solution to a capacity constrained problem (see [25], [241]). Compare
to Fig. 2.

Among the other problems which can be “embedded” into the linearly constrained trans-
portation problem let us mention the martingale transportation problem [19, 3], problems with
symmetries |13, 22, 23].

Finally, there is a connection between the multistochastic problem and the transportation
problem with convex constraints, in particular, problems on the space of measures with given
ordering. In particular, in the (3,2)-problem with the cost function xyz the natural ordering
on the space of measure is stochastic ordering, i.e. for two measures u,r on the plane we say
that p is bigger than v if the distribution function F), is bigger than F,, (see Remark 2.25). We
plan to study the related modified (3,2)-problem in the subsequent work. Here we just mention
that there are many recent paper with very interesting results dealing with convex ordering and
optimal transportation, see [17, 16].

3 Existence of a uniting measure for (n, k)-problem.

3.1 Setting of the problem, basic facts

Unlike the classical Monge-Kantorovich problem, existence of a uniting measure for a (n, k)-
problem is a nontrivial task. In the multimarginal Monge—Kantorovich problem, which is a
particular case of (n, k)-problem with k£ = 1, the uniting measure always exists: this is [}, u.
In the case of (n, k)-problem one has the following necessary condition:

Proposition 3.1. Assume that the set II(uq) is not empty. Let p € I(pq) be arbitrary uniting
measure. Then for all o, B € L,y the following relation holds:

Praﬁ,@(ua) = Praﬂﬁ(uﬂ) = Praﬁ,@(u)'

Definition 3.2. We say that the set of measures pu, € P(X,) is consistent, if it satisfies
Prong(pa) = Prang(pg) for all o, 5 € Zp.

The consistency assumption for n = 3, k = 2 was considered in |[11]. In what follows, we
consider only consistent sets of measures. For a consistent set the measures u, are well-defined
for all o € Z,,;, where t < k. Indeed, denote jo = Pro(ug) for arbitrary S € I, containing «.
The consistency assumption implies that the result is independent of the choice of 3.

Proposition 3.3. Unlike the multimarginal problem, the consistency assumption is not sufficient
for1 <k <n.

Proof. Let X; = {0,1,...,k — 1} for all 1 < i < n. For every a € T, let us construct the
corresponding measure p, on the set X,. If a = {iy,i9,...,4x}, then every point of X, is
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given by coordinates = = (z;,, zj,, ..., ;. ), where x;, € {0,1,...,k — 1} for all 1 <¢ < k. Set
po(x) = k17F ) if Zle z;, =1 (mod k) and pq(x) = 0 in the opposite case.

It is easy to check that the consistency assumption of Definition 3.2 holds: the projection of
any measure [i, onto Xz is uniform if || < |a|. Assume that a uniting measure p exists. Since

the projections are non-zero, p is not zero itself. Take a point © = (x1,x9,...,x,) such that
p(x) > 0. Then for all & = {iy,...,ix} € Ly the relation S3F | z;, = 1 (mod k) holds, in the
opposite case the p-mass of the projection of (z;,, 4, ..., x;, ) onto X, is zero, hence projection

of 1 does not coincide with pq.

We extract from condition Zle x;, = 1 (mod k), which holds for all {iy,...,it} € Zu,
k < n that z; = z; (mod k) for all 1 <4, <n. Then Zle x;, =0 # 1 (mod k). We obtain a
contradiction. O

Another example for n = 3, k = 2 the reader can find in [14].

3.2 Existence of a signed measure

It follows from the previous proposition that the consistency assumption is not sufficient for
existence of a uniting measure. Nevertheless, it is sufficient for existence of a signed measure.
Let v; € P(X;) be an arbitrary family of probability measures.

Definition 3.4. For all o € T4, 0 < t < k let us extend p, to X in the following way:
Lo = fla X Higa v;. In addition, set fiy = Y o7 . fla, Where 0 <t < k.

The following theorem contains a construction of a uniting signed measure.

Theorem 3.5. There exists a linear combination p = Zf:o Mepie satisfying Pro(p) = pa for all
a € L. The coefficients of A+ do not depend on the choice of v;.

Proof. Fix a € Z,;. Introduce the following notations:

ﬁg = Mg X Hyhﬁ Ca,
iZp
1€Q
A= > W
BGInt
BCa

For arbitrary 8 € Z,;, where t < k, find a projection pig onto X,. It is easy to realise that
one obtains ﬁgm .- Let us project zi; onto X,. Applying definition of fi; one can get

t t
- ~ n—~k\ .- n—=~k\ .
Proi = Y =2 2 (- m =X (2
BET i=0 v€Ln; i=0
YCa
Thus we express Prq(j1;) through i$* with fixed coefficients. We get the following system of
linear equations

k
S°APra(ie) = i = o
t=0

on A;. The coefficient of 4 equals 0 for ¢ > ¢t and equals 1 for i = ¢. Thus, the given system
corresponds to a triangular matrix with units on the diagonal. This means that there exist a
unique set of numbers A\, 0 <t < k, satisfying

In addition, we observe that these coefficients do not depend on «. Thus, the signed measure
Zf:o A¢fiy is uniting. O
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Example 3.6. Let us give an example in the (3,2)-case. One has

Mo = V1 X V2 X V3,
ﬁ1:/,L1XI/2XI/3—|—I/1><ILL2Xl/3—|—V1><I/2X,u3,

iz = 12 X U3 + 113 X Vo + i3 X V1.

The projections of these measures onto X7 x Xy are given by

Pria(fio) = v1 X 1o,

Pria(fi1) = Pria(p1 x va x v3) + Pria(vi X po x v3) + Pria(vy x va X u3)
=p1 Xva+uv X g+ 111 Xy,

Pria(fi2) = Pria(pi2 x v3) + Pria(pig x v2) + Prig(pes X vq)
= p12 + p1 X va +v1 X o,

Thus for arbitrary coefficients Ag, A1, A2 one can find projection of A\gjig + A1fi1 + A2fie onto
X1 X XQZ

Pria(Mofto + A1fin + Aafiz) = (Ao + A1)vi X va + (A1 + A2) (1 X va + 11 X p2) + Aapie.

In order to have equality Pria(Aofto + A1 + Aafia) = w2 it is sufficient to require Ao + A1 =
0, A1 + X2 = 0, Ao = 1. This system has a unique solution A\g = 1, A\y = —1, s = 1.
Thus Pria(fio — 11 + fi2) = pi2. By the reason of symmetry Prig(fo — 1 + fi2) = pi3 and
Pras(pio — i1 + fi2) = p2s.

3.3 Dual condition for existence of a uniting measure.

The following existence criterion for uniting measure is a particular case of a result obtained by
Kellerer in [20]. We give an independent proof based on the use of the minimax theorem.

Theorem 3.7. Let X1, Xo, ..., X, be compact metric spaces and let po € P(Xy), a € Lpg
be a fized family of measures. Then I1(uy) is not empty if and only if for every set of functions
fo € LN X4, po) satisfying assumption Yaer,, fa(a) =0 for allz € X the following inequality

holds:
> [ tadiazo
Xa

o€l

Proof. The existence of a uniting measure trivially implies the inequality. If p € II(uq) and the
set of functions f, satisfies the assumption of the theorem, the function F(x) =3 7 fa(%a)
is integrable with respect to p and the following inequality holds:

Z/ fadﬂa:/Fd,UZ/Od,u:O.
Xa X X

a€l,gk

Let us prove the theorem in the other direction. Assume that the set of measures p, does
not satisfy assumptions of Definition 3.2. Then there exists «, 8 € Z,k, such that the measures
v1 = Prongpia and v = Prongug are different. Let A be a subset of X,np satisfying v1(A4) <
vo(A). Set: fo(ra) =1if 240 € A and 0 in the opposite case. In addition, set fg(xg) = —1 if
zang € A, and 0 in the opposite case; fy(zy) =0, if v & {a, B}. Then 3° 7 fy(x,) =0 for all
2 € X. On the other hand

Z /)(va dﬂ’y:/Xafa dﬂa‘f‘/xﬁf,g dug = v1(A) —1r(A) <O0.

'Yeznk

Thus, one can assume without loss of generality that the set of measures pu, satisfies Defini-
tion 3.2. We apply the following version of the minimax theorem (see [0], [31]):
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Theorem 3.8 (Fenchel-Rockafellar Duality). Let E be a normed vector space and E* be the
corresponding dual space. Consider convex functions ® and U on E, taking values in RU {+o0}.
Let ®* and U* be the corresponding Legendre transforms. In addition, assume that there exists
z € E satisfying ®(z) < 400, ¥(z) < +00. Then
mf[\I/ + @] = max[—P*(—2z) — ¥*(2)].
zeE*
Let E be the space of continuous (bounded) functions on X equipped with the uniform

convergence norm || ||oc. According to Radon theorem E* is the space of finite signed measures
on X equipped with the full variation norm. Set:

0, if u >0,

+o00 otherwise.

CI):UGC[,(X)—){

> et fXa Ug dpia, i u(@) =3 0e7  Ual(Ta),
400 otherwise.

\I/:uer(X)—>{

Function V¥ is well-defined, indeed, if p is a signed measure satisfying Prou = po for all
o € Ty, then [yudp =3 7 [ ua dpa. The signed measure p exists by Theorem 3.5.
It is easy to check that functions ¥ and ® are convex; in addition, function w = 1 satisfies
assumptions of the minimax theorem. Thus, the following equality holds:

i%f[\ll + P] = ?é%>§[—®*(—z) —U*(2)].

It is easy to check that

mf[@—i— U] = mf Z/ fo dpte.

S fa>0

®*(—m) = sup {—/ u d7T:| =— inf/ u dm
u>0 X uz0Jx

If 7 is nonnegative, then [, u dw > 0 for all v > 0. Otherwise [ u dm can take arbitrary small
values. Hence

Let us find ®*(—m).

0,ifr>0
¥(m) =g
400, otherwise.

In the same way we check that

if Prom = pa,
\II*(W)_{O’I o = [

400, otherwise.

Thus the maximum max,ep+[—P*(—m) — U*(7)] equals 0, if there exists a nonnegative unit-
ing measure, otherwise it equals —oo. In particular, if a uniting measure does not exist,
then infs- Fa>0 2. S v Ja dpa = —oo. Hence there exist continuous functions f, satisfying

ZfXafO‘ dpg < 0. O
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3.4 Sufficient condition for existence of a uniting measure
Let us mention the following trivial sufficient condition for existence of uniting measure.

Proposition 3.9. Assume that there exists a family of measures v; € P(X;), 1 < i < n, such
that po = [licq i @ € Lk . Then the set T(pq) is non-empty and 7, v; is a uniting measure.

We generalize this sufficient condition using Theorem 3.5.

Theorem 3.10 (Density condition). For given natural numbers 1 < k < n there ezists a constant
Ank > 1 which admits the following property.

Assume we are given a consistent family of probability measures o, € P(Xa), o € Tpk, and
another family of probability measures v; € P(X;), 1 < i < n. Assume that every measure [iq,
a € Tk, 1s absolutely continuous with respect to v, = ||

ica Vi’

Mo = Pa - Va-

Finally, assume that there exist constants 0 < m < M such that every density po satisfies
m < po < M vu-almost everywhere for all o € Tpy.
Then () is not empty provided % < Ank-

Proof. The definition of m implies that uy, — m - v, is a nonnegative measure for all a € Z,,
hence m < 1, because both u, and v, are probability measures. In addition, if m = 1, the
o — Vo = 0 for all a € Z,,;. In this case the measure v = H?:l v; is uniting.

Consider the case m < 1. Note that p, = (o — m - v4)/(1 — m) is a probability measure
for all o € Z,;, which is absolutely continuous with respect to v, and its density is bounded
from above by (A, — 1) > 0. In addition, the family of measures y, satisfies consistency
condition. Theorem 3.5 implies that given measures v; and pl, one can construct a family of
measures ji; and find numbers \; such that the signed measure Ef:o Aefty is uniting. Note that
pl, is absolutely continuous with respect to v, for all a € Z,;, 1 < t < k, moreover, its density
is bounded from above by (X, — 1). This means that the same condition holds for ],
where we consider the corresponding density with respect to v = [[;"; v;. Hence 1} is absolutely
continuous with respect to v and its density is bounded almost everywhere by (?) e ( Ak —1).

We infer from this that the density of the signed uniting measure p’ = Zf:o Akity is bounded
from below by — Zf:o Ml () 72 (A — 1) = =C - 72 (Apk — 1), where C depends on (n, k)
only.

Let us prove that the assertion of the theorem holds for A\, = 1 + % For the set of
measures (), we constructed a uniting signed measure p' which density with respect to v is almost

everywhere bounded from below by number —C" (A —1) = — 1% Then p = (1—m)y'+mv
is a uniting measure for the family po, and its density is nonnegative v-almost everywhere, hence
14 is nonnegative. O

Thus we obtained a sufficient condition for existence of uniting measure for a wide class of
functions. Moreover, the uniting measure obtained in Theorem 3.10 admits a bounded density.
However, it is often helpful to require density to be bounded away from zero.

Definition 3.11. We say that measures p and v on the same measurable space (X, F) are
uniformly equivalent, if there exists a Radon—Nicodym density p of p with respect to v, which is
bounded from above and from below by positive constants: 0 < m < p(z) < M for all z € X.

In particular, uniformly equivalent measures are absolutely continuous with respect to each
other. Following the proof of Theorem 3.10 one can easily check

Theorem 3.12 (Uniﬁormly equivalent density condition). Under assumption of Theorem 3.10
there exists constant Api > 1 with the following property. If all o € Ly, satisfy m < po < M
Vo—almost everywhere and % < Ak, then the set () contains at least one measure which is
uniformly equivalent to [[i_, v;.
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3.5 Estimates for (3,2)-case

In the (3, 2)-case one can obtain explicit estimates on the optimal value of A3z from Theorem 3.10.
Proposition 3.13. For A32 > 2 the conclusion of Theorem 3.10 does not hold.

Proof. Let X1 = X9 = X3 = {0,1} and let every v; be the uniform probability measure on X;.
Let us construct measures 12, ft13, i3 on spaces X; X Xo, X7 x X3 and Xo x X3 respectively.
Set pij(xi, xj) = M, if x;4+x; = 1; and p;j(x;, ;) = m otherwise. Here m and M are nonegative
constants such that % = A3z and p;;(X; x Xj) = 1.

Assume that a uniting measure p exists. Consider the following sums:

A =6m = p12(0,0) + p12(1,1) + p13(0,0) + pa3(1, 1) + p23(0,0) + p23(1, 1)
— 3(0,0,0) + 12(1,0,0) + (0, 1,0) + (0,0, 1)
4 u(1,1,0) + 0(1,0,1) + p(0,1,1) + 3u(1, 1, 1),
B =6M = 12(0,1) + p12(1,0) + p13(0,1) + p13(1,0) + p23(0, 1) + pa3(1,0)
= 241(1,0,0) + 2(0, 1, 0) + 244(0,0,1) + 27(1, 1,0) + 2u(1,0,1) + 24(0, 1, 1).

On one hand 24 < B, because 2m < M. On the other hand, analyzing expressions on the
right-hand sides we see that 24 > B. We get a contradiction. O

Proposition 3.14. The conclusion of Theorem 3.12 holds for /):32 =
exists a uniting measure p, which is uniformly equivalent to v = v X 1o

In particular, there

3
5
X V3.

Proof. Let 0 < m < M be constants from Theorem 3.10: m < p;; < M forall 1 <i<j <M
vij-almost everywhere. Clearly, m <1 < M. If m = 1 or M = 1, then p;; = v;;, this means
that v is a uniting measure itself.

For m <1 < M, the following measure is uniting:

po=4pr X pg X prz — 2 (V1 X pg X 13 + g1 X va X pg + i1 X pg X v3)
+ 2 (p12 X V3 + p13 X vo + p2g X v1) — (p12 X 13 + p13 X pig 4 po3 X pi1) .

Let us check that p is nonnegative. To this end we prove that its density with respect to
v = 11 X Uy X v3 is nonnegative almost everywhere. The density of p with respect to v has the
form

%(1‘1’ z2,x3) = 4p1(x1)p2(22)p3(w3) — 2 (pr(z1)p2(22) + p1(z1)ps(w3) + p2(22)ps(z3))

+ 2 (p12(z1, 22) + p13(x1, x3) + p2s(r2, 3))
— (p12(z1, 22) p3(x3) + p13(w1, 23)p2(22) + p23(wa, x3)p1(21)) .
Assumption m < p;j(z;, x;) < M implies that, for v;-almost all z; the inequality m < p;(x;) <

M holds, where p; = ‘;’lfz The assumption of the theorem implies 1 < M < Agom = %m Thus,
it is sufficient to check inequality

4p1paps — 2(p1p2 + p1p3 + p2p3) + 2(p12 + P13 + p23) — (P1p23 + p2pis + pP3p12) > 0

for all m < p;, pij < %m, % < m < 1, and for the proof of uniform boundedness it is sufficient to

prove that there exists constant e(m) > 0 such that

4p1pap3 — 2(p1p2 + p1p3 + pap3) + 2(p12 + p13 + p23) — (P1p2s + Papi3 + P3pi2) > €(m).

This expression is linear in every variable p;, p;;, thus for every fixed m every variable equals
m or %m at the minimum point. The coefficient of p;; equals 2 — p;, > 0 provided p; < %m < %,

18



hence this function is increasing in p;;. Then at the minimum point one has p;; = m for all
1 < 4,5 < 3. Finally, we reduce the proof to the following inequality we have to check:

4p1paps — 2(p1p2 + p1p3 + p2p3) — m(p1 + p2 + p3) + 6m > (m)

3 2

Since the function is symmetric we have to check the following inequalities:

for all m < p; <

Lopr=pr=p3=m: 4m® —9Im? + 6m > 0if 2 <m < 1;

2. p1=%m,p2=p3=m: 6m3—%m2+6m>01f§<m<1;
3. p1=p2=3m, p3=m: 9m3—%m2+6m>0if§<m<l;
4. pr=py=p3=3m: Tm?—18m> +6m > 0if Z <m < 1.

Every inequality can be easily checked and we complete the proof of nonnegativity of p and its
uniform equivalence to v.
It remains to check that y is uniting for p;;:

Prlg(,u) = 4#1 X g — 21/1 X 2 — 2”1 X Vg — 2,[1,1 X 2
+ 2p12 + 201 X Vo + 201 X g — pi12 — p1 X fg — f1 X fl2 = f12.
In the same way we check that the desired identities hold for other projections. O

One can prove another estimate for Ags = 2. Unfortunately, the arguments in our proof can
not be used to prove uniform equivalence of u and v.

Proposition 3.15. For the value Aga = 2 the conclusion of Theorem 3.10 holds.

Proof. Let 0 < m < M be constants from Theorem 3.10. Consider the following set:

d(pi; — Priy(€) } |

dl/ij

A= {5 — nonnegative measure on X1 X Xo X X3g: m <

This set is not empty because it contains the trivial (zero) measure. In addition, A is weakly
closed. From assumption m < W we infer that p; > Pr;(€), hence A is uniformly tight
and the variations of measures from A are uniformly bounded. Then the Prokhorov theorem
implies that A is weakly compact. Hence there exists an extreme measure &nax, where functional

Emax(X) attains its maximum.
Lemma 3.16. For v-almost all x € X at least one of the numbers

d(uij - Prij (é‘max))
dl/ij

equals m.

Proof. Assume the converse. Then there exists a positive number ¢, such that the set

d(pij — Prij(&m))
dl/ij

EE:{J:EX: (xi,xj)2m+5,1§i,j§3}

satisfies v(E;) > 0. Let {a be the measure which density (with respect to v) equals € on E.
and 0 otherwise. It is easy to check that &max + €A € A, (max + A)(X) > &max(X) and this
contradicts to definition of & . . O
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Consider the family of probability measures

’ Hij — Prij (gmax) ..
= ,1<4,5 <3.
HZ] 1- gmax(X) J

Since {u;;} is consistent, the family of measures {;;} is consistent too. Since {max € A, we have
m/a < du;;/dvij < M/a almost everywhere, where v = 1 — {ax(X). Hence, the family {y;}
satisfies assumptions of Proposition 3.15. Moreover, if a measure p' is uniting for ,u;j, then the
measure [t = i’ + Emax is uniting for y1;;. Thus, it is sufficient to solve the problem only for ,u;j.

Now, we replace Hij with ,ugj, m and M with m/a and M/« respectively. We may assume

that densities p; = dy , Pij = ‘Cil’; Y satisfying the following assumptions:

1. m < pij(zi,z;) <M, 1<1i,j<3foralzelX.
2. fXj pij(xi, xj) vi(dr;) = pi(z;) for all z; € X;.
3. For v-almost all z € X at least one of the numbers p;;(x;,z;), 1 < 4,5 < 3, equals m.

Assumptions 1 and 2 are always fulfilled after changing p; and p;; on a set of zero measure,
and the last one follows from Lemma 3.16. Under these assumptions one can prove the following
lemma:

Lemma 3.17. Assume that p;, pij satisfy assumptions 1-3. Then for vi;-almost all (z;, x;) € Xjj
one of the following conditions holds: pij(z;, x;) = m or pj(x;) + pj(x;) < m+ M.

Proof. Let k € {1,2,3}\ {4,j}. Let us denote by X/ the set of couples (z;,z;) € X;; such that
for vp-almost all x;, € X, one of the numbers p;;(zs, x;), pir(s, xr) and pjp(xj, 1) equals m.
Assumption 3 implies that X;; has full measure with respect to v;;.

Let (x4, z5) € X;;. Assume that pij(zi, ;) > m. The for vi-almost all x, € X}, at least one of
the numbers p;i (24, x) and pji (x5, xx) equals m. In particular, pir(x;, xx) + pjk(xj, T) < m+M
for vi-almost all zj, € Xj. Then we infer from 1, 2

pi(zi) + pj(x;) = / pir(xi, x) dvg +/ pik(xj, z) dvg < m+ M.
Xk Xk

O

Changing, if necessary, density functions p;, p;; on a set of zero measure, we can assume, in
addition, that the following holds:

4. For all (z;,x;) € X;j one has p;j(x;,x;) = m or pi(x;) + pj(x;) <m+M,1<i,j<3.

Lemma 3.18. Let the density functions p;, p;j satisfy assumptions 1-4. Then for all i # j and
all z; € X; the following inequality holds:

pilzi) —m

vi(zj € Xj: pj(xj) <m+ M — pi(x;)) > U=

Proof. Fix a point z; € X;, and denote by A be the set of points z; € X satisfying p;;(x;, ;)

m. Then p;(z;) = fXj pij(zi, z;) dej < myj(A)+M(1—v;(A)), which implies v;(A) < MMngl)

On the other hand assumption 4 implies that for all z; € X;\ A the inequality p;(x;)+p;j(z;) <
m + M holds. Hence

pi(zi) —m

vj(z; € Xy pj(Xy) Sm+M = pi(zi)) 2 vj(X\A) =1 - v;(4) 2 =
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Choosing a sequence 332(-”) such that pi(:vl(-n)) — M; = sup,, ¢ x, pi(x;) and passing to the limit

one gets the following corollary:

Corollary 3.19. Let M; = sup, cx, pi(x;). Then for all j # i the following inequality holds:

M; —m
viz; € Xj: pj(Xj) <m+M = My) > 5——.

Lemma 3.20. Let p;, p;; satisfy assumptions 1-4 and % < 2. Then inequalities

2 m / 2

hold for all x; € X;, 1 <14 < 3.

Proof. Let M; = sup,, cx, pi(z;). Assume that M; > My and M; > Ms. It is sufficient to check

that $m > 1and My < % (34 /3 - 2).

Assume that %m > M. Then, since My = sup,, cx, p1(z1), one has My > 1. This implies

3m > My > 1. Moreover, My < 3m < 2 (3 + \/ﬁ)

Consider the case M; > %m Set A = {x2 € Xa: pa(z2) < m+ M — M;}. Then the following
holds:

1= / pQ(XQ) dVg < (m + M — Ml)Vg(A) + M2 (1 - I/Q(A))
X2

< (m + M — Ml)VQ(A) + M1 (1 — VQ(A)) = (m + M — 2M1)V2(A) + Ml.

Corollary 3.19 implies v5(A) > ]\1\/[41::;1n > M _q (here we use M < 2m). Applying this inequality

- — m

and the inequality M; > %m one gets

1< (’I?’L—l— M — 2M1)1/2(A) + M; < (Sm — 2M1)U2(A) + M,y
M M\%> M

< (3m — 2M)) (1—1> —|—M1—m<—2 <1> +61—3>.
m m m

The function —2x2 + 6x — 3 is decreasing on x > %, hence

Mi\? M 2
pem =2 (M) s g} <[ 2(2) 462 23) =3
m m 2 2 2

2
Moreover, —2(%) —1—6%—32%,thus%g%@—i—\/?)—%). 0
Let us describe explicit constructions of uniting measures for m = % and % <m< 1. If
m = %, then p;(z;) < F (3 +4/3— %) =1 for all z; € X;. Measures pu; and v; are probability
measures, Z’IZ < 1. Hence p; = v;. The desired measure is given by

H= 1 X plog + p2 X 13+ pg X i — 201 X flg X ps.

. . . d .
This measure is nonnegative: &£ (x1,x2,23) = p12(r1, ©2) + p13(x1, £3) + p23(x2, #3) —2 > 0 since
pij(xi,2;) > m = 2. In addition, it is uniting:

Prig(p) = p1 X po + pro X p1 + pi2 — 201 X p2 = f12,

and the same for other projections.
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Let us consider the case § < m < 1. Set: u = — 2 Then L+ = %(3 — u?); u satisfies

m m

winy Wi

0 < u <1 under assumption § < m < 1. The desired measure is given by

8 5u+9
m#lxﬂ2xﬂ3+2mv1xv2><1/3
u+3
mu(u+1)3(
5u+9
uw(u+1)3
u—+ 2

+2m(ﬂ23 X v+ p13 X V2 + p2 X V3)

2
- X X X 13) .
mu+ 1) (23 X p1 + p13 X pg + piz2 X ps)

p=-
+4 V1 X pg X pg  pin X Vg X g+ g X pg X U3)

(1 X Vo X 3411 X g X V3 + 11 X Vg X 3)

This measure is uniting for j;;:

Prio() = (4 u+3 ) Su+9 n u+ 2 (11 % 2 + 11 % v3)
1244 = mu(u+13  “uw+1)3 " T(w+1)2) ! R
i 8 4 u+3 4 "
m?u(u+1)3 mu(u+1)3  m(u+1)2 p = H
ou +9 ou +9 U+ 2 2
2 -2 X 2 —
(e tar) <ot (ot~ o) 2
= p12.
To prove the desired equality we substitute % = %(3 —u?) and check that all the terms are zero
except the last one. In addition, the coefficient of ui12 equals 1. We do the same for the other

projections.
To check nonnegativity of w it is sufficient to check that the following expression is nonneg-
ative:

— 8p1paps + 4m(u + 3)(p1p2 + p1ps + pap3) — 2m%(5u + 9)(p1 + p2 + p3)
+ 2mu(u + 1) (u+ 2)(p12 + p13 + pas) — 2mu(u + 1)(p1pas + pap13 + p3pi2)
+ 2m?(5u + 9),

where p; = pi(x;), pij = pij(zi,zj). One has m < p;; < 2m by our assumption, m < p; <
2 (34/3-2) = %(u+3) and 2 <m <1 by Lemma 3.20.
This function is linear in p;; with the coefficient

2m2u(u 4 1) (u + 2) — 2mu(u + 1)pg, > 2m%u(u + 1) (u + 2) — m*u(u +1)(u+3) > 0

(here we use that u < 1), hence one can set p;; = m for all 1 < 4,5 < 3. In this case the
expression is equal to

— 8p1paps + 4m(u + 3)(p1p2 + p1ps + p2ps) — 2m*(5u + 9)(p1 + p2 + p3)
+6m3u(u + 1) (u + 2) — 2m>u(u + 1) (p1 + p2 + p3) + 2m?(5u + 9)

= — 8p1paps + 4m(u + 3)(p1p2 + p1ps + paps) — 2m*(u + 3)*(p1 + p2 + ps)
+ 6mBu(u + 1) (u + 2) — m?(u? — 3)(5u + 9)

= (m(u+3) = 2p1)(m(u+ 3) — 2p2)(m(u+ 3) — 2p3) >0,

this completes the proof of the well-posedness and the proof of Proposition 3.15. 0
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One can prove many other sufficient conditions of existence of uniting measures. One of the
examples is given in the next theorem.

Theorem 3.21. Assume that a consistent family of measures ji;; sastisfies p;; > %,ui X,
1<4,7 <3. Then there exists a uniting measure.

Proof. The desired measure is given by

2 2 2
B= (Mu - g/ﬂ X M2) X 3 + (Mls - §M1 X M3> X p2 + <M23 - §M2 X M3> X 1.

Indeed, one has

2 2 2
Pria(p) = pi2 — Fh1 X M2 4 p1 X pg — Fh X Mo 4 2 X p1 — 3H1 X iz = ph2,

analogously for other projections. Thus g is uniting. O

Note that this construction does not allow to prove existence of a measure which is uniformly
equivalent to something else.

4 Connection to the Monge-Kantorovich problem with linear
constraints.

4.1 Monge—Kantorovich problem with linear constraints: definitions and ba-
sic facts

D. Zaev considered in [33] the multimarginal transportation problem with additional linear con-
straints. In this subsection we formulate basic definitions and theorems of his paper.

Let X1, Xo,..., X, be Polish spaces equipped with Borel o-algebras, X := X7 x --- x X,
W1, - .., by are probability measures on X1, ..., X, respectively.

Let W be an arbitrary linear subspace in C1(X, u;). Let us consider the following subspace
in the set of measures:

My (ps) = {7r € II(pi): /w dr =0 for all w € W}

Finally, we are ready to formulate our constrained problem:

Problem 4.1 (Monge-Kantorovich problem with linear constraints). Given Polish spaces X =
X1 X ... Xy, Borel probability measures p; € P(X;), a cost function ¢ € C(X, p;), and a linear

subspace W C Cp(X, u;) find
inf {/ c(x) dﬂ'}.
melly (1) (Jx

The following theorems are main results of [33]:

Theorem 4.2. Problem with additional linear constraints has a solution if the set Iy (u;) is not
empty.

Theorem 4.3 (Kantorovich duality). Let Xi,...,X,, X = X3 x --- x X, be Polish spaces, let
pr € P(Xk), k=1,...,n and let W be a linear subspace of Cp(X, pi) (or Cp(X)), ¢ € Cr(X, i)
(or Cy(X)). Then

inf /Cdﬂ': sup fe(zr) dug,
merw (p) Jx f+w<c; X (=)

where f(x1,...,2n) = > 5y fe(2k), fr € CL(Xk, px) (or Co(Xk)), w € W.
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4.2 A problem with linear constraints which is equivalent to the multi-
stochastic problem

Let us consider again the multistochastic Monge—Kantorovich problem on Polish spaces
X1,...,X,. We are given (Z) probability measures p, on X, where o € 7,1, and a cost function
c: X >R X = X; x---x X,. Our aim is to construct an equivalent Monge—Kantorovich
problem with linear constraints. Then we can apply duality Theorem 4.3.
In what follows we denote
X=]] Xo

a€lyk

For every « € Z,;, we define the corresponding natural projection Pr,: X = Xa.

Definition 4.4. For all a € Z,,;, and i € « let us consider projection 7%, := Pry, oPrx, . In what
follows Z?, denotes the projection operator and, at the same time, the image of r € X under
action of this operator. The set {7} can be viewed as a set of coordinates of T in X.

Definition 4.5. The subspace P C X will be defined as follows:

P:{EEEX:?&Q:%}, foralla,ﬂelnk,iEaﬂB}.

The subspace P can be characterized in terms of a diagonal operator. The space X is
n—1 n—1
isomorphic to (X7 X+ -+ X Xn)(kfl) = X(kfl): to verify this it is sufficient to interchange factors in
~ n—1
the product of spaces Xo = [[;c,, Xi- Let A be the diagonal mapping from X onto X = X(kfl).
It is easy to see that this mapping is well-defined, because it does not depend on permutation of

~ n—1
spaces in the isomorphism X 2 (X7 x -+ X Xn)(kfl). Hence P is the image of X under action
A and restriction of A on P acts bijectively.
The following properties of A are direct consequences of its definition:

Proposition 4.6. Operator A generates an operator A, : P(X) — P()Nf) acting on measures,
which has the following properties:

1. For every measure p € P(X) the support of Ay(u) is a subset of P.

2. Operator A, is a bijection between P(X) and the set of measures j € 73()?) with the
property supp(u) C P.

3. Every u € P(X) and every a € Iy, satisfy Pro(u) = Prx, (Ax(p)).

4. Let p be an arbitrary probability measure on X and let ¢ € LY(X,p). Letc be a measurable
function on X such that ¢(%) = ¢(A™YZ)) for all ¥ € P. Then ¢ € LY(X,A.(n)) and

Jxcdp= [3¢dA(n) = [pc dA(n).
The following theorem is an immediate corollary of these properties

Theorem 4.7. Let ¢ € CL(X, j1a) be a function on X and ¢ € CL(X, ta) be an extension of
coA~l: P C X — R onto the whole space X. Then

inf / cdr = inf /Edf.
nell(X,pa) J X §ET(X ,p1a)
supp(§)CP

The minimum on the left-hand side is attained if and only if the minimum on the right-hand side
1s attained.
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Consider the distance function d; on X; and the family of functions wé gt X — R,
wéﬁ(a?) = min(di(ifl, :Ezﬁ), 1)

for all a, 8 € Tk, © € aN B. Note that every wéﬁ is a nonnegative, continuous, bounded from
above function, hence wgﬁ € Cy(X) C Cp(X, o). In addition, if some measure 1 € P(X)
satisfies fwgﬁ dp = 0, then supp(p) C (wfw)*l(O) ={FTeX: 7 = 5/13}

Let us define the space of linear restrictions:

W = spanfuwls} € Cy(X) € CL(X, pa).

It follows from the observations collected above that for every =« € ’P()? ) the equality f wdr =0
holds for all w € W if and only if supp(7) C P. Hence

My (X, pta) = {7 € (X, pa) : supp(m) C P}.
Having this in mind, we can give another formulation of Theorem 4.7:

Theorem 4.8. Let ¢ € CL(X, o) be a function on X and ¢ € CL()Z',MQ) be an extension of
coA™l: P C X — R onto the entire space X. Then

inf / cdr = inf /E dg,
me€ll(X,ua) J x Eelly (X, pa)

and the minimum on the left-hand side is attained if and only if it is attained on the right-hand
side.

This theorem gives another formulation of the transportation problem with linear constraints
which is equivalent to our multistochastic problem. It remains to prove that there exists a
function ¢ which satisfies our requirement.

Lemma 4.9. a) Let c € Cy(X). There erists a function ¢ € Cy(X) which is an extension of
coA™l onto X. b) Let ¢ € Cp(X,pa). There exists a function ¢ € Cp(X, pa) which is an
extension of co A™! onto X.

Proof. Let pr be the projection of XX (i) onto a fixed factor. It is easy to see that pr is
continuous and pro A =id on X.

a) Assume that ¢ € Cy(X) and |c¢| < M for some number M. Set ¢(z) := ¢(pr(z)). Function
¢ is continuous, |¢] < M and ¢(Z) = ¢(A™(Z)) for all Z € P. Thus, ¢ is an extension of co A™!
onto X and ¢ € Cp(X).

b) Assume that ¢ € CL(X, pa). Then |c(z)] <3° o7 fa(Ta). Set

= 2aez,, Ja(@a), i c(pr(z)) < =X hez,, fa(@a),
() = > act,;, Ja(Ta): if ¢(pr(2)) > X per,, fa(Za),

c(pr(2)), otherwise.

The function ¢ constructed in this way is continuous, [c(z)| < > 7 fa(Za) and c(z) =

¢(A~Y(Z)) for all ¥ € P. Thus, ¢ is an extension of ¢o A~ onto X and ¢ € Cr(X, 1) O
Theorem 4.3 implies the following duality relation:

Proposition 4.10. Under assumptions of the previous theorem

inf cdr = su / a(Ta) dite,
Wen(m&)/x p Y Xaf( ) dp

f+w§za€znk

where f(T) =) ez, fa(Ta), fa € OL(Xas ta) (or Cp(Xa)), w € W.
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Assume that for the family of functions f, there exists w € W such that ZaeInk fa(ZTa) +
w(Z) < &) for all T € X. In particular, this equality holds for all € P. Then for all z € X

Y falA@)a) +w(A(@) < EA()).

a€l,

Moreover, ¢(A(z)) = c(z), w(A(z)) =0, A(T)a = Ta, hence Y o7 fa(za) < cz) forallz € X.

One gets
sup Z /X fa(xa) d/la < ?cuP Z /X fa(xa) d/la-

f—l—wSc aGan SC aGan

In addition, the following inequality holds:

inf c dm > su / o(Ta) dug.
WGH(XM)/X Py Xaf( ) dp

fze Q€L
Summarizing these results we get the following final version of our duality theorem:

Theorem 4.11 (Kantorovich duality for non-compact spaces). Assume we are given Polish
spaces X1,..., X, and a family of measures po € P(Xy), where o € Lpy. Let ¢ € CL(X, pa) (or
Cy(X)) be a cost function on X. Then

inf ¢ dm = sup Z /X fa dua,

I
m€ll(pa) J X F<e gez,

where the supremum is taken on the set of all fo € CrL(X,pa) (or Cy(Xa)), flz) =
>wet,, f(@a). If the set I(pa) is non-empty, the infimum on the left-hand side is attained.

5 Sufficient conditions for existence of a dual solution

5.1 Definition and properties of (n, k)-functions

Definition 5.1. Assume we are given Polish spaces X1, ..., X, and a positive integer 1 < k < n.
A function F': X — [—o00,+00) is called an (n, k)-function if there exists a tuple of functions
{fataez, s fa: Xoa = [—00, +00) satisfying

Fe)= Y falza)

a€L

for all z € X. If F(x) > —oo for each z (and therefore f,(x,) > —oo for all z, € X,), F' is
called a finite (n, k)-function.

This definition is given without any additional assumptions on the functions f, and the
function F'. We prove that for every (n, k)-function F' there exists a "regular" tuple of functions
{fa} such that F(z) =3 o7 fa(2a) for all z € X.

Let us introduce more notations. For z, € X4, 3 € Xg, such that N 3 = @, we denote by
ToTg a point from the space X, 3, whose coordinates will be the union of the coordinates z,
and zg. In addition, we write n = {1,2,...,n}.

Proposition 5.2. Let F be a finite (n, k)-function defined on the space X. Fizy € X. For each
a € I, we define a function Fo: To = F(Tayn\a) on the space X,.

Then there exists a tuple of real numbers {\;}*_, depending only on n and k such that F(z) =
> aeT,, falza) for each x € X, where

~

folwa) =D N Fa(zp), € Ty
BCa
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This representation of F' is regular in the following sense: if F' is a measurable / continuous
/ bounded function, then for all a € Z,,;, the function f, is measurable / continuous / bounded
too.

Example 5.3. Let F' be a finite (n, 1)-function. Fix y = (y1,92,...,yn) € X. Let A\ = % -1
and A\; = 1. Then

n—1 n—1
Fo=Fi(y1, -, Yim1, i, Yit1s- - Yn) —

filzi) = Fi(a;) - Fyi, . yn).

n

Since F' is a finite (n,1)-function, there exists a tuple of functions f;: X; — R such that
F(z1,...,2n) = fi(z1) + -+ fu(zy) for all x € X. One can easily verify that

o~

fi(xi) = filx:) — filys) + %(fl(yl) + 4 fulyn))s

and therefore F(z) =3 1", ﬁ(wz) for all z € X.

Example 5.4. Let F be a finite (3, 2)-function. Fix (y1,y2,y3) € X. Let \g = 1/3, \; = —1/2
and A = 1. Then by construction

N 1 1 1
fiz(z1, x2) = F(z1,22,y3) — =F(21,92,y3) — =F(y1,22,y3) + 5 F(y1, Y2, y3),

2 2 3
—~ 1 1 1
fis(z1,23) = F(w1,y2,73) — §F(x1,y2,y3) - §F(3/17y27333) + gF(yhyz,y?,%
—~ 1 1 1
Jaz(x2,w3) = F(y1, 22, 73) — §F(y1,962,y3) — §F(y17y2,3?3) + gF(yl,y%y:a)-

Similarly to Example 5.3 we can verify that

F(x1,32,23) = fra(w, @2) + fia(w1,73) + fas (w2, 3)
for all x € X.
Proof of Proposition 5.2. Consider a function F: X — R defined as follows:
F(z) = Z fa(za).

a€l

~

Since by construction f(za) = > gc, AsFp(2p), one has
F(l‘) = Z Z )\W‘Fﬁ(.r,g).
BEL, a€l,: BCa
For every 8 € Z,,, let us find the amount Ag of numbers a € 7, satisfying 8 C . If | 5] > &,

n—|B|

k*lﬁ\)' Hence,

then there is no such a. Otherwise, it can be easily verified that Ag = (

Fz)= > <Z:|‘g||>>‘|ﬁFﬁ($ﬁ):tz;AtC;:i)ZFB(xﬁ)-

BEL,: |BI<k BELnt

Since F is a finite (n, k)-function, there exists a tuple of functions {fo}acz,,, fo: Xa = R,
such that for all x € X we have

For each 8 € Z,, the function Fjg(xg) can be represented as follows:

Fy(ag) = > fyus(e,ys),

77561’ﬂ
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where the sum is taken for all pairs of disjoint sets of indices ,d € Z, satistying v C 3, 0 C n\j
and |y| 4+ |0] = k. Hence, the function F(z) can be represented as follows:

k
Fo) =3 n(3 1) X e = X cofrstom) 5)

t=0 BELnt v,0€L,

where the last sum is taken for all pairs of disjoint sets of indices v and ¢ such that ||+ |d| = &,
and c, s is a linear combination of {\i}%_, with constant coefficients.

Let us find the coefficient ¢, s. To this end, let us find for each 0 < ¢ < k the amount of
indices 8 € Z,; satisfying v C 8 and 6 C n\S. If ¢ < |y|, then this quantity is trivially zero.
Similarly, it is zero if t > n — |[0]| = n — k + |y|. Otherwise, exactly || indices of /3 are fixed, and
we need to choose t — |y| indices from n — |y| — |§| = n — k available items. Hence, the amount
of such g is (tn:lil) Substituting this into equation (5) we get

min(k,n—k-+])

wam s 2 G

t=|v|

In particular, the coefficient ¢, s depends only on |v|.

In order for the equality F'(x) = F(z) to hold, it is sufficient to require that the coefficients
cy,s satisfy the following equalities:

1, if |y| =k,
C =
0 0, otherwise.

We obtain the system of linear equations on A

min(k,n—k+a) n—t n—k
> )\t< >< >:0for0§a<k:,
P k—t)\t—a

min(k,n—k+k)

n—1t\/n-—k
3 )\t(k_t><t_k> =1
t=k

The matrix of this linear system is upper-triangular and all diagonal elements are not equal
to 0. Hence, this system admits a unique solution {\;}*_,. Thus, if f,(z4) = > pca NalFs(zs),

then Fl(x) =3 o7 fa(za) for all z € X. O

For 1 <1 < n, we fix a probability measure u; on the space X;. For each a € Z,, we denote
by fio the probability measure [];., #; on the space X,, and we denote by p the probability
measure [ [, ., i; on the space X. If a finite (n, k)-function F' is integrable (with respect to p),
we expect that there exists a tuple of integrable functions {fs}aez,, (With respect to u4) such
that F(z) = Zael'nk fa(za). Using Proposition 5.2, we construct a tuple of integrable functions
{fa} such that || fo||; differs from || F||; by no more than a constant factor depending on n and
k.

To achieve this let us verify the following lemma:

Lemma 5.5. Let X;, 1 < i < n, be Polish spaces equipped with the Borel o-algebras, and for
every i let p; be a probability measure one X;. Let ¢: X — R be an integrable function on X.
Fiz a point y € X, and for each a € I, let us denote by cq the function xo = c(Tayn\a) defined
on X,.

Then there exists a point y € X such that ||ca|; < 27| c||; for all « € T,,. For a = @ the
function cg is a constant function on the one-point space Xg which is equal to c(y), and ||zl
is just the absolute value of c(y).
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Proof. For each a € Z,, the spaces X, X Xp,\ and X are canonically isomorphic, and therefore
the function ¢ can be viewed as a function of two arguments c(ma,yn\a), where z, € X, and

Yn\a € Xn\a'
By the Fubini-Tonelli theorem, the function [c(:, yn\)| is integrable for ji,\,-almost all Yy o

and
lell, = /
X

Consider the internal function from this expression:

(/. el () ) s i) (©)

n\«a

ot () = /X (e i) a(d2a):

@

This function is non-negative. In addition, it follows from (6), Cp\o € Ll(Xn\a,,un\a) and
HCn\aH1 = HCHI Let

An\a = {yn\a € Xn\a: Cn\a(yn\a) > 2nt Hc”l} :

If |le[l; = 0, then Cp\o(Yn\a) is equal to O for jin\,-almost all points yp,\,, and therefore
tin\a(Ap\a) = 0. Otherwise, it follows from Markov’s inequality that

Hn\a (A )<71 / Crva (Uma) oo (d ):ch\ale 1 '
n\a\In\a = 9n+tl Hc”l X n\a\In\a) Pn\a\%n\«a on+1 HCH1 on+1

o

In both cases we conclude that fipq(Apye) <2777
Ify e Pr! (Xp\o\An\a), then

n\a

Cn\a<yn\a) < 2ntt HCH )

and therefore the function ¢, : x4 —> c(xayn\a) is integrable with respect to p, and

”CoéHl = Cn\a(yn\a) < 2nt Hc”l .

Thus, if

yeA= ﬂ Pr;ia(Xn\a\An\oz)v
a€l,

then for all v € Z,, the function c¢q: Zo > ¢(Ta¥n\a) is integrable and [lca [, < 27+ |¢|l;.
We only need to verify that A is non-empty. We have

_ 1
2 (Prnia(Xn\a\An\a)> = Hn\a (Xn\a\An\a) =1- un\a(An\a> >1- W?

and therefore

|Zn| 2"
M(A)Zl_Qn-l-lZ _2n+1_§'
Thus, A is a set of positive measure, and therefore A # &. O

Theorem 5.6. For every 1 < i <mn, let X; be a Polish space equipped with the Borel o-algebra,
and let p; be a probability measure on X;. There exists a constant C' depending only on n and k
such that for any finite (n, k)-function F € LY (X, i) there exists a tuple of integrable functions

{foacz,pr fo € LN Xas 1), such that

F(z)= " falwa)

aGInk

for all z € X and ||fal|1 < C - ||F||, for all o € Ty

29



Proof. Consider a finite (n, k)-function F' defined on the space X. By Lemma 5.5 there exists a
point y € X such that the function Fy: 4 — F(2Zayn\a) is integrable and || Fy, ||, < 2" | F|,
for all a € Z,,.

By Proposition 5.2 there exists a tuple of real numbers {\;}}_, such that F(z) =

Zaelnk f/;(xa) for all x € X, where

Jal@a) = D Mg Fa(ws), @ € Lar.
BCa
Since Fz € L'(Xg, pg) for all B € T,,, we conclude that fa € LY (X4, o). In addition,
~ L
7], < 3 Wal- 1ty < 201 X vl =2 171 S () -
BC t=0

= BCa

fa

Thus, we conclude that ‘ < C-||F|;, where
1

[k
C =ontl Z (t) | Ae,

and this constant depends only on n and k. O

Example 5.7. Let us find a constant C' explicitly for the case of the (3,2)-problem. Consider
a finite integrable (3,2)-function F. There exists a point y € X = X; x Xy x X3 such that
| Fally < 16| F||; for all @ € 73. By Example 5.4 the functions

~ 1 1 1
fi2(z1,72) = F(w1,22,93) — §F(9€17y2,y3) - iF(ybl’%yi’;) + gF(ylay%y:&),

—~ 1 1 1
fis(x1,23) = F(21, Y2, 23) — §F(z1,y2,y3) - iF(yl,y%l”?,) + gF(ylay%yS)a

~ 1 1 1
fos(z2, 23) = F(y1, 22, 23) — iF(ylaxZay?)) - §F(y1,y27$3) + gF(ylvy%y?))-

satisfy the equation F'(z1, 2, 23) = ]?12(3;1, x2) + ]?13(:U1, x3)+ ﬁs(@, x3) for all (z1,x9,23) € X.

All functions {f;;} are integrable with respect to p; ® p;. In addition,

~ 1 1 1
|7z S UFC w0l + 5 1G9l + 5 1F G 9)ll + 51F (0,2, 90)]

1 1 1
<16(1+=-+=-+=-)||F F,.
<16 (14 545+ ) IFl <38IF,

Similarly, ‘flng < 38||F|; and Hﬁg”l < 38||F||;, and therefore we can put C' = 38. This

constant estimate is crude, but we do not need to know the optimal value.

We want to generalize this property to a wider class of measures that are uniformly equivalent
to the product of their projections to one-dimensional spaces.

Definition 5.8. We call the probability measure p on the space X reducible if for 1 < ¢ < n there
exists a probability measure v; on spaces X; such that p is uniformly equivalent to [[,, -, v

We call the consistent set of probability measures {14 }acz,, reducible if there exists a uniting
reducible measure p € I(uq).

If the probability measures p and v on the space X are uniformly equivalent, then their
projections are also uniformly equivalent: Pr,u is uniformly equivalent to Prov for all o € Z,.
In particular, if the set of measures p,, is reducible, then p; = Pr;(u) is uniformly equivalent to
vi. Then the measure [[,.,., pi is uniformly equivalent to the measure [[,., v;. Hence, the
following is true: o -
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Proposition 5.9. A tuple of probability measures {pa}acz,, ts reducible if and only if there
ezists a uniting measure f1 € II(p1q), which is uniformly equivalent to [, <,, -

If the set of measures fi, is reducible, then for all 8 € Z,,4, t < k, the measure ug is uniformly
equivalent to [ [;c 5 Hi- Tt is easy to see that this condition is not sufficient.

Example 5.10. Let X;, X3 and X3 be discrete spaces, each consisting of two elements {0, 1}.
Define a probability measure p;; on the space X; x X as follows:

,ifa; # g,

, otherwise.

pij (i, ) = {

O ol

The tuple of measures {u;;} is consistent. In addition, every measure p;;, {i,j} € I3, is
uniformly equivalent to p; ® pj. The set II(1;;) is non-empty: consider the following measure
on the space X7 x Xo X X3: u(x1,x9,23) = 0 if 21 = x9 = x3, otherwise u(zy, o, x3) = 1/6. It
is easy to check that p € II(u;;).

Let v € II(pi;). Then the following equations hold:

v(0,0,0) + v(0,0,1) = 112(0,0) =

(0,0,1) 4+ (0,1,1) = p13(0,1) =

V(07 17 1) + V(L 17 1) = ,u23(17 1) =

D= W=D =

From these equations we get v(0,0,0)+v(1,1,1) = 0. From the non-negativity of the measure we
get (0,0,0) = v(1,1,1) = 0, and then we easily verify that v(z1, z2,23) = 1/6 for the remaining
points. Thus II(z;;) consists of a single measure that is not uniformly equivalent to p; ® p2 ® 3.

The following theorem generalizes Theorem 5.6 to reducible tuples of measures.

Theorem 5.11. For 1 < i < n, let X; be a Polish space equipped with the Borel o-algebra,
and let p be a reducible probability measure on X. Denote o = Pro(p). Then there exists a
constant C, such that for any finite (n, k)-function F € LY (X, u) there exists a tuple of integrable

functions {fa}aeznk, fa € LY(Xa, fta), such that

F(z) = Z fal(za)
aeznk
for allz € X and

1ol oy < o 1Pl

LY (pa)

for all a € T,k

Proof. Since p is reducible, there exist probability measures v; € P(X;) and positive reals m and
M such that m-v < p < M - v, where v = [[, -, -, Vi-

Consider a finite (n, k)-function F € L'(X, u). Since > m - v, the function F is integrable
with respect to v and

1
1Fll 1y < oo 1F g -

Denote v, = Hz‘e o Vi- It follows from Theorem 5.6 that there exists a tuple of integrable
functions {fo}taez, ., fo € L' (X4, V) such that

F(z)= " falwa)

o€l
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for all x € X and

~ C
1ol iy <€ 1PNy < 1 Fag

for all a € Z,,x, where C' is a constant depending only on n and & R
Since M - v > u, we have M - vy > pq for all a € Z,,. Hence, the function f, is integrable
with respect to p, and

for all @ € Z,,;. Thus, we can put C), = %C’. OJ

M
—C||F
o < mC Pl

fa

Jfa

L (.Ua) ‘

5.2 Existence of a dual solution for reducible tuples of measures

First, we generalize the notion of the proper thickness of the set introduced in [30)].

Definition 5.12. Let Xi,..., X, be Polish spaces, and for each o € 7, let u, be a probability
measure on the space X,. For a measurable set A C X define its proper (n, k)-thickness as

sth(A) =inf ¢ Y~ pa(Ya): Va S Xa,AC | Pri'(Va) o (7)

a€l,k aclyy
We are going to use this notion in the particular case of sets with zero proper thickness.

Proposition 5.13. If sth(A) = 0, then the infimum in (7) is attained: there exist measurable

subsets Yo C Xo, a € Ly, such that po(Ya) =0 and A C U,ez,, Pr 1 (Ya).

Proof. The proof follows the proof of [30, Lemma 2.5.4|. If for a tuple of measurable subsets
{Ya}aez,, we have A C U, ez, Pr,'(Y,), then f, = 1[Y,] satisfy the inequality

for all x € X, where 1[A] is the characteristic function of the set A. Moreover, it is clear that

Z / foc xa Ha dxoz) = Z ,Ufa(Ya)-

a€l, €l

Since sth(A) = 0, we can consider a minimizing sequence of tuples of functions { fc(f)}a,
X, — [0,1], such that
> [9a) 2 1[A)()

a€L,
for all z € X and
/ f(t) (o) o (dzy) — 0.
t—o00
a€l
Since fét) is non-negative for all a € Z,,;, and for all £, we conclude that

/ FO(20) pra(dza) — 0 for all a € Ty,
X, t—o00

Let us recall the formulation of the Komlés theorem.
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Theorem 5.14 (|1, Theorem 4.7.24]). Let u be a finite nonnegative measure on a space X, let
(i} © LX), and et
sup || full 1y < 00
n

Then, one can find a subsequence {gn} C {fn} and a function g € L'(u) such that, for every
sequence {h,} C {gn}, the arithmetic means (hy + - -+ hy)/n converge almost everywhere to g.

Using this theorem and passing, if necessary, to subsequences, we may assume that the

(glt):%(fgu...Jrfg))

converges to some integrable function g, pe-almost everythere in X, for all o € Z,,5. Thus, we

sequence

can suppose that
9o (Ta) = limsup g(t) (xq) for all z, € X,.

«
t—o00

By construction we obtain 0 < g4(x,) < 1 for all z, € X,. Also, since Zaelnk gg) (o) >
1[A](x) for all z € X and for all ¢, we conclude that

Z ga(ro) > 1[A](z) for all z € X. (8)

o€,k

In addition, since | g&t ) (za)] < 1 it follows from the Lebesgue’s dominated convergence theorem
that

/ 9o (o) po(dxy) = lim g&)(xa),ua(dxa = lim / f(t) (o) tha(dzy) = 0.
Xa

t—o00 Xa t—o00

Thus, since the function g, is non-negative, we conclude that g,(z,) = 0 for ps-almost all
To € Xa.
Consider the tuple of sets {Yy }aez,,

Yo ={2a € Xa: ga(za) > 0}.

Since g, is equal to 0 almost everywhere on X,, we have p,(Y,) = 0. In addition, if x € A,
then it follows from inequality (8) that >_ .7 ga(2a) > 1, and therefore there exists at least

one « € I such that g,(x,) > 0 or equivalently z, € Y,. Thus, A C aneInk Pr 1(Y,). d

(07

Definition 5.15. We say that a measurable set A C X is a zero (n, k)-thickness set if sth(A) = 0,
or equivalently if there exist a tuple of measurable subsets Y, C X, a € Z,,; such that 4 (Y,) =0
for all a and A C Uyez,, Pryt (Ya).

In addition to the standard dual multistochastic problem, we consider a more convenient
relaxed dual problem. Let ¢ be a measurable cost function on the space X. Denote by

\I/c(,ua)

the set of tuples of integrable functions {fo}aez,,, fo: Xo — R such that inequality

Z fa(xa) < c(a)

OZGInk

holds at all points x € X except a zero (n, k)-thickness set. Then, in the relaxed dual problem
we are looking for

J=swp! Y / fo(a) pa(dza): {fa} € Velpia)

OZGI k
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If {fo} € Ue(pa), then there exists a tuple of measurable subsets Y, C X, such that pq(Yy) =
0 and
Z fa(za) < c(x) for all x & U Pr1(Y,).

a€lnk a€ly,y

Consider the tuple of functions {fa} defined as follows: fa(xa) = fa(za) if zo & Y, and
fa(za) = —oo otherwise. For all a € Z, the function f, coincides with f, almost everywhere
with respect to uq, and therefore

/ fa(za) paldza) = / fa(za) paldza)

o€l a€lng

In addition, the inequality >, .7 fa(xa) < ¢(z) holds for all z € X. Thus, having a tuple of
functions {fo} € Vc(pa) one can construct another tuple of (not necessary real-valued) functions
{fa} satistying the conditions of the standard dual problem with the same value of the dual
functional. Therefore the supremum is the same for both standard and relaxed dual problems.

In [21] the following theorem was proved, establishing the existence of a dual solution in the
multi-marginal case.

Theorem 5.16 (Kellerer). For every 1 < i < n, let X; be a Polish space equipped with a
Borel probability measure p;. Let c¢: Xy x -+ x X;, — [—00,+00]| be a measurable cost function
on the space X1 x --- x X,,. Suppose that there exists a tuple of integrable functions {c;}1 4,
¢+ Xi = (—o00,400] such that inequality

n
@1, an)| <D eila)
=1

holds for all (x1,...,x,) € X.

Then the supremum in the relazed dual Monge-Kantorovich problem

sup {; /X pi(xi) pi(dz): {pitiey € ‘I’c(ui)}

1s finite and attained.

We prove the multistochastic generalization of this theorem for the case of reducible tuple of
projections.

Theorem 5.17. For every 1 < i < n, let X; be a Polish space, let {jia}acz,,, Ha € P(Xa)
be a reducible tuple of probability measures, and let c: X — [—o0,+00] be a measurable cost
function on the space X. Suppose that there exists a tuple of integrable functions {ca}tact,,
Co: Xo — (—00,4+00] such that the inequality

@)l < Y calza)

OZGInk

holds for all z € X.
Then the supremum in the relazed dual multistochastic Monge-Kantorovich problem

J = sup Z / fa Ty ,Uoz(dwoz) {fa}ocEInk cev (:ua) (9)

o€,k

18 finite and attained.
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Proof. Replacing ¢, with |c,| we may assume that the function ¢, is non-negative for all o € Z,,.
Let ¢ : X4 — [0,400) be an arbitrary finite integrable function such that ¢ (z4) = cq(zq) for
to-almost all z, € X,. Consider a function ¢* on the space X:

. {c(w), if ¢ (xq) = calzq) for all z, € Xq,
c*(x) =

0, otherwise.

It trivially follows from the construction that ¢*(z) = c¢(z) for all x € X except a zero
(n, k)-thickness set. Hence,
\IIC(,U&) = WU, (Na)'

In addition, [c*(2)] < > ez, ca(za) for all z € X. In particular, since cf,(zq) < +oo for all
zq € Xqo and for all o € 7,5, we conclude that |c*(z)| < 400 for all x € X. Thus, replacing ¢
with ¢* and replacing ¢, with ¢, for all a € Z,,5, we may assume that |c(x)| < +oo for all z € X
and 0 < cq(7q) < +oo for all 2, € X, and for all o € Z.

Denote

The function ¢o: X4 — [0, +00) is finite and integrable with respect to p, for all & € Z,;; in
addition,

Z (—ca(rq)) < c(z) for all z € X.

aeInk:

Thus, {—ca}acz,, € Yc(tta), and therefore the set W,(jq) is non-empty and

72 3 [ (eolo) paldea) = 7.

aeInk

Since the tuple of measures {1} is reducible, there exists a reducible measure p € TI(uq).
Since cq € L'(Xa, fta), the extension of ¢, to the space X is integrable with respect to p. Thus,
since |c(z)| < 3 ez, CalTa) € LY (X, i), we conclude that ¢ € LY(X, p).

Let {fa}tacz,, € Ye(ita). Since fo € L' (X4, pta), the extension of f, to the space X is
integrable with respect to u. Hence,

aezznk /Xa foc(xa) pio(dzy) = /XQGZIM fa(xa) ,U(dx)

We have o7 fa(®a) < c(x) at all points except a zero (n, k)-thickness set. Since p is a
uniting measure, every set of zero (n, k)-thickness has zero measure with respect to p. Hence,
>aez,, fo(Ta) < c(z) for p-almost all x € X, and therefore

[ Y hatentan) < [ ewpn < ¥

aEInk OéEInk

/ coc(xa) /J'Oz(dxoc) = j
Xa
Thus, we conclude that

Yoo fal@a) paldra) < T for all {fo} € We(pa),
o€l Xa

and therefore J < J. In particular, the supremum in (9) is finite.

Consider the maximizing sequence of tuples of functions { fo(f)}agnk € V,(uq) such that

> [ 10 padra)

o€,k
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We may assume that

Z /X F(24) paldry) > —J for all t. (10)

o€l

For each t consider a finite (n, k)-function F*)(z) = Y aeT,, f(gt) (za). Let us bound the norm

of the function F®) from above. Since F*)(x) < ¢(x) for all points except a zero (n, k)-thickness
set, and c(z) < 3 7 Ca(Tq) for all z € X, we conclude that F(z) < > aez,, CalTa) for
p-almost all x € X. Finally, since > 7 ¢a(2a) > 0, we have

FO(2) + |FO ()] = max(0,2FD(2)) <2 Y cal@a)
o€l
for p-almost all z € X. Combining this with inequality (10) we get

= ® (g T
sy~ [ IFO@latan) <2 Y

OCEInk

7]

/ (o) ta(da) — / FO () u(dr) < 37,
Xa X

Since p is reducible, for each ¢ by Theorem 5.11 there exists a tuple of finite integrable
functions {féf’}agnk such that the equation

FO(z) = >~ f(2a)
a€l,
holds for all z € X and

Y <3C,J=C

LY ()

for all o € Z,;. In particular, {f,&t)} € W.(pq) for all ¢, and this sequence of tuples is also

L (ta) < Cu HF(t)‘

maximizing. Thus, replacing { f(gt)} with {ﬁ(f)}, we may assume that the inequality

(t) <C

‘ Ja LY (pa) —
holds for all « € Z,,;. and for all ¢.
In particular,
(t)
su < 400
tp Hfa L' (1a)

for all « € 7. Hence, using the Komlo§ theorem and passing, if necessary, to subsequences, we
may assume that the sequence of functions

1

(t) -
ga (xa) t

(A0 40, ten,

converges to some function g, € L' (X4, fta) fa-almost everywhere in X,, for all o € ;.
For each ¢ consider the finite (n, k)-function

GO@) = 3 g0 (wa) =

OéEInk

S

(F(l)(m) 4o FO (;p)) .

We have G®(z) < c¢(z) for all z € X except a zero (n,k)-thickness set, and therefore
{g&t )}OCEInk € WU.(uq) for all t. In addition, it follows from the properties of the Cesaro mean

that the sequence of tuples {g&t )}aeInk is maximizing as well as { fc(vt)}aelnk-
Let us verify that {ga }acz,, € Ve(ta). For every ¢ there exists a tuple of measurable subsets

{Ag)}aeznw AP ¢ X, such that ,ua(A((f)) = 1 and G (x) < ¢(z) for all z € X such that
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(t

To € Aa) for all « € Z,;. In addition, for each o € Z,; there exists a measurable subset
Al C X, such that po(A2) =1 and if z, € A, then ¢ (2,) = ga(za) as t — oco.

For a € T, let
Ay = Al N ( AP )

For any = € (,ez,, Pr 1(Aa) we have > .7 -, ga (:Ua < ¢(x) for all ¢t and
Z ggf)(xa) P ga(Za)-
€l a€lny
Thus, if # € N,ez,, Pr,'(Ay), then > wet,, 9a(Ta) < c(x), and therefore, since yin(Aq) = 1, we

conclude that {ga}agznk € Ueuq).
Consider the finite (n, k)-function G(z) = 3_ ez . ga(za). We have

G (z) — G()

t—o0

for all z € X except a zero (n, k)-thickness set, and therefore the sequence of functions {G®}
converges pointwise to G p-almost everywhere. In addition,

G(t)(x) < Z ca(Ta) € Ll(Xa 1)
Oéel-nk

for p-almost all x, and therefore it follows from the reverse Fatou lemma that

Z/ ga(a) pa(Ta).

o€,k

J=1im [ GO@)u(de) < /
X X

t—o00

Thus, the supremum in (9) is attained on the tuple of functions {ga }aecz,, - O]

Combining this result with Theorem 4.11, we get the following general duality theorem for
the case of reducible projections.

Theorem 5.18 (General duality theorem). For every 1 < i < n, let X; be a Polish space, let
{ttatacz, s ta € P(Xa) be a reducible tuple of probability measures, and let ¢ € Cr(X, pa) be a
continuous cost function on the space X. Then there exists a uniting measure m € I(puy) and a
tuple of integrable functions { fotactz, ., fo: Xa — [—00,+00), such that

Z fa(za) < c(x) forallz e X

aeInk

JRCLIOEDS / fala) paldra).

o€,k

and

In particular, ™ is a solution to the related primal (n, k)-problem, and { fa}acz,, is a solution to
the related dual (n, k)-problem.

5.3 Unreachability of the supremum in the dual problem in the irreducible
case

In contrast to the multi-marginal case, in the theorem proved above, the essential requirement
is the irreducibility of the set of measures po. In the following paragraph we construct a mul-
tistochastic (3, 2)-problem with a bounded continuous cost function such that the supremum in
the corresponding dual problem can not be attained.

37



Let X1 = Xo = X3 = N. For 1 < < 3, the space X; is a Polish space equipped with the
discrete topology. For each n denote
A, ={(n+1,n,n),(n,n+1,n),(n,n,n+1)}.
One can easily verify that these sets are pairwise disjoint.
Consider the measure j,, on the space X = X7 x Xy x X3 defined as follows:
2

pip(n1,ma,m3) = { (7n)?’
0, otherwise.

if (n1,n2,n3) € A, for some n,

We have
> 2 6 = 1
1ip(X) :Z’A”|W = ﬁzﬁ =1,
n=1 n=1

and therefore the measure p, is a probability measure.
Consider another measure p. on the space X: let pc(ni,ng,ng) = 27™7"27" for all
(n1,n2,n3) € X. We have

1 | =1 S|
(n1,m2,n3)€X ni=1 no=1 nz=1
and therefore p. is a probability measure too.

Lemma 5.19. Consider the probability measure p = (1 — a)pp + ope, where 0 < o < 1. For
{i,7} € I3, denote p;j = Prij(p). If v € (pij) is a uniting measure for the tuple of projections
{1i;}, which means it has the same projections as i, then

2l—a) (1 1 o'
02 25 (- ) - 5

Proof. First, let us find p;; explicitly. We have

for all x € Ay, for all n.

o0

Pri;(pe)(ni, ng) = E:l 2ni+1nj+n = 2ni1+nj for all (n;,n;) € N
n=
In addition, one can easily verify that
0, lf ]nl — nj] Z 2,
Prij(p) (ni; mj) = (7”21)2, if |n; — n;| <1 and min(n;, n;) = n.

In particular, since ;5 = (1 — a)Pry;(pp) + aPryj(pe), we obtain the following equations:

[0 .

P ) = 31-a) | a | (1)
(7TTL)2 + 27’Li+'fl]' lf ‘nz - n]‘ S 1 and mln(ni,nj) =n.

Fix a positive integer m. Consider the following functions f;;: N — R:

1, if (n1,n2) = (m+1,m),

0, otherwise;

fl?(nla n2) = {

-1, ifny=m+1and ng € {m—1,m+ 1},

0, otherwise;

J13(n1,n3) = {

-1, ifng=mand ng & {m—1,m,m+ 1},

0, otherwise.

Ja3(ng,n3) = {
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The function f;; is bounded, and therefore is integrable with respect to p;;. Using equations
(11) we get

2(1 — «) a
2m2 92m+1°

/f12 dpra = pr2(m+1,m) =

« 2(1 —«) !
/fl3 dpnz = —paz(m + Lm —1) — mz(m + 1,m +1) = S 22m (4 1)2 22mA2
o0
o a a o a Q
/f23 dpigz = —Z pos(m,n) = — Z smtn T 3zm=1 T 3w + 5emTT > “om + 5o
nZ{m—1,m,m+1} n=1

Summarizing this, we obtain
/f12dM12 +/f13dM13 +/f23du23
21l—a) (1 1 o e o)
> 2 m2 (m +1)2 + (22m+1 N 22m+2) ~ om (12)
- 20—a) (1 1 a
2 m?  (m+1)2 2m’

Consider the (3, 2)-function

F(ni1,n2,n3) = fi2(ni,n2) + fiz(ni,n3) + faz(ne, ns).

Let us verify that F(ny,ng,ng) < 0 if (n1,n2,n3) # (m+ 1,m,m). Indeed, since fi3 < 0 and
f23 < 0, we conclude that if F'(nq,n2,n3) > 0, then f12(n1,n2) > 0, and therefore (ny,ns) = (m+
1,m). If ng & {m —1,m,m+ 1}, then by construction fo3(m,ns) = —1, and fis(m+1,n3) =0,
and therefore F'(m+ 1, m,ng) = 0. Otherwise, if ng € {m —1,m+ 1}, then fis(m+1,n3) = —1
and foz(m,n3) = 0, and therefore F(m + 1,m,ng) = 0 too.

In addition, F'(m + 1, m,m) = 1, and therefore if 7 is a probability measure on the space X,
then

/ F(ny,n,n3)y(dny, dng,dnz) < v(m+1,m,m).
X

Combining this with inequality (12), we conclude that if v € II(p;;), then
y(m+1,m,m) > / F(ny,ng,n3)y(dny, dng, dns)

X
= flzd,ulz+/f13dM13+/f23dM23

For the remaining points of A,, the inequality is proved in the same manner. O

Corollary 5.20. There exists a real ag € (0,1) such that if v € (p;j), then v(x) > 0 for all
x € Ay, for all n, where p;; = Prij(1 — ao) pp + aofie)-

Proof. By Lemma 5.19 we only need to prove that there exists oy € (0, 1) such that the inequality

2(1—%)<1_1>_a0>0

2 n?  (n+1)2 on

holds for all n € N, or equivalently

20— ao) 2 (13)

2 11
o n?2 (n+1)?
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One can easily verify that the function in the right hand-side of the inequality converges to
0, and therefore there exists a constant M such that the inequality

holds for all positive integer n. Thus, the inequality (13) follows from

2(1 —
( - @) _
=
and therefore every ag such that 0 < ag < 2/(M7? + 2) is suitable. O

Theorem 5.21. Let ag be the constant constructed in Corollary 5.20. Let p = (1—ag)pp+ o,
and for {i,j} € I3 let p;; = Prij(p). Consider the cost function c: X — {0,1}: c(z) = 1 if
x € A, for some n, and c(x) = 0 otherwise. Then the supremum in the corresponding dual
(3,2)-problem can not be attained.

Proof. The cost function ¢ is a bounded continuous function on the space X equipped with
the discrete topology. In addition, the set II(x;;) is non-empty, and therefore it follows from
Theorem 4.11 that

min / cdvzsup{Z/ fij dpj: Zfij($i,$j) SC(QULOU%JUS)}-
X Xij

YEI (p15)

Assume that the supremum in the dual problem is attained. Then there exists a uniting measure
v € H(uij) and a tuple of integrable functions { fij} (i jyezs,, fij: Xij = [-00,+00) such that

fiz(ni,n2) + fiz(ni, n3) + fag(ne, n3) < e(ni, na, ng)

for all (n1,n2,n3) € X and

Ji2dpiz + Jizdpas + Joz dpos = / cdy.
X12 Xi3 Xo3 X

It follows from equation (11) that f;;(ni, nj) > 0 for all pairs of positive integers (n;,n;).
Hence, since f;; is integrable with respect to p;;, we conclude that f;; can not take value —oo.
Consider the finite (3, 2)-function

F(ni,n2,n3) = fia(ni,n2) + fiz(ni,n3) + faz(ne, n3). (14)

Since f;; is integrable with repsect to ji;; and the measure + is uniting, the function F' is integrable
with respect to v and

/Fd’Y:/ f12dﬂ12+/ flde13+/ f23dM23:/ cdy.
X X2 X13 Xo3 X

Since in addition F(ni,n2,mn3) < c(ni,n2,n3) for all (ni,n2,n3) € X, we conclude that
F(ni,n2,n3) = c(n1,n2,n3) y-almost everywhere. It follows from Corollary 5.20 that ~(x) > 0
if x € A, for some n, and therefore

Fin+1,n,n)=F(n,n+1,n)=Fn,nn+1)=1 (15)

for all n € N.
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One can easily verify using equation (14) that for all n € N we have

Fin+1ln+1,n+1)— F(n,n,n)
= Fnyn+1l,n+1)+Fn+1l,n,n+1)+F(n+1,n+1,n)
7F(n+1,nan)*F(nan+1an)7F(nanan+1)'

Since, F(ny,n2,n3) < ¢(n1,n2,n3) and c(ny, na,n3) = 0 if the point (n1, n2,n3) is not contained
in the set LI>2 | A, the inequality

Fnon+1ln+1)+Fn+1Lnn+1)+F(n+1,n+1,n) <0
holds for every positive integer n. In addition, it follows from equation (15) that
Fn+1,n,n)+ F(n,n+1,n)+ F(n,n,n+1) =3.
Summarizing this, we conclude that F(n +1,n+1,n+ 1) < F(n,n,n) — 3, and therefore
Fn,n,n) < F(1,1,1) =3(n—1) <¢(1,1,1) —=3(n—1) = =3(n — 1).

for all n € N.
In particular, we conclude that for all n € N the following inequality holds:

|[fiz(n, )| + [ fi3(n, n)| + [ f23(n,n)| = 3(n —1).

Using this inequality and equation (11), we can bound from below the ) Hfij”Ll(m]-):

1120l 2 urg) + 1180 21 gy + 1231 L1 (pug)

> Z (If1iz(n, n)| - paz(n,n) + [ fs(n, n)| - pas(n,n) + [ fas(n, )| - pas(n,n))

[e.9]

PO 0l S L (st + )|+ L fos(m, )
n=1

2(1— 040 i 3(n — 1 oo,
n=1

Thus, at least one the functions f;; is not integrable, and this contradiction proves Theorem 5.21.

O

The measure p constructed in Theorem 5.21 is strictly positive at every point of the space
X. In particular, this means that p is equivalent to Prq(y) ® Pra(u) ® Pr3(p). Thus, we obtain
the following proposition, which demonstrates that we cannot replace “uniform equivalence” with
simple equivalence.

Proposition 5.22. Let X1 = Xo = X3 = N. There exists a probability measure p on the space
X = X1 x X9 x X3 and a cost function ¢ : X — {0,1} such that the following conditions hold:

(i) measure p is equivalent (but not uniformly equivalent) to py & pe @ ps, where p; = Prju;

(ii) there is no optimal solution to the dual problem for the cost function c and projections fi;;,
where p; = Prip.

In the classical Monge-Kantorovich problem the dual solution may not exist provided c is
unbounded. In [29, 2] authors introduce the concept of strong c-monotonicity, which generalizes
the c-monotonicity and allows us to find a generalized dual solution.
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Definition 5.23. A Borel set I' C X x Y is strongly c-monotone if there exist Borel measurable
functions ¢: X — [—o0,+00), ¥: Y — [—00,+00) such that ¢(z) + ¢¥(y) < c(x,y) for all
(x,y) € X xY and p(z) + ¢¥(y) = c(z,y) holds if (z,y) € I'. A transport plan m € II(p,v) is
strongly c-monotone if w is concentrated on a strongly c-monotone Borel set.

One can easily verify that strong c-monotonicity implies c-monotonicity, and if there exists
a solution to the dual problem, then every optimal transport plan is strongly c-monotone. In
[2] authors prove that under general assumptions on the cost function the transport plan 7 is
optimal if and only if 7 is strongly c-monotone.

Theorem 5.24 (|2, Theorem 3|). Let X, Y be Polish spaces equipped with Borel probability
measures p, v, and let ¢: X XY — [0,00] be Borel measurable and p ® v-a.e. finite. Then a
finite transport plan w € Il(p,v) is optimal if and only if it is strongly c-monotone.

In particular, for every finite optimal transport plan 7 there exist (not necessary integrable)
functions ¢, 1 such that ¢(z) + ¥ (z) < c(z,y) and the equaility holds w-a.e. We can natu-
rally generalize the concept of strong c-monotonicity to the multistochastic Monge-Kantorovich
problem as follows.

Definition 5.25. A Borel set I' C X is strongly c-monotone if there exist Borel measurable
functions { fa}acz,,, fa: Xoa — [—00,+00) such that the inequality

> falta) < clx)
a€L,k

holds for all z € X and the equality is achieved if z € T'. A transport plan 7 € II(ug) is strongly
c-monotone if 7 is concentrated on a strongly c-monotone Borel set I'.

We do not know whether exists a strongly c-monotone transport plan in the problem consid-
ered in Theorem 5.21. In what follows, we construct another example of the (3,2)-problem and
prove that in this example there is no strongly c-monotone optimal transport plan.

As in the previous example, let X7 = Xo = X3 = N. For each n denote

B,={(n,n+1,n+1),(n+1,n,n+1),(n+1,n+1,n)}.

Consider the following measure p defined on the space X7 x Xo x X3 as follows:

1
—— if (n1,n9,n3) € A, U By, for some n,
wlnnmamg) = Gy 07 (16)

0 otherwise.
One can check that p is a probability measure. Finally, for {i,j} € Z3 2 denote ;; = Pr;;(u).
Lemma 5.26. The measure p is the only uniting measure for the tuple of projections {ju;j}.

Proof. Let v € II(p;j). For {i,j} € 32, the projection p;; is concentrated on the set {(n;,n;) €
N2: |n; — nj| < 1}, and therefore the transport plan v is concentrated on the set

o0
S = {(n1,n2,n3) € N3: max{ny,ng,n3} — min{ny,ng,n3} <1} = |_| ({(k,k,k)} U A LU By).
k=1
One can easily verify that 7 is uniquely defined by its values on the diagonal, and if we denote
ar, = v(k, k, k), then we have
pu(ny,no,ng) — (a1 + -+ ap) if (n1,ne,n3) € A, for some n,

17
pu(ny,no,ng) + (a1 + -+ +ap) if (n1,ne,n3) € B, for some n. (17)

v(n1,n2,n3) = {

We have ju(n1,n2,n3) = (7n)~2 for all (n1,n2,n3) € A,, and therefore a; + --- + a, < (7n) 2
for all n. Thus, since all a,, are nonnegative, we conclude that v(k, k, k) = ar = 0 for all k, and

therefore v = p by equation (17). O
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It follows from the previous lemma that p is the unique optimal solution to the multistochastic
problem with arbitrary bounded cost function. Next, we construct the cost function ¢ such that
i is not strongly c-monotone. The existence of this example demonstrates that we can not
generalize the equivalence of optimality and strongly c-monotonicity to the multistochastic case.

Theorem 5.27. Let p1 be the measure on N® defined in equation (16), and let p;; = Prij(p).
Consider the cost function c: N3 — {0,1}: c(x) = 1 if x € B, for some n, and c(x) = 0
otherwise. Then there are no functions {fi;}, fij: N* — [—00, +00) such that

fi2(n1,m2) + fis(ni,n3) + faz(n2, n3) < c(ni, na, n3)

for all (n1,n2,n3) € N3 and the equality holds p-a.e.

Proof. Assuming the opposite, consider the following (3, 2)-function:

F(ni,n2,n3) = fia(ni,n2) + fiz(ni,n3) + faz(ne, ns). (18)

Since {f;;} satisfy the assumptions of the theorem, we have F(ni,n2,n3) = c(ni,na,n3)
p-a.e. Hence, since p(ny,ng,ng) > 0 for all (ny,ne,n3) € A, U By, we get

F(n+1,n,n)=F(n,n+1,n) = F(n,n,n+1) =0,

19
Fnyn+1l,n+1)=F(n+1Lnn+1)=Fn+1,n+1n)=1 (19)

for all n € N.
Applying (18) one can easily verify the following equation:

Fn,n,n)+ Fn,n+1,n+ 1)+ Fn+1,n,n+ 1)+ F(n+1,n+1,n)
=Fn+1Ln+1n+1)+F(n+1nn)+F(n,n+1,n)+ F(n,n,n+1).

Combining this with equation (19), we get F(n,n,n) +3 = F(n+ 1,n+ 1,n+ 1) for all n, and
therefore the inequality

F(n,n,n)=Fn+kn+kn+k)—3k<cn+kn+kn+k)—3k<1-3k

holds for all n,k € N. Thus, F(n,n,n) = —oo for all n. In particular, F(1,1,1) = —oo, and
therefore f;;(1,1) = —oo for some {i,j} € Z32. Without loss of generality we may assume that
fi2(1,1) = —oo. Then F(1,1,2) is also equal to —oo, and this contradicts equation (19). O

6 Properties of the dual solution in (3,2)-problem

6.1 Boundedness of the dual solution

In the classical Monge-Kantorovich problem for the bounded cost function ¢(z,y) we can trans-
form every solution to the dual problem to the bounded one, using Legendre transformation.

Proposition 6.1. Let X andY be Polish spaces, let i € P(X) andv € P(Y), and letc: X XY —
R4 be a cost function. If ¢ is a bounded continuous cost function, then there exists a solution
(p,9) to the related dual problem such that both p(x),v(y) lie between — ||c||, and ||c||o, for all
reXandyeyY.

Proof. The proof is an adaptation of the argument from the proof of [31, Theorem 1.3|. Let
(p,1) be a solution to the dual problem provided by [27, Theorem 2.4.3|. If 7 is a solution to
the related primal problem, then p(x) 4+ 1 (y) = ¢(x,y) m-a.e. In particular, there exists a point
(x0,90) € X x Y such that ¢(zo) + ¥ (v0) = c(z0,y0) > 0. For any real number s the pair of
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functions (¢ — s, + s) is also a solution to the dual problem. By a proper choice of s, we can
ensure

¢(w0) > 0, ¥(yo) > 0.

Since () + ¥(y) < c(z,y), we have p(z) < c(z,%0) — d(yo) < c(w,y0) for all z, and
Y(y) < e(xo,y) — ¢(xo) < c(xo,y) for all y. Consider the Legendre transformation of the
function ¢:

#(x) = inf (c(z,y) = ¥ (y))-

yey

By construction, p(z) + ¥ (y) < c(z,y) for all z € X and for all y € Y. From the inequality
o(x) < c(z,y) —¥(y) we see that B(x) > ¢(x) for all z. Since p(z) < c(z,y) — ¢ (y) for all y, we
have

?(x) < e(@,90) = P(wo) < llefl »

and it follows from the inequality ¥ (y) < ¢(zg,y) that

@(1’) > ;g}f/(C(:ﬂ,y) - C(.%'(), y)) > = ”CHoo :

Hence, p is an integrable function; since @(x) > ¢(x) for all z, we have

Ammmm+ﬁwwmmzépwmmwfy@m@»

and therefore (@, ) is a solution to the dual problem.
Finally, define

O(y) = inf (c(z,y) — ().

xe

By the same arguments we conclude that (@, 1)) is a solution to the dual problem and — [|c[|, <
Y(y) < |lef| o forall y € Y. O

We want to generalize this observation to the multistochastic case.

Definition 6.2. Given finite measures y and v on the space X, we say that u <p v if there
exists a positive real M such that p < M - v.

The following properties trivially follow from the definition.
Proposition 6.3. Let u and v be finite measures on the space X. Suppose that u <p v. Then
(a) w is absolutely continuous with respect to v;
(b) LL(X, 1) 2 LY(X,v);
(¢) if X = X1 X -+ X Xy, then Prou <p Prov for all o € IZ,.

Definition 6.4. Let Xi,..., X, be Polish spaces, let 7 € P(X), and let v, be a probability
measure on X, for some « € 7, such that v, <p 7,. Let p be a density function of v, with

respect to my. Then denote by Up, (v, ) the measure p*(z) - m, where p*(z) = p(x,) for all
reX.

Proposition 6.5. Let X1,...,X, be Polish spaces, let 1 € P(X), and let v, be a probability
measure on Xq for some a € I, such that v, <p 7o. Then

(a) the measure Up, (Vy, ™) is well-defined;

(b) Upa(yavﬂ-) <p T;
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(c) if B2 a, then Prg(Upy(va, ) = Upy(va, m3);
(d) if B C «, then Prg(Up,(va, 7)) = Prg(va);
(€) if ™ = pa @ pg for po € P(Xqo) and pg € P(Xp), then Up, (va, ™) = vo @ pg.

Proof. Assertion 6.5(a) is trivial: if v, = p1 - Tq = p2 - Ta, then p1(zq) = p2(zq) for my-a.e.
o € Xa, and therefore pi(x) = pi(x) for m-a.e. x € X. In addition, since v, <p 7, there
exists a positive real M such that p(z,) < M for my-a.e. x4 € X4, and therefore p*(z) < M for
m-a.e. * € X. Hence, p* € L'(X,n) and the measure p* - 7 is well-defined. Furthermore, since
p* < M m-a.e, we have Up(vy, ) < M - m; thus, Up(v,, ) <p 7 and assertion 6.5(b) holds.

We have Up(vy, ) = p(24) 7. The function p does not depend on coordinates x; for all i € .
Hence, if B D o and 8 € Z,, then Prg(p(zo) - m) = p(zq) - . Since Pry(mg) = 7o, we conclude
that Up,(Va,3) = p(a) - 7. Thus, if § O «, then Prg(Up,(va,m)) = Up,(va, Pr), and this
implies assertion 6.5(c). In addition, we have Pry(p(z4) - ) = p(2a) - Ta = Va, and therefore
Pro(Upy(Va, 7)) = vo. Hence, if B C «, then Prg(Up,(va,m)) = Prg o Pro(Up,(va, 7)) =
Prg(vq), and this implies assertion 6.5(d).

Finally, suppose that m = j1o ® pg. Then 74 = piq, and therefore v, = p- 74 = p - p1o. Thus,
Va ® pg = (p(xa) - pa) ® pg = p(Ta) - ™ = Up,(Va, 7), and this implies assertion 6.5(e). O

Let X1, X», X3 be Polish spaces, let p; € P(X;) for 1 < i <4, and let p;5 = p; ® py for all
{i,j} € I35. Let ¢: X — R, be a nonnegative bounded continuous cost function. The space
II(p45) is non-empty, since 1 ® po @ pug € (), and therefore by Theorem 4.11 there is no
duality gap. In addition, since the family of measures {f;;} is reducible, by Theorem 5.17 there
exists a solution to the related dual problem. Thus, there exists a solution 7 € II(1u;;) to the
primal problem and a solution {f;;}, fij € L*(Xij, pij) to the dual problem, and

/ cdm = fi2dpi2 + fizdps + fa3 dpi2s.
X X129 Xi13 Xo3

Lemma 6.6. Let @ be a probability measure on X. Suppose that there exists v € II(j;5) such
that 1 <p . Then extensions of all fio, fiz and fas to the space X are integrable with respect
to the measure .

Proof. The extension of fi; is integrable with respect to 7 if and only if fi; € LY(X;;, Pri;(7)).

Since T < 7, by assertion 6.3(c) we have Pr;;(7) <p Pri;j(y) = s, and therefore by asser-

tion 6.3(b) we conclude that L'(X;;, Pri;(7)) 2 LY(Xij, pij) D fij- O
Denote F(x1, 2, x3) = fiz2(z1,22) + fiz(x1, x3) + faz(x2, z3).

Lemma 6.7. Let ™ be a probability measure on X. Suppose that there exists v € I(ju;j) such
that @ <p . Then

(a) the function F' and the extensions of all fi2, fi3 and faz to the space X are integrable with
respect to the measure T;

(@/Fﬁ<ww
X

(c) f Tk, then/ Fdr > 0.
X

Proof. Assertion 6.7(a) trivially follows from Lemma 6.6. Since {f;;} is a solution to the dual
problem, we have F(x1,x9,x3) < ¢(z1,z2,23) for all x € X. In particular,

/Fd?rg/ cdF < el
X X
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and this implies assertion 6.7(b).
Since Pr;;(m) = pij, by assertion 6.7(a) the function F € L'(X,7) and

/ Fdr = fiadm + fizdm + fog dm
X X192 X3 Xoa3

= fi2dpo + fizdpiz + fos dpoz = / cdm.
X12 Xi3 Xo3 X

Since in addition F(z1,z9,x3) < c¢(x1,22,x3) for all x € X, we conclude that F(z1,x9,23) =
c(x1, e, x3) for ma.e. x € X. Thus, if 7 <p 7, then F(z1,22,23) = c(x1,x2,23) T-a.e., and

therefore
/ Fdr = / cdm >0
X X

since ¢ > 0. This implies assertion 6.7(c). O
Lemma 6.8. Let (i, j, k) be a permutation of indices (1,2,3). Let v; be a probability measure on

X; such that v; <p pi. Then F € LY(X,v; ® pi ® ) and

/Fd(Vi®Mj®Mk)>/ Fdm —|lefl o -
X X

Proof. Since v; <p p;, we have v; <p Pri(n), and therefore the measure Up;(v;, 7) is well-
defined. Consider the following measure:

Y =1 @ pj @ pp — Up; (v, ™) + py @ Prjp(Up; (v, 7)) — . (20)

We claim that all the projections of 7 to the spaces X;;, X;; and X, are zero measures. First,
by assertions 6.5(c) and 6.5(e) we have

Pr;;(Up;(vi, 7)) = Up,;(vi, Prij(m)) = Up;(vi, pi @ pj) = vi @ puy,
Pry(Up;(vi, 7)) = Up;(vi, Prig(m)) = Up;(vi, i @ pax) = vi @ pa,.
Next, we find the projections of Up,(v;, ) to the spaces X; and Xj:
Pr;(Up;(vi, 7)) = Prj o Pry;(Up; (v4, m)) = Prj(v; ® pj) = g,
Pry(Up;(vi, 7)) = Prg o Pryp(Up, (v, ) = Pri(vs @ pg) = fige-
Finally, we find the projections of v to the spaces X;;, Xy, and Xj:
Prij(v) = Prij(vi @ pj @ p) — Prij(Up;(vi, ™)) + Prij (s ® Prjp(Up; (v, m))) — Pryj ()
=1 @ pij — Vi @ iy + p; @ Prj(Up; (v, 7)) — i @ puy
=V @ uj — Vi @ iy + i @ pg — i @ py = 05
Prip(v) = Prip(vi @ pj ® pr) — Prip(Up;(vs, ™)) + Prig(ps ® Prj(Up; (v, 7)) — Prig(m)
=V @ g, — Vi @ pig + i @ Pry(Up;(vi, 7)) — s @ g
=V @ pp — Vi @ pup + i @ pu — iy @ pug = 0;
Prji(y) = Prji(vi @ pj @ pu) — Prjp(Up;(vs, 7)) + Prjp(pi @ Prjp (Up; (v, 7)) — Prjp(m)
= pj ® pu; — Prjp(Up; (vi, ™)) + Prji(Up;(vi, 7)) — py ® pug; = 0.

Since v; < g ;, we have
Vi @y @ pi, KB i @ pj & pr € I(pig).
Next, it follows from assertion 6.5(b) that

Up;(vi, m) <p m € II(pij).
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In addition, by assertion 6.3(c) we have Pr;,(Up;(v;, 7)) <B Prji(m) = pj ® pu, and therefore
i @ Prj(Up;(vi, 7)) <p i @ pj @ g € T(pij)-

Thus, it follows from assertion 6.7(a) that the function F' and the extension of all fi2, f13, and
fas to the space X are integrable with respect to all of the summands of equation (20), and
therefore that functions are integrable with respect to «y. In particular,

[ rar=[ faaergen+ [ gadprat)+ [ gdpeue) —o.
X Xij Xik Xk
On the other hand, we have
[ Far= [ Fawemem - [ Favswn [ Fss ) - [ Fin
X X X X X

Since Up,;(v;, m) <p 7, by assertion 6.7(c) we have

/ F dUp,(v;, ) > 0.
X

By assertion 6.7(b) we have

/X Fd(p; ® Prjp(Up;(vi, ™)) < lello -

Thus, we get
0:/ deg/ Fd(Vi®Mj®,Uk)—/ Fdr+ el
X X X
O

Lemma 6.9. For 1 < i < 3, let v; be a probability measure on X; such that v; <p p;. Then
Fel'(X,11 @ ®uvs) and

/ Fdn @y ®ws) > —12|c| -
X

Proof. The proof is similar to the proof of Lemma 6.8. We have v;®@v; <p p;®@pj = Pryj(m), and
therefore the measure Up,;(v; ® v, ) is well-defined for all {4,j} € Z32. Consider the following
measures:

YO =N Upy(w @)
{i,7}€Ts,2

,y(l) = Z i @ Prjk(Upij(Vi K vy, 77));
(4,9,k)ES3

~® = Z i @ pj @ Pry(Up,; (v @ vy, m));
{izj}613,2
{1:7j7k}:{17273}

7® = Z Wi & 5 @ Vi;
{i,}€Ts,2
{i.g.k}={1,2,3}
y=1 @@y — 0 441 42 _16) 4 or
We claim that Pri;(y) = 0 for all {i,j} € Z32. Let (i,5,k) be a permutation of indices
(1,2,3). By construction,

’y(o) = Up;;(vi ® vj, m) + Upy,(vi ® vy, ™) + Upj(vj @ v, 7).
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It follows from assertion 6.5(c) that
Pr;;j(Upy;(vi @ vj, ) = v; @ v,
and therefore
Prij(fy(o)) = v; @ v + Prij(Upy (vi @ vg, 7)) + Prij(Upjy (v @ vy, ). (21)

Next, let us find the projection of v(!) onto the space Xij. The measure 1) can be written
as follows:

YV = 11 ® Prjp(Upy;(vi @ v, 7)) + 5 @ Pria(Upy (vi @ v, 7))
+ i ® Prjk(U (Vi Q U, ) 4 g ® Prij(Upik(Vi ® vy, m))
+ 1y @ Prig(Upj (vj @ v, 7)) 4+t @ Prij(Upjp (v @ v, ).

It follows from assertion 6.5(d) that

Prij(pi @ Prjp(Upy;(vi @ vy, 7)) = i @ Prj(Up,; (v @ v, ) = i @ vy,
Prj(11j @ Prig(Up;;(vi @ vj,7))) = Pri(Up;;(vi @ v, 7)) @ py = v @ py,

and we trivially have

Pri;(ps @ Prjr(Upig(vi @ vg, 7)) = i @ Prj(Upy (v @ v, 7)),
Prij(pe @ Prij(Upg (v @ vg, 7)) = Prij(Upy, (v ® vy, ),
Prij(pj ® Prig(Upj (v ® vy, m))) = Pri(Upj(v; ® vg, 7)) @

( ( (

Prij (e @ Prij(Upyp,(vj @ vi, 7)) = Prij(Up;p.(v; @ vk, ).

Thus, we get
Prij (YY) = pi @ vj + 13 ® pj + Prij(Upg (v @ v, 7)) + Py (Upjp(vj @ v, 7)) (22)
+ Pri(Upj (v @ vg, 7)) @ pj + pi @ Prj(Upg,(vi @ vg, m))
Finally, by construction
’Y(g) =v; QUi @ g + g @ Vi Q pg + i Q pj Vg,
so we get
Prij(v®)) = vi © 1 + i @ vy + i © p. (23)

Similarly, we conclude that

Prij(7?) = Pri(Upjr(v; ® v, 7)) ® pj + 1 @ Prj(Upgg (v @ v, 1)) + 1 @ i (24)

Thus, from equations (21)—(24) we get

Prij(7) = Pryj(vs @ vj @ vy.) = Prij(7?) + Prij (7)) = Prij (1) = Prij(a¥) + 2Pry; ()
= v @vj —vi @vj — Prij(Upy (vi @ v, ™)) — Przg( ik (V) @ Vg, )
+ pi @ vj + 13 @ pij + Prij(Upg (v @ vg, m)) + Priy (Upy,(v; @ vg, m))
+ Pri(Upj (v ® v, ™)) @ pj + pi @ Prj(Upy (vi © v, )
- Pri(Upjk(Vj ® Vg, ) @ pj — p; @ Prj(Upy(v; @ vg, )
— Vi@ pj— i @ Vi — i @ pj + 25 & i
=0.

)
) — 1 ® fuj
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Let us verify that the functions F' and the extensions of f;; to the space X for all {i,j} € I3
are integrable with respect to 7. First, since vy <p uz for 1 <t < 3, we have

Vv @y Qs L p1 ® po @ pug € I(15).

Let (i, j, k) be a permutation of indices (1,2, 3). It follows from assertion 6.5(b) that Up,;(v;®
vj,m) <p m, and therefore 70 «p 7w Next, since Up,;(vi ® vj,m) <p m, it follows from
assertion 6.3(c) that Prj,(Up;;(vi @ vj, 7)) <p Prjp(m) = p1j ® pg and Pry(Up,;(vi @ vj, 7)) <p
Pri(m) = py. Hence, p; ®@ Prj(Up;;(vi @ vj, 7)) <p p1 @ p2 @ pz and p; @ pj @ Prg(Upg;(v; @
vj,T)) LB p1 & po @ ps, and therefore

A < @ po @ pz € M(pg) and v <y @ po @ pg € (i)
Finally, since v, <p g, we have p; @ pj @ v, <K 1 ® p2 @ psz, and therefore
V¥ <p 1 ® po @ g € (pij).-
Thus, by assertion 6.7(a) the function F' and the extension of f;; to the space X for all

{i,j} € I3 2 are integrable with respect to all summands from the definition of v, and therefore
that functions are integrable with respect to . In particular,

/ Fdy= f12dPria(y) + fi13 dPri3(7y) + fa3 dPras(v) = 0.
X X12 X13 X3

Since Up;;(vi @ vj, m) <p 7 for all {i, j} € Z3, it follows from assertion 6.7(c) that

/ Fd*y(o) > 0.
X

Applying assertion 6.7(b) to all terms of the definition of v we conclude that
| P <6l
X
Finally, applying Lemma 6.8 to all terms of 7(2) and v(3), we get

[ Far® =5 [ pin-slel, ad [ Fa® =5 [ Fin-s)e,.
X X X X

Thus, we get the following inequality:

/Fd'yg/Fd(l/1®u2®1/3)—|—6HcHoo+2<3\CHOO—3/Fd7r>+2/Fd7r
X X X X
:12||CHOO4/ Fd7T+/Fd(V1®V2®I/3),
X X

and therefore
/ Fd(v1 @ va ® v3) 24/ Fdr—12 ¢l -
X X

It follows from assertion 6.7(c) that [, F'dr > 0; hence,

/Fd(l/1®V2®V3)Z4/ Fdr—12|cl|, > —12]|c||, -
X X
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Theorem 6.10. Let X, Xo, X3 be Polish spaces, let p; € P(X;) for 1 < i < 3, and let
pij = pi ® pj for all {i,j} € Igo. Let ¢c: X — Ry be a bounded continuous cost function. If
{fi;} is a solution to the related dual problem, then

fi2(w1, w2) + fi3(z1, 23) + fas(w2,23) > —12|c|
for p1 @ pa @ ps-a.e. points x € X.

Proof. Denote F(x1,x9,x3) = fia(z1, z2)+ fi3(x1, x3) + fa3(z2, 23), and denote p = pug @ o @ 3.
For 1 <i <3, let A; € B; be a measurable subset of X;. If ;(A4;) = 0 for some 1 < i < 3, then
p(Ay x Ay x Az) =0, and therefore fAlengg Fdu=0.

Suppose otherwise that p;(A;) > 0 for all 1 < ¢ < 3. Denote v; = (1[A;]/1i(4s)) - i,
where 1[A] is an indicator function of the set A. The measure v; is a probability measure and
vi < (1/pi(4;)) - pi, and therefore v; <p p;. By Lemma 6.8 we conclude that fX Fd(ry @ ®
vg) > —12|c|| . By construction,

fA1><A2><A3 Fdp
(A1) pa(Az)pz(As)

/Fd(V1®V2®V3)=
X

Thus, we get
/ Fdp > —12||c|| o - p(Ar x Ay x Ag) for all A; € B;. (25)
A1><A2><A3

Consider the measure (F'+ 12||c||,) - #- By equation (25) this measure is non-negative on
a semialgebra Ay = {A; x Ag x As: A; € B;}, and therefore this measure is non-negative on
every element of o(Ap), and this o-algebra coincides with the Borel o-algebra on the space X.
Thus, the measure (F' 4+ 12||c|| ) - ¢+ is non-negative, and therefore F'(z1,z2,23) + 12||c|, > 0
for p-a.e. points x € X. O

Theorem 6.11. Let X, Xo, X3 be Polish spaces, let pu; € P(X;) for 1 < ¢ < 3, and let
pij = i @ g for all {i,j} € I3o. Let c: X — Ry be a bounded continuous cost function. Then

(a) there exists a solution {fi;} to the relazed dual problem such that
1
AT lelloe < fig(wi, 25) < 135 llelloo s
(b) there exists a solution { f;;} to the standard dual problem such that
2 1
262 el < fiylro ) < 135 el

Proof. First, it follows from Theorem 5.17 that there exists a (real-valued) solution {f;;} to the
relaxed dual problem. By Theorem 6.10 we conclude that the inequality

llclloe > fr2(z1, 22) + fi3(w1, 23) + foz(@o, 23) > —12]|c[| (26)

holds for p; ® pe ® ps-almost all points.

Consider a finite (3, 2)-function F(z1,x2,x3) = fia(z1,22) + fis(z1,23) + foz(z2,x3). Let A
be the set of points (21,2, x3) € X such that either F'(z1, 2, x3) < —12||c||, or F(z1,x2,x3) >
[¢]loo- By inequality (26) we have pu1 ® p2 ® ps(A) = 0. Applying Lemma 5.5 to the indicator
function of the set A, we conclude that there exists a point (y1,y2,y3) € X such that for each
a € I the set Ay = {74 € Xo: (Ta,Y{1,2,3}\0) € A} have a zero measure with respect to fiq.
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For each o € Z3 consider the function Fy: 2o = F(ZaYf1,230\a)- If Ta & Aa, then |cf| >
Fo(zq) > —12||¢|| o, and therefore this inequality holds for p,-almost all z, € X,. Consider
the functions

—~ 1 1 1
fiz(z1, 22) = F(z1,22,y3) — =F(21,92,y3) — =F(y1,22,y3) + 5 F(y1, Y2, y3),

2 2 3
—~ 1 1 1
fis(z1,23) = F(w1,y2,73) — §F($17y2,y3) - QF(yhmef?)) + gF(yl,y27y3)7
~ 1 1 1
Jaz(x2,w3) = F(y1,22,73) — §F(y1,9€2,y3) — §F(y1,y271’3) + gF(y1,y27y3>-

By Example 5.4 the equation F'(x1,x9,x3) = ]?12(3:1,:32) + flg(iﬁl,l‘gg) + fgg(xg, x3) holds for all
(x1,x9,23) € X. In addition, one can easily verify that the inequality

. 1
—17lcllo < fij(xi,z5) < 135 lelloo

holds for ji;5-almost all (z;, z;) € X;j.
Thus, there exists a tuple of bounded measurable functions {g;;} such that g;; = f;; almost
everywhere and

1
ATl < gij(i, 25) < 135 [lello
for all (z;,z;) € X;;. The inequality
g12(w1, x2) + g13(w1, 23) + go3(we, x3) = F (21, w2, 23) < (w1, T2, 23)

holds at all points except a zero (3,2)-thickness set, and therefore {g;;} € W.(pi;). Finally, we
have

/ 912 d,u12+/ 913 d,u13+/ 923 di23 —/ Fdp
X12 Xi13 Xo3 X

= fi2dpie + Jizdpas + fa3 dpia3,
X12 X13 Xo3

and therefore {g;;} is a solution to the relaxed dual problem satisfying assertion 6.11(a).
Since {gi;} € We(pij), there exists a tuple of subsets Y;; C X;; such that p;;(Y;;) = 0 and if
(xi,xj) € Yy for all {3, j}, then

G12(z1, 22) + g13(21, ¥3) + g23 (w2, 23) < (w1, T2, T3).
Consider the tuple of functions {gi;}: Gij(xi, x;) = g(zi, z;) if (x;,x;) € Yij, and gij(xi, xj) =

—262||c[|oc otherwise. We have g;;(2;,2;) = gij(xi,z;) almost everywhere, and one can easily
verify that the inequality

g12(z1, v2) + g13(w1, 73) + gas (w2, z3) < (71, 72, 73)
holds for all points (z1,x2,23) € X. Thus, {g;;} is a solution to the standard dual problem
satisfying assertion 6.11(b). O
6.2 Uniqueness of a continuous dual solution for the cost function z;x,x3

Let us recall to the reader our main example of the multistochastic (3, 2)-problem:

Problem 6.12. For 1 <i <3, let X; =[0,1], let u;j be the restriction of the Lebesgue measure
to the square [0,1]%, and let c(x1, x2,x3) = T12273.
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Primal problem. Find a uniting measure m € II(j;;) such that
/I15U2$3 dm — min.
Dual problem. Find a tuple of functions {fi;} C L'([0,1]) such that

Z fij(zi, x) < xrxoxs for all (x1,x2,23) € [0, 1]3,
{i,j}el},yz

1 1
Z / / fij(zi, z5) dojdr; — max.
o Jo

{iaj}€I3,2

In [14] the authors describe solutions to this problems. First, we define a binary operator
@ (called "bitwise exclusive or" or just "xor") on the segment [0,1]. Given z and y on [0, 1],
we consider their binary representations x = 0,x1x923...9, ¥ = 0,y1y2y3...5. We agree that
every dyadic rational number less then 1 has a finite numbers of units in its decomposition.
The number 1 will be always decomposed as follows: 1 = 0,111...,. Then we define x ®©y =
0,21 By1x2P Y2 .. .9, where & is an addition in Fy. Using this binary operation, the solutions
to the primal problem can be described as follows:

Theorem 6.13 (Primal problem solution). Consider the mapping T: [0,1]?> — [0,1]3, (z,y)
(z,y,2Dy). Denote by 7 the image of the Lebesgue measure restricted to the square [0,1]? under
the mapping T'. Then m is a solution to primal Problem 6.12.

In [14] the authors show that 7 is concentrated on the set
{(x,y,z) S [0, 1]32 TPYdz= 0}7

and this set is a self-similar fractal, which is called "Sierpirisky tetrahedron". Let us verify for
the completeness of the picture the following description of the support of .

Definition 6.14. Denote by J;“*“ the image of [0, 1]® under the mapping

a1 +x1 a2 +x2 a3+ x3
(71,22, 23) .

on on 2n
Let
ai1,a2,a
J, = U Ja1,02,03
0<a;<2™
a1®@az2®az=0

One can find images of Jy, Jo and J3 on Fig. 4. Denote

S={)Jn

n>1
The set S is called Sierpinsky tetrahedron.
Lemma 6.15. The set J,, contains a point (x1,x2,x3) if and only if there exist binary represen-
tations of each coordinates x; = Zzozl :Ui7k/2k such that x1 ® o w3y =0 for alll <k < n.

Proof. First, suppose that (x1,x2,x3) € J,. By construction, there exist integers ai, az, as such
that 0 < a; < 2", bitwise xor of a1, as and ag is zero, and (z1,x2,x3) € Jy"*". Since

J01:02:08 [al a1+1:| « |:CL2 a2+1] y |:CL3 a3—|—1:|7

on’  on on’  on on’  gn
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T3

T

Figure 4: The sets Ji, Jo and J3

we conclude that x; = (a; + y;)/2" for all 1 <4 < 3, where 0 < y; < 1.

Since a; < 2", the binary representation of a; contains at most n digits. Let @; 1a;2 .. Gjn,
be the binary representation of a; supplemented by zeros up to length n. Since a1 ® as B asz = 0,
we have a1 @ ag ®agp =0 forall 1 <k <n. Hence, if y; = ;o yi7k/2k, then

n

e}
n= 3+ D

k=1 k=n-+1

provided by x; = (a;+v;)/2". This equation provides a binary representation of each coordinates
Ti = oy a;2-7k/2k such that 1, @ xop a3 =0forall 1 <k <n.

Suppose that (21,22, 23) is a point on [0,1]3 and x; = >3, xi7k/2k for 1 < i < 3, where all
x;pare 0or 1, and o1, @ ®x3p = 0 for all 1 <k < n. Denote by a; an integer formed by the
first n digits of z; after radix point. We have x; = (a; + y;)/2" for 1 < i < 3, where 0 < y; <1,
and therefore (21, x2,z3) € Jp"**. In addition, 0 < a; < 2", and since z1 ; ® xaf G 234 = 0
for all 1 < k < n, we conclude that a; ® as @ az = 0. Thus, (x1,x2,23) € Jp»*** C J,. O

Using that, we can describe all points of the Sierpirisky tetrahedron in terms of their binary
representations.

Proposition 6.16. The Sierpirisky tetrahedron S contains a point (x1, x2, x3) if and only if there
exist binary representations of each coordinates x; =y po xi7k/2k such that

T1k D T2k D3y =0 for all k;

Proof. Suppose that (x1, 72, 73) is a point on [0,1]3 and x; = > 70 | @;4/2 for 1 <4 < 3, where
all z; 5 are 0 or 1, and 214 @ wo @ x34 = 0 for all k. Then it follows from Lemma 6.15 that
(21,2, x3) is contained in J,, for all n. Thus,

(x1,x2,13) € ﬂ J, = S.

n>1

Suppose that (z1,z2,23) € S. Then (x1,z9,23) € J, for all n, and therefore there exist
binary representations of each coordinates x; = Y- T3, /2% such that xSy, ay, =0 for
all 1 < k < n. For any nonnegative real number, there are at most two binary representations
of this number, and therefore there exist at most eight tuples of binary representations of the
point (z1,x2,73). Hence, there exists at least one of them x; = > 72, x;1/2" such that the
property x1; @ 22 @ 23 = 0 for all 1 < k < n holds for an infinite number of n. Thus,
1k ®xo) ® gy = 0 for all k.

O
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Proposition 6.17. The Sierpinisky tetrahedron S has the following properties:
(a) the set S a closed subset of [0,1]3;
(b) a point (z,y,x ®y) is contained in S for all x,y € [0,1];

(c) if Spt > s the image of S under a mapping

ay +x1 as +x2 asz -+ x3
(@1, @2, 23) ,

on 7 9n 7 9n
then
_ a1,a2,a3
s- U s
0<a;<2™,
a1®a2da3z=0

Proof. The set J,, is closed since J,, is a finite union of closed sets. Thus, since S is an intersection
of the closed sets J,,, we conclude that S is closed too, and this implies assertion 6.17(a).

Assertion 6.17(b) trivially holds by Proposition 6.16.

Let us verify assertion 6.17(c). Suppose that (z1,z2,23) € S. By Proposition 6.16, there
exist binary representations z; = > ,_; xi,k/Qk such that 1, @ 29, ® 23 = 0 for all k. Denote
by a; an integer formed by the first n digits of x; after radix point. We have 0 < a; < 27,
and since 1} @ o @ x3; = 0 for all k£, we conclude that a1 ® az ® az = 0. In addition,
z; = (a;+y;)/2", where y; = > p_, T nik/28. By Proposition 6.16 (y1,y2,y3) € S, and therefore
($1,$2,$3) € Syt %% Thus

S C U §a1,2,a3
0<a;<2™,
a1®az2daz=0

Suppose that (z1, z2,z3) € Sp"****, where 0 < a; < 2" and a1 @ az ® ag = 0. Since a; < 2",
the binary representation of a; contains at most n digits. Let @;1a;2..-a;,, be the binary
representation of a; supplemented by zeros up to length n. Since a; ® as ® ag = 0, we have
a1k P agy Daz =0foral 1 <k <n.

By construction, there exists a point (y1,y2,y3) € S such that x; = (a; + y;)/2". By Propo-
sition 6.16, there exist binary representations y; = » p- 4 yi,k/Qk such that y1 1 ®© yor D ysr = 0.

Hence,
n

o0
ety ag k Yik—n
Ti = on - Z 9ok + Z ok
k=1 k=n+1

and therefore by Proposition 6.16 (z1,z2,23) € S. Thus,

() U §41,a2,a3
= n )
0<a; <27,
a1®az2®az=0
and this completes the proof of assertion 6.17(c). O

Following the proof of the main result in [11] the reader can extract the following statement:

Theorem 6.18. For 1 < i < 3, let X; = [0,1], let p;; be the Lebesgue measure restricted to
the square [0,1)%, and let c(x1,x2,23) = z12973. If the measure m is uniting for {u;;} and
supp(m) € Jy, for some n, then there exists a measure T € () such that

/ x1x9w3 T(dxy, dre, drs) < / x1xow3 T(dx1, dxe, dX3).
(0,1]3 [0,1]3
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If 7 is a solution to primal Problem 6.12, then it follows from Theorem 6.18 that supp(7) C J,
for all n. Hence, supp(7) C Nyp>1Jy,, and this implies the following proposition.

Proposition 6.19. If 7 is a solution to primal Problem 6.12, then supp(w) C S, where S is the
Sierpinisky tetrahedron.

Using that, let us prove that there exists a unique solution to primal Problem 6.12.

Lemma 6.20. There exists at most one measure © on [0,1]> such that supp(n) C S and Pris(m)

coincides with the Lebesgue measure pia on the square [0,1]%.

Proof. Let T' = {(z,y,2 ® y): (z,y) € [0,1)?}. Tt follows from assertion 6.17(b) that I' C S.
Consider the set S, = S\I', and consider a point (z1,z2,23) € Sp. Suppose that both points
x1 and xo are not dyadic rationals. If z is not a dyadic rational, then there exists a unique
binary representation of z. Hence, it follows from Proposition 6.16 that there exists at most
one z € [0,1] such that (z1,x2,2) € S. By assertion 6.17(b) we have (x1,z2,21 @ x2) € S, and
therefore x3 = x1 @ x9. Thus, (z1,z2,23) € I', and this contradicts the point selection.

This contradiction proves that if (z1, z9,x3) € Sp, then at least one of 21 and x5 is a dyadic
rational. Hence, p12(Pri2(Sp)) = 0, and therefore 7(S;) = 0 provided by Pria(m) = p12. Thus,
since supp(m) C S, we get 7(T") = 1.

Let A be a measurable subset of [0, 1]3. Since m(T") = 1, we have 7(A\I') = 0, and therefore

m(A) =m(ANT). (27)

Denote Ap = ANT. The set Ar is a measurable subset of I'. Since for each (z1,z2) € [0,1]?
there exists exactly one 3 such that (1, x9,23) € I, we get

Ar = (Pri2(Ar) x X3)NT.
Applying equation (27) to the set Pria(Ar) x X3, we get
m((Pri2(Ar) x X3)NT) = n(Pri2(Ar) x X3) = p12(Pri2(Ar))
provided by Pria(7) = p12. From all equations above we get
m(A) = m(Ar) = 7((Pr12(Ar) x X3) NT) = p12(Priz(Ar)).

Thus, the measure of the set A with respect to 7 is independent on 7, and therefore there
exists at most one measure 7 such that supp(7) C S and Pris(7) = pio. O

Theorem 6.21. There exists a unique solution w to primal Problem 6.12.

Proof. If  is a solution to the problem, then Pris(7) = p12, and it follows from Proposition 6.19
that supp(m) € S. By Lemma 6.20, there exists at most one measure 7 with that properties.
Thus, there exists at most one solution to primal Problem 6.12.

The existence of a solution follows from Theorem 2.8. O

Finally, let us find exactly the support of the solution to primal Problem 6.12.
Proposition 6.22. If w is the solution to primal Problem 6.12, then supp(w) = S.

Proof. 1t follows from Proposition 6.19 that supp(w) C S C J, for all n, and therefore 7(J,,) = 1.
By definition of J,,

J, = U Ja1,82,3

0<a;<2™,
a1@az2®az=0
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We have

Pryp(Joranas) [al a1+1] " [az a2+1].

on’ on on’ on

For each pair aj,as such that 0 < a1,as < 2" there exists a unique ag such that 0 < ag < 2"
and a1 @ as ® az = 0. Hence, projections to X7 x X5 of all components of .J,, overlapping by the
sets of measure zero with respect to uio, and therefore

1.
W(Jshamag) — H12(P1"12(J51’a2’a3)) — 47 if a1 ®as @ asz =0. (28)
Suppose that supp(m) # S. Since supp(w) is closed, there exist a point zp € S and a non-
negative integer n such that if |z — x9] < 2!™™, then z is not contained in supp(r). Since
xg € S C Jp, there exist integers a1, as, ag such that 0 < ay,as,as < 2", bitwise xor of ay, as, as
is zero, and zg € Jp****. We have

Ja1,a2,a3 ap a; +1 az az+1 a3 az+ 1]

n - 277 2n X 27,”‘7 271 X 27’ 277, ;
hence, diam( 317@@3) < 2'7", and therefore supp(m) N Jpt% = & This contradicts equation
(28). -

In [11] the authors also found a solution to the dual Problem 6.12.

Theorem 6.23 (Dual problem solution). Denote

T [y 1 [* (7 1 [Y [Y
f(x,y)—/ / s@tdsdt—/ / s@tdsdt—/ / s D tdsdt.
0 Jo 4 Jo Jo 4 Jo Jo

Then the tuple of functions fi;: (xi, x;) — f(xi, x;) is a solution to dual Problem 6.12.

This solution to the dual problem is not unique. First, for 1 <+ < 3 let f; be an integrable
function on the segment [0, 1]. Consider the following functions

Fa(xy, 22) = fra(z1, x2) + f1(z1) — falwa),
Jos(wa, 3) = faz(wa, 23) + folwa) — fa(ws),
Fis(xr,23) = fia(zr, 23) + fa(z3) — filar).

Clearly
Z Fij@i, x)) = Z fij(xi,2;) for all (x1,29,x3) € [0,1]3
{i,}€Ls2 {i,j}E€Ta2
and
1 1 R 1 1
Z / / fij(@i, z5) dzide; = Z / / fij(zi, x5) doida;,
{ijyeTs 70 70 {igyeTs 70 70

and therefore the functions {ﬁ]} are also the solution to the dual problem.
In what follows, we prove that there is no other continuous solutions to the related dual
problem.

Lemma 6.24. If a tuple of functions {fi;} is a solution to dual Problem 6.12, function f;;
is continuous for all {i,j} € I32, and a1, az and as are non-negative integers such that 0 <
ai,as,a3 < 2™ and a1 ® as P ag = 0, then

13 .
|F(z1, x2, x3) — 1223 < 280 for all (x1,x2,x3) € 19293,
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where

F(x1,29,23) = fia(x1,22) + fiz3(z1, 23) + faz(x2, x3)

and

Ja1,a2,a3 ar a;+1 % az az+1 « as az +1
" o |on? on on’  9n on’  9n :

Proof. Since {f;;} is a solution to the dual problem, we have

F($1,$2,$3) < x1x9x9 for all (xl,ﬂj‘Q, 33‘3) S [0, 1]3.

(29)

Let 7 be the solution to primal Problem 6.12. We have f Fdr = fxlxgxg dm, and therefore

F(z1,19,23) = 212923 for m-a.e. (x1,x2,23) € [0, 1]3.

The function F(x1, x2,x3) — x12223 is continuous; hence, the equation holds for all (z1, 22, x3) €
supp(). By Proposition 6.22, the support of 7 coincides with the Sierpirisky tetrahedron S, and

therefore
F(x1,29,x3) = 12923 for all (z1,x9,23) € S.

Consider the following functions:

Fra(@1, @2) = 25" f1s (

ay+x az+ SUz) ajaa3  a203r1 + a1a3r2

on ' o 3 5 — aszr1T,
~ 3n a1 +x1 as+ x3 aiagas a2a3x1 + a1a2x3
fra(wr,23) =27 fis | —5— —, =5 - 5 — aar173,
5 3n az +x2 a3+ 3 aija2a3  ai1a3rz + ajax;3
fa3(x2,w3) = 2°" fo3 o om ——3 5 — a1z223,

where 0 < z; <1 for 1 <7 < 3. We claim that {ﬁ]} is a solution to the dual problem.
First, one can easily verify that

fra(@1, 22) + frs(z1, x3) + faz(wa, 33) =

93n | air +x1 az t+x2 asz+ x3 a1 +x1 az+x9 az—+ x3
on ' on 7 gn ) T on T gn T om

Using inequality (29), we conclude that
Fro(zr, m2) + fis(w1, m3) + fas(wa, w3) < w1a0ws for all (z1, 2, x3) € [0, 1]

If (x1,x9,23) € S, then

<a1+:r:1 as + 2 az + w3

al,a2,a3
on 7 gn 7 on )ES’” '

By assertion 6.17(c), Sp****® C S; hence, if (21,22, 73) € S, then by (30) we get

F a1 +21 a2+ T2 a3 +x3\ a1 +T1 a2+ T2 a3+ 3
on ' on 7 on )T T gn T on T gn

and therefore

J?12($175'32) + J?13(561,$3) + J?23(962,563) = z1wox3 for all (z1,22,23) € S.

o7

+ x1T2x3.

(30)

(31)



Since supp(m) = S, we have

/[ " ,]/0\12(.%'1, .%'2) dridzo + 0. ]/t\l3<1'1, 1'3) dxidrs + o ]/0\23(332, .733) drodxs
0,1 0,1 0,1

= / (J?12(9?173?2) + J?13($1, x3) + J/c\23(x2, xg)) dm = / rixoxzdm. (33)
[0,1)3

[0,1]3

By equations (32) and (33) we conclude that {ﬁ]} is a solution to dual Problem 6.12.

The cost function 2923 is non-negative and pi; = p; ® py; for all {i,j} € Z3o. Thus, we
are under assumptions of Theorem 6.10. We have ||ziz223| . = 1, where 0 < z; < 1 for all
1 <4 <3, and therefore

—12 < fio(z1, 22) + fiz(x1, 23) + foz(z2, 23) < x12023 < 1

for almost all (x1,z2,73) € [0,1]3. Since all ﬁj are continuous, we conclude that inequalities
holds for all points, and therefore

’]?12(1'1,1'2) + ﬁg(l‘l,l'?)) + ]?23(1'2,1'3) < 12 for all (acl,wg,mg) S [0, 1]3.

Using equation (31), we conclude that

3 a1 +x1 as+x2 a3+ T3 ar+x1 as+x9 az+ x3 < 12 + x1x923 < 13
on ’ omn ’ n - on ) on ) mn — 23n — ﬁ

for all (z1,72,23) € [0,1]3, and therefore

13
‘F(ZE1,$2,1’3) — $1$2{L‘3| < ﬁ for all (:L‘l,IL‘Q,ZL‘g) S Jg’l’aQ’a?’.

O

Lemma 6.25. Let {f;;} be a solution to the dual Problem 6.12. If {i,j} € I32, a number n is
a positive integer, numbers a; and a; are non-negative integers such that 0 < a;,a; < 2", and
(xi,25) and (ys,y;) are arbitrary points in the square

|:CL7; al—i—l] « [aj aj+1:|’

on’ on on’  on

then

< 54
= 53n

Yi Yj
fij(xi, ) — fii(yi, x5) — fij(xa, v5) + fiz (Wi ) — / / s @ tdsdt
xX; X

Without loss of generality it can be assumed that {i,j} = {1,2}. Let ag = a; @ a9, and let
(w1, x2,73) and (y1,y2,y3) be arbitrary points of the cube J;,**3. We have

F(x1,22,23) — F(y1, 22, 23) — F(21,Y2,23) + F(y1, y2, x3)
= fia(x1,22) — fi2(y1, x2) — fi2(x1,y2) + fia(y1,42). (34)
In addition,
T1TL3 — Y1T2x3 — T1Y2x3 + Y1y2xs = w3(x1 — Y1) (w2 — Y2). (35)

On the other hand, it follows from Lemma 6.24 that

|F(z1,22,23) + F(y1, y2, x3) — T12223 — Y1Y223

13 52

— F(y1, 22, w3) — F(21,y2, 73) + y12273 + 119273 < 4 - 280 = 38n
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Thus, taking into account equations (34) and (35), we get

52
| fi2(w1, 02) — fr2(y1, 22) — fia(w1,y2) + f12(y1, y2) — x3(21 — y1)(22 — Y2)| < 2 (36)
Since (z1, T2, 23) € Jp"*", we have |ag/2" — x3] < 27", Since (y1,y2,y3) € Jp" ", we
also have |x; —y1| < 27" and |ze — y2| < 27™. Thus,

as

z3(z1 —y1)(z2 —y2) — on

3 1
v =] o=yl Jez =yl € 5 (37)

—(z1 —y1)(x2 — 12 ) =

Next, let ¢ be a point on the interval (a;/2", (a1 + 1)/2"), and let s be a point on an interval
(a2/2", (az +1)/2™). One can easily verify that

a1 @ ag (a1 ®az)+1
on Ss@tﬁz—n,

and therefore, since a1 ® as = asz, we get

Y1 Y2

1
s @ tdsdt — 7(351 —y1)(w2 —y2)| <

2* |931 —y1| ’5'32 —yz\

— 23n

Summarizing inequalities (36), (37), and (38), we conclude that

Y1 Y2 54
fiz(z1, x2) — fi2(y1, x2) — fiz(x1, y2) + fi2(y1, y2) —/ / s @tdsdt‘ < 28
1 Jxo

Lemma 6.26. If a tuple of functions { fi;} is a solution to dual Problem 6.12 and f;; is continuous
for all {i,j} € I3, then

fij(zi, x5) — fij(2i,0) — fi;(0,25) + fi;(0,0) = /0 i/o s @ tdsdt

for all (x;,z;) € [0,1]3.

Proof. Let {ug}i_, and {v;}}1, be arbitrary points on the segment [0, 1]. One can easily verify
that

N M
ZZ fij(ug,vr) — fij(up—1,v) — fij(ug, vi—1) + fij(up—1,v1-1))

k=1 1=1 (39)

= fij(un,var) — fij(uo, var) — fij(un,vo) + fij(uo,vo)

N M Uk U] UN VN
ZZ/ / s@tdsdt:/ / 5@ tdsdt. (40)
Uk—1 Y V-1 uo vo

k=11=1

Let (x;, ;) be an arbitrary point on the square [0,1]%. Let N = [2"z;], and let M = [2"x;].
Finally, let up = k/2" for all 0 < k < N and uy = z;, and similarly let v; = /2™ for all
0 <1 < M and vy = z;. By construction, both points (uj_1,v;—1) and (ug,v;) belong to the

square
k—1 k -1 1
Tan ) an >< Tan ) an )
2n T n 2n 7 on

and therefore by Lemma 6.25 we have

and

Up vy
fij(ug, o) — fij(up—1,v1) — fij(ug, vi—1) + fij(up—1,v—1) — / / s®tdsdt| <

— 93n
k—1 Y V-1 2

99



foralll1< k< Nandforalll <l< M.
Taking into account equations (39) and (40), we conclude that

fij(wi, 25) — fij(2i,0) — fi;(0,25) + f£i;(0,0) — / / ’ s® tdsdt‘
o Jo
z ‘fw ug, v) — fij(uk—1,v1) — fij(ug, vie1)
k=1 =1

UL vy
+fij(uk—1,UZ—1)—/ / s@tdsdt‘

k—1 V-1
M54 N-M
S WM
11=1

Thus, since N, M < 2", we get

Mz

b
Il

T 54
fij(@i, x5) — fij(®:,0) = f55(0, ;) + fi;(0,0) —/0 /0 S@tdet‘ < on
for all (z;,z;) € [0,1]? and for every positive integer n, and therefore

fij(xivxj)_fij($i70)_fij(oaxj)+fij(0,0):/0 /O " s& tdsdt.
O

Theorem 6.27. If a tuple of functions {fi;} is a solution to Problem 6.12 and f;; is continuous
for all {i,5} € I35, then there exist continuous functions f;: [0,1] = R, 1 <1i <3, such that

fi2(x1, 22) = f(21,22) + fi(w1) — fa(z2),
fas(w2,23) = f(22,73) + fa(w2) — f3(23),

and

f13(z1,23) = f(21,23) + f3(23) — fi(21),

T ry 1 T [z 1 Y [y
f(x,y):/ / s@tdsdt—/ / s@tdsdt—/ / s D tdsdt.
0o Jo 4 Jo Jo 4 Jo Jo

Proof. First, consider the function

where

F(x1,22,23) = f1a(w1,72) + fi3(v1, 23) + fos(z2, 73).
It follows from equation (30) that
F(x1,29,x3) = x12923 for all (z1,x9,23) € S.
By assertion 6.17(b), all the points (0, z, ), (z,0,x) and (z, z,0) are contained in S, and therefore

F(0,z,2) = F(z,0,2) = F(z,2,0) =0 for all x € [0, 1]. (41)

In particular, taking x = 0, we conclude that
f12(0, 0) + f13(0, 0) + f23(0, 0) = F(O, 0, 0) = 0. (42)
Denote ﬁj(xi, x;) = fij(xs,25) — fi5(0,0). We have ﬁj(O, 0) = 0; it follows from (42) that

F(x1,z9,23) = fia(z1,22) + f13(z1, 23) + fas(22, 3).
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By Lemma 6.26 we have

—~ T T —~ —~
7y ;) = / / 5@ tdsdt + Iy (a0,0) + Fiy(0,2,), (43)
0 0

and therefore

€1 )

F(:cl,azg,xg):/ / sEBtdsdt—i—/ / s@tdsdt—i—/ / sdtdsdt
o Jo (44)
+ 1 (x

1) + pa(w2) + p3(z3),

where

901(331) = .]/6\12(.%1,0) + .]?13('%'%0)7
pa(x2) = f12(0,22) + faz(x2,0), (45)
03(x3) = f13(0,23) + fa3(0, 23).

Since ﬁj(0,0) = 0 for all {i,j} € Z32, we have ¢;(0) = 0 for all 1 < i < 3. Hence, using
equations (41) and (44) we get

0=F(0,z,2) = / / s @ tdsdt + pa(x) + p3(x),
0o Jo
0=F(z,0,2) = / / s @ tdsdt + ¢1(x) + p3(x),
O.'lf O.'l?
0= F(z,z,0) = / / s @ tdsdt + ¢1(z) + p2(x)
0o Jo
for all x € [0, 1]. Thus, we obtain
1 X xX
:L‘):—/ / s @ tdsdt (46)
2Jo Jo
for all x € [0,1] for 1 <14 < 3.
Consider the functions f;(x;), 1 <1 < 3, satisfying the following equations:
~ 1 [o1 o
f12($1,0)=f1(331)—4/ / s @ tdsdt,
o Jo

f23(x2,0) = fa(x2) — % /0932 /0332 s tdsdt, (47)
J/c\13(0,x3) = f3(x3) — i /0% /0:% s @ tdsdt.

The function f; is continuous for 1 <i < 3. Combining equations (45) and (46) we get
F12(0, ) = pa(ws) = fas(2,0) = —/ / s @ tdsd — fos(x2,0),
and using the representation of 1?23 from equation (47) we get

F12(0,22) = — fo(wz) — i/om /Om s @ tdsdt. (48)

Substituting equations (47) and (48) into (43) we obtain the following relation:

o~ r1 T2 o~ o~
f12(f131,362)—/ / s @ tdsdt + fi2(z1,0) + f12(0, x2)

//s@tdsdt—/ / s@tdsdt—/ / s @ tdsdt + fi(z1) — fa(22)

= f(x1,22) + fi(z1) — fa(x2).
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Similarly, we conclude that foz(22, 23) = f (22, 23)+ fo(x2) — f3(23) and fiz(x1,x3) = f(21, 23)+
f3(x3) — fi(x1).

Finally, since f12(0,0)+ f13(0,0) + f23(0,0) = 0, there exist real numbers C7, Cy and C3 such
that f12(0, 0) = Cl - CQ, f23(0, 0) = Cz — C3 and f13(0, 0) = Cg - Cl. Thus,
f(zr,22) + (fi(z1) + C1) = (fa(22) + C2),
f(@2,23) + (fa(z2) + C2) — (f3(x3) + C3),
f(x1,23) + (fs(w3) + C3) — (fi(x1) + C1).

fia(z1, 22) = J?12(901, x2) + f12(0,0)
fos (w9, w3) = faz(w2, w3) + f23(0,0)
fii(z1,23) = fis(a1,a3) + f13(0,0)

6.3 Example of a discontinuous solution to a dual problem

It is known that any dual multimarginal problem admits a regular solution provided the cost
function is regular. For instance, applying the Legendre-type transformation, the reader can
easily verify that for a Lipschitz cost functions there exists a Lipschitz dual solution. In this
section we prove that a natural solution to the dual (3,2)-problem can be even discontinuous
and (in a sense) unique.

Consider the following (3, 2)-problem.

Problem 6.28. For 1 <i <3, let X; =[0,1], let p;; be the restriction of the Lebesque measure
onto the square [0,1)%, and let c¢(x1,z2, x3) = max(0, 1 + xo + 33 — 3).
Primal problem. Find a uniting measure m € II(u;;) such that

/c(xl,xg,a:g) dm — min.
Dual problem. Find a tuple of functions {fi;} C L'([0,1]) such that

Z fij(xi, z5) < e(xr, 2, x3) for all (x1,22,23) € [0, 113,
{i.7}€Z3,2

1 1
Z /O/Ofij(37i7xj)d$id$j—>max.
{i,j}€T3,2

The cost function ¢(x1, 2, x3) = max(0,x1 + x2 + 3z3 — 3) is Lipschitz continuous, and the
tuple of measures {y;;} is redicible; hence, there is no duality gap, and solutions to both primal
and dual problems exist.

Proposition 6.29. Let

fra(w1, @) = 0 for all points (x1,2) € [0,1]%;
Oa fo3 < 27
fis(z1,23) = ) 5
w1+ ga3 =3, faz >3
0, if 3 < 2,
fas(z2,23) = ) 5
To+ w3 — 3, if w3 > 3.

Denote F(x1,x2,23) = fi2(x1,x2) + fi3(x1,x3) + faz(z2,23). Then
(a) F(x1,22,23) < c(x1,29,73) for all (x1,w2,23) € [0,1]3;
(b) if the value of x1 + x2 + 3x3 is integer and (x1,x2,x3) # (0,0,2/3), then F(x1,x2,23) =

c(xy,x9,x3).
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Proof. First, one can easily verify the following representation for the function F:

0, if z3 < %,

. 5 (49)
1+ 20 + 323 — 3, if x3 > 3

F(J)l,l’Q,x?,) = {

Thus, F(z1, 72, 23) < max(0,r1 + 72 + 323 — 3) = c(x1, 72, x3) for all (x1,z2,73) € [0,1], and
this implies assertion 6.29(a).

Suppose that the value of z1 + x9 + 33 is integer. Consider the case z3 < 2/3. Equation
(49) implies that F(z1,22,23) = 0. Since x1,x2 < 1, we have z1 + x9 + 3x3 < 4, and therefore
x1 + x2 + 3x3 < 3. Thus, ¢(z1,x2,z3) = max(x; + x2 + 3x3 — 3,0) = 0 = F(x1, z2, x3).

Consider the case xs > 2/3. By equation (49), F(z1,z2,23) = x1 + 29 + 323 — 3. If
(1,2, 23) # (0,0,2/3), then x1 + 9 + 3x3 > 2, and therefore, since x; + x2 + 3x3 is integer,
x1 + x2 + 3x3 > 3. Thus, if (z1,22,23) # (0,0,2/3), then c(x1,x2,23) = 1 + x2 + 323 — 3 =
F(x1,29,x3), and this implies assertion 6.29(b). O]

We claim that the constructed tuple of functions { f;;} is a solution to the dual Problem 6.28.
By Proposition 6.29 it is enough to find a measure 7 € II(u;;) such that 7 is concentrated on
the set {(x1,x2,x3): frac(z1 + x2 + 3x3) = 0}. The proof of the following lemma is easy and is
left to the reader.

Lemma 6.30. There exists a measure w111 concentrated on the set
{(z1, 22, x3): frac(z1 + x2 + x3) = 0}

such that Pry;(m) coincides with the Lebesque measure restricted to the square [0,1]? for all
{Za.]} € I3,2-

Using this lemma, we prove a more general statement.

Proposition 6.31. Assume we are given positive integers ay, as and as. Then there exists a
Measure Tq, as,a5 € I(1ij) concentrated on the set

{(z1, 2, 23): frac(a1x1 + asxs + azzs) = 0}.

Proof. Let t1, to and t3 be non-negative integers such that 0 < t; < a; for 1 < i < 3. Consider
the mapping

t t +t
T: (z1, 29, 73) <$1+ 17$2+ 2’953 3>'

a az as

Let mb'"%  be the image of the measure 71,1,1 under the mapping T'. First, if (y1,y2,y3) =
T'(z1,2,23), then a1y1 + agys + agys = (z1 + x2 + x3) + (t1 + t2 + {3). Hence,

frac(zy + w2 + x3) = frac(a1y1 + a2y + asys),

and therefore, since 7y 11 is concentrated on the set {(z1,x2,z3): frac(z1 + x2 + x3) = 0}, the

measure o) '2'8  is concentrated on the set {(y1, 2, y3): frac(aiys + asys + azys) = 0}.

In addition, for all {7, j} € Z35 the measure Pr;; (mi8 ) is the image of Pri;(m1,1,1) under
the mapping
(mi,xj) — (

xi—l-ti xj—i-tj
a; | a; '

Thus, Prij(ﬂéll’%z’fg:;) is proportional to the Lebesgue measure restricted to the square

[t",ti“] x [tﬂt]“] (50)

473 a; a; a;
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X1

Figure 5: The support of the solution 7 described in Proposition 6.33. The support of the
measure 7 is red, and support of 7y ;2 is blue.

Let

Tan an.ae = 1 E riitats

1,02 N

,a2,a3 a1a2a3 0 ail,a2,a3
SUi<ag

The measure 74, 45,45 1S @ probability measure concentrated on the set
{(y1, y2, y3): frac(arys + agy2 + asys) = 0}

In addition, it follows from (50) that Pri;(7a, as,a5) is the Lebesgue measure restricted to the
square [0, 1]2. O

Using this proposition, we immediately obtain the following theorem.

Theorem 6.32. The tuple of functions {fi;} described in Proposition 6.29 is a solution to the
dual Problem 6.28, and the measure w113 € I(u;5), concentrated on the set

{(z1, %2, x3): frac(z1 + x2 + 3z3) = 0},
18 a solution to the primal Problem 6.28.
Unlike Problem 6.12, a solution to the primal Problem 6.28 is non-unique.

Proposition 6.33. Let m; be the restriction of the Lebesque measure to the set {(x1,x2,x3): 0 <
z1,22 < 1,0 <@g < 1/3}, and let my be the image of the measure 1,12 described in Proposi-
tion 6.31 under the mapping

2 1
T: (.’El,LEQ,.’Eg) — (1’1,332, g.’Eg + g) .

Then the measure m = w1 + %%\1,1,2 is uniting and the function F(x1,x2,x3) described in

Proposition 6.29 satisfies: F(x1,x2,x3) = ¢(x1,x2,x3) m-a.e. Consequently, the measure w is a
solution to the primal Problem 6.28 (see Fig. 5).
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Proof. By construction, Prio(71) is proportional to the restriction of the Lebesgue measure to
the square [0,1]2. The mapping 7' does not change the projection of a measure onto the space
X2, and therefore Pri2(71,1,2) is also proportional to the restriction of the Lebesgue measure to
the square [0,1]%. Thus, Pria(7) = p12.

The measure Pris(m) coincides with the restriction of the Lebesgue measure to the rectangle
{(x1,23): 0 <21 <1,0 <23 <1/3}. The measure Pri3(71,1,2) is the image of Pry3(m12) under
the mapping

2 1
(:cl,xg) — <$1, 5:63 + 3> .
Thus, %PT13(7?1,1,2) coincides with the restriction of the Lebesgue measure to the rectangle
{(z1,23): 0 < x1 < 1,1/3 < x3 < 1}, and therefore Pri3(m) = p13. Similarly, Prog(7) = pos,
and we conclude that 7 € II(p;; ).

Let (w1,79,23) be a point in [0,1]® such that z3 < 1/3. By equation (49) we have
F(x1,x2,23) = 0. In addition, z1 + x2 + 323 — 3 < 0, and therefore ¢(x1, x2, x3) = 0. Thus, since
supp(my) = {(z1, 22, 23) € [0,1]3: 0 < 23 < 1/3}, we conclude that F(x1, 2, 23) = c(x1, T2, 3)
T1-a.e.

Let (21,22, 23) be an arbitrary point in the cube [0, 1]?, and let (y1,y2,y3) = T(x1, T2, 23).
We have y1 + y2 + 3ys = x1 + x2 + 223 + 1, and therefore

frac(y1 + y2 + 3y3) = frac(xy + xo + 2x3).

Hence, we conclude that 7y 12 is concentrated on the set {(x1, x2,z3): frac(zq + 22 + 3z3) = 0},
and therefore by assertion 6.29(b) F(z1,x2,x3) = c(x1, x2, x3) T1,1,2-a.€.

Thus, F(z1, 22, x3) = c(z1, 29, x3) for m-almost all points (x1,z2,x3) € [0,1]3, and the mea-
sure 7 is a solution to the primal Problem 6.28. O

Unlike the primal problem, the dual problem admits a unique solution in the following sense.

Proposition 6.34. Let {gi;} be a solution to the relaxed dual Problem 6.28. Then the equation

g12(x1, x2) + g13(x1, x3) + gos(xe, x3) = fia(x1, x2) + fiz(z1,x3) + foz(w2, x3)

holds for almost all (z1,z2,73) € [0,1]3, where the tuple of functions {fi;} is defined in Proposi-
tion 6.29.

First, let us verify the following statement.

Lemma 6.35. Let {g;;} be a solution to the relazed dual Problem 6.28. Then there exist integrable
functions @1 and o such that gia(x1,x2) = p1(x1) + p2(x2) almost everywhere.

Proof. Consider the finite (3, 2)-function

G(z1,m2,23) = g12(x1, x2) + g13(21, 23) + g23(x2, 3).

Since {g;;} is a solution to the relaxed dual problem, the equation G(z1,x2,x3) = c(z1, x2, x3)
holds m-almost everywhere, where 7 is a solution to the primal problem defined in Proposi-
tion 6.33. In particular, G(x1, 72, 23) = c(x1, 2, 23) for almost all points (21,2, 23) € [0,1]3
such that 0 < z3 < 1/3. Since ¢(x1,x2,x3) = max(x; + x2 + 3z3 — 3,0) = 0 if 3 < 1/3, we
conclude that G(z1, e, r3) = 0 for almost all (1,79, x3) € [0,1] such that 0 < x5 < 1/3.

In particular, there exists a point 0 < xéo) < 1/3 such that the equation G(z1, 1,‘2,.56:(30)) =0

holds for almost all (x1,z2) € [0, 1]?. Hence, if we denote ¢1(z1) = —glg(ﬂjl,l’éo)) and @9 (x2) =

—g23(a, xz(,,o)), then the equation

Gra(1,09) = —gra(x1,25)) — gas (w2, 25”) = 1 (21) + pa(2)
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holds for almost all (z1,z2) € [0,1]2.
Let us verify that ¢1 and @4 are integrable. Since g19 is integrable, it follows from the Fubini-

(0) (0)
2

Tonelli theorem that for almost all x5 € [0, 1] the function 1 — gi2(x1, acgo)) = p(z1)+p2(zsy )

(0)

is also integrable. Since @a(zy’) is a constant, we conclude that ¢;(z1) is integrable. The
integrability of @9 is proven in the same manner. O

It follows from Lemma 6.35 that if {g;;} is a solution to the relaxed dual problem, then we

can set gia(z1,22) =0, g13(z1,23) = g13(21, 23) + p1(z1) and gaz(x2, 23) = gos(w2, 23) + Y2 (z2).
Then the equation

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = qa(x1, 22) + G13(x1, 23) + Gas (w2, z3)

holds for all (x1,z2,73) € [0,1]® except a zero (3,2)-thickness set, and therefore the tuple of
functions {g;;} is also a solution to the relaxed dual problem. Thus, in Proposition 6.34 we may
additionally assume that gia(x1,2z2) = 0 for all (x1,z2) € [0,1]%

Lemma 6.36. Let o1 and o2 be integrable functions defined on the segment [0,1]. Suppose that
there exists a real € > 0 such that the inequality p1(x1) + w2(z2) < 0 holds for almost all points
(x1,22) such that 0 < x1 +x9 <1+e. Then

1 1
/ o1(x1) dey +/ pa(z2) < 0.
0 0

Moreover, if the equality is achieved, then p1(x1)+p2(x2) = 0 for almost all (x1,z2) € [0,1]2.
The same s true if we replace the inequality 0 < z1 + 29 < 14+c withl —e < a1+ 29 < 2.

Proof. Without loss of generality we may assume that ¢ = 1/n for some positive integer n.
Consider the set A} = {(x1,22) € [0,1]2: min(x1,22) < 1/(2n)}. Let py be the restriction of the
Lebesgue measure to the set A;. One can easily verify that if p is the density of the projection
of p1 to the axis, then p(z) = 1if 0 < 2z < 1/(2n) and p(x) = 1/(2n) if 1/(2n) <z < 1. In
addition, if min(zq,22) < 1/(2n), then 0 < 21 + 22 < 1+ 1/(2n), and therefore the inequality
w1(x1) + p2(x2) < 0 holds pi-almost everywhere.

Consider the set As = {(x1,22) € [0,1]%: |2na1]| + [2nx2] = 2n}. Let us be the restriction
of the Lebesgue measure to the set Ag. If [2nx1]| + [2nxe| = 2n, then 2nz + 2nxy < 2n + 2,
and therefore x; + x9 < 1+ 1/n. Hence, p1(x1) + w2(z2) < 0 for ps-almost all points (x1, z9).
In addition, the projection of po to the axis is proportional to the restriction of the Lebesgue
measure to the segment [1/(2n), 1], and the density of this projection is equal to 1/(2n) on this
segment. See Fig. 6 for the visualization of the sets A1 and As.

Consider the measure g = p1 + (2n — 1)pe. The projections of this measure to the axes
coincides with the restriction of the Lebesgue measure to the segment [0,1]. In addition,
supp(p) C {(x1,22) € [0,1]2: 0 < 21 + 29 < 1+ 1/n}. Thus, we have

1 1
/ ©1(w1) dry +/ p2(x2) dro = / (p1(x1) + @2(22)) u(day, dz2) < 0.
0 0 0,12

Assume that the equality holds. Then ¢ (z1) 4+ ¢2(22) = 0 p-almost everywhere. In particu-
lar, @1 (1) + p2(x2) = 0 for almost all points (x1,z2) € A;, and therefore this equation holds for
almost all points (x1,z2) such that 0 < z9 < 1/(2n). Thus, by the Fubini-Tonelli theorem there

exists a point xéo) € [0,1/(2n)] such that the equation ¢1(z1) + @2 (iﬁgo)) = 0 holds for almost all

x1 € [0,1], and therefore there exists a constant C; = —902(3350)) such that ¢1(x1) = Cy almost
everywhere.
Similarly, there exists a constant C3 such that p9(x3) = Co almost everywhere. Then

1 1
0= / (,01(.7}1) dzry + / QOQ(.TUQ) dro = Cl + 02,
0 0
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Figure 6: The supports of the measures p and ps for the case € = %1. The set A; is colored red,
and the set Ao is blue.

and therefore j(x1) + @a(z2) = 0. The case of the inequality 1 — e < x1 + 29 < 2 is proven in
the same manner. O

Proof of Proposition 6.34. By Lemma 6.35 we may assume that g;o = 0. Consider the finite
(3, 2)-function
G(71, 22, 73) = g13(71, ¥3) + g23 (72, T3).
The function G is integrable and the inequality G(x1,z2,23) < c(x1,22,x3) holds for almost
all points (z1,72,73) € [0,1]3. Hence, there exists a set A C [0,1] with full measure such
that if xgo) € A, then the function G(-, -,xgo)) is integrable and the inequality G(xl,xg,xéo)) <
c(:cl,xg,xgo)) holds for almost all (z1,z2) € [0,1]2.
Assume that :céo) € A and that :1:%0) < 2/3. Consider the (3,2)-function

F(x1,22,23) = fiz2(z1,22) + fi3(z1, x3) + faz(wa, x3) = fiz(x1, x3) + faz(x2, x3).

By equation (49) we have F(xl,xg,azéo)) =0 for all (z1,72) € [0,1]%
Denote ¢ = 2 — 3m§0). We have e > 0. If 21 + 29 <1+ ¢, then 1 + 29 + 31’&0) —3<0, and
therefore
c(x, xe, x:(,,O)) = max(z1 + z2 + 33:&0) —3) =0= F(x1,22, xéﬂ)).
In addition, since G(xl,a:g,xéo)) < c(ml,xz,xéo)) for almost all points (x1,z2), we conclude
that the inequality G(z1,x2, méo)) < F(z1, 22, a:éo)) holds for almost all points (z1,x2) such that
0<z1+z2<1+e¢.

Consider the functions

o1(z1) = 913(w1,x§0)) - f13(901737§,0)) and o (z2) = 923($27x§0)) - f23(9€2,1’§,0))- (51)

We have
w1(z1) + p2(x2) = G(Sﬂl,ﬂﬁz,ﬂﬁgo)) — F(x1, 29, wéo))-

Hence, the function ¢1(z1) + @2(z2) is integrable on [0, 1]2, and therefore both functions ¢; and
2 are integrable on [0, 1]. In addition, the inequality ¢1(z1) + @2(x2) < 0 holds for almost all
points (x1,x2) such that 0 < 1 + 9 < 1+ . Thus, it follows from Lemma 6.36 that

1 1
/ (G(:Ul,:cg,:cgo)) — F(x1, 2, xgo))) dxidxs = / v1(x1) dxy +/ wa(x9) dze < 0.
0,1)2 0 0

Moreover, if the equality holds, then G(z1, z2, ajgo)) = F(x1, xo, :vgo)) almost everywhere.
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Assume that xéo) € A and that $§0) > 2/3. By equation (49) we have

F(x1, o, xz(,,o)) =1+ 22+ 356:(30) - 3.

Denote € = 33::(30) —2>0. If x1 +x9 >1—¢, then 21 + 22 + 323 — 3 > 0, and therefore

c(xy, x2, x(go)) = max(x1 + z2 + 3x§0) —3,0) =21 +x2+ 3:}6%0) — 3 = F(x1, xo, :1::())0)).

Hence, since G(xl,xg,xéo)) < c(m,mz,xéo)) for almost all (z1,x2), we conclude that ¢;(z1) +
p2(z2) < 0 for almost all points (z1,x2) such that 1 — e < z; + x5 < 2, where the functions ¢
and 9 are defined in equation (51). Thus, it follows from Lemma 6.36 that

G(x1, za, xgo)) dridzs < / F(xy, o, $§0)) dxydzs, (52)

[0,1]2 [0,1]2

and if the equality holds, then G(z1, z2, a:éo)) = F(x1, 22, :ri(,)o)) for almost all (x1,x2).

Summarizing this results, we conclude that if wgo) € A and if ajgo) # 2/3, then inequality (52)
holds, and therefore, since A is a set of full measure, we have

G($1, T2, 1‘3) d:l?ldl‘zdibg S / F(l‘l, xra, ."L‘3) dl‘ldl‘gdﬂ:‘g.

(0,1 (0,1

Since {gi;} is a solution to the relaxed dual problem, the equality holds, and therefore the equality

(0) (0)
3

in inequality (52) is achieved for almost all x5 ’. Thus, for almost all x5~ € [0, 1] the equation

F(z1,za, $§0)) = G(xl,xg,xgo)) holds for almost (x1,x2) € [0,1]2, and therefore

g12(x1,22) + g13(1, 23) + gas(2, x3) = fia(x1, 2) + fiz(x1, x3) + faz(we, x3)

almost everywhere. O
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