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Abstract

‘We describe research toward building control sys-
tems that include a complex, multi-state model of
the driver’s behavior. This can allow us to cre-
ate a control system that augments, rather than
replaces, the driver. To accomplish this requires
inferring the internal state of the driver (preparing
to brake, turn, etc.), and then correctly adapting
the remainder of the control system to achieve op-
timal performance.

1 Introduction

Several automobile manufacturers have begun to
experiment with “augmented control” systems
[3, 4]. Examples are cruise control systems that
help the driver maintain inter-vehicle distance as
well as speed, and steering systems that help the
driver maintain lane position. Such Augmented
Control (AC) systems are fundamentally differ-
ent than automated driving systems, because they
complement rather than replace the driver. Con-
sequently, they must consider the driver as an in-
tegral part of the control system, rather than as
an external source of input.

The difficulty, of course, is that we generally do
not understand humans well enough to construct
a mathematical model of their input/output rela-
tions. This difficulty has forced most attempts at
AC systems to adopt the simplest possible model
of the human. For instance, if one models the
human as a trivial “black box” such as a noise
source or filter it is relatively easy to obtain a
mathematical specification of the vehicle control
system, including the human. Such simple mod-
els, however, also make it impossible to build a
system that takes real advantage of the human’s
abilities.
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Our approach is to instead model the human as
a Markov device with a (possibly large) number of
internal mental states, each with its own particular
control behavior, and inter-state transition prob-
abilities. A simple example of this type of human
model would be a bank of standard quadratic con-
trollers, each using different dynamics and mea-
surements, together with a network of probabilis-
tic transitions between them.

To integrate this human model into the over-
all AC system it is necessary to know which con-
troller is currently “in charge,” so that the remain-
der of the system (the car) can configure itself to
achieve optimum overall performance. However
the internal states of the human are not directly
observable, so they must be determined through
an indirect estimation process. One efficient and
robust method of accomplishing this is to use
the expectation-maximization method common in
Hidden Markov Modeling (HMM).

By using these methods to infer the driver’s
internal state (e.g., are they passing, following,
turning, etc.) it seems likely that we can design
systems that are able to dynamically reconfigure
themselves to better fit the situation. This can
potentially allow for higher performance than is
possible with a fixed model of the human (assum-
ing similar controller complexity).

2 Static Models

The simplest non-trivial driver models that have
been considered are static finite state machines.
The driver is modeled as a set of states S, and
there are certain legal transtitions between these
states. For instance, a driver model might have
only two states, braking and non-braking.
Helander [2] used this model in analyzing driver
braking behavior. His data show that drivers ex-



hibit an elevated electrodermal response (EDR)
in their hands that reliably preceded braking. He
suggested that by use of a suitably instrumented
steering wheel the car’s braking response could be
improved.

3 Dynamic Models

Models that rely on “oracle” observations to indi-
cate state are often unsatisfactory, usually because
the external observable is not completely reliable
and requires the use of extra sensors. Instead, we
would like a driver model that analyzes the driver’s
control input to identify the state of the driver.
Analysis of such data usually requires a dynamic
model of the driver.

The simplest such driver model is a single dy-
namic process

X1 = £(Xi, At) + £(2) 1)

where the function f models the dynamic evolution
of state vector X at time k, and let us define an
observation process

Yy = h(Xx, At) +n(t) 2

where the sensor observations Y are a function
h of the state vector and time. Both £ and 75
are white noise processes having known spectral
density matrices.

Using Kalman'’s result, we can then obtain the
optimal linear estimate X of the state vector Xj
by use of the following Kalman filter:

Xx = X} + Ki(Yx — h(X}, 1)) (3)

provided that the Kalman gain matrix Ky is cho-
sen correctly [14]. At each time step k, the filter
algorithm uses a state prediction X}, an error co-
variance matrix prediction P}, and a sensor mea-
surement Y to determine an optimal linear state
estimate 5(;;, error covariance matrix estimate P ks
and predictions X} ,,, P}, for the next time step.

The prediction of the state vector X}, at the
next time step is obtained by combining the opti-
mal state estimate Xk and Equation 1:

Xip1 = X + £(Xx, At)At 4)

In our application this prediction equation is also
used with larger times steps, to predict the driver’s
future state. This prediction allows us to maintain
synchrony with the driver by giving us the lead
time needed to alter suspension components, etc.
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Finally, given the state vector X at time k we
can predict the measurements at time k + A¢ by

Yirar = h(Xz, At) (5)

and the predicted state vector at time k + At is
given by

Xirae = X} + £(Xi, At)At (6)

3.1 Multiple Dynamic Models

Driver behavior, of course, is not as simple as a
single dynamic model. The next most complex
model of driving behavior is to have several al-
ternative models of the driver’s dynamics, one for
each class of response. Then at each instant we
can make observations of the driver’s state, decide
which model applies, and then make our response
based on that model. This is known as the mul-
tiple model or generalized likelihood approach, and
produces a generalized maximum likelihood esti-
mate of the current and future values of the state
variables {15]. Moreover, the cost of the Kalman
filter calculations is sufficiently small to make the
approach quite practical.

Intuitively, this solution breaks the driver’s
overall behavior down into several “prototypical”
behaviors. For instance, we might have dynamic
models corresponding to a relaxed driver, a very
“tight” driver, and so forth. We then classify the
driver’s behavior by determining which model best
fits the driver’s observed behavior.

Mathematically, this is accomplished by setting
up a set S of Kalman filters, one for the dynamics
of each model:

X0 =339 L KO(v, -nOx9,0) (1)
where the superscript (i) denotes the i** Kalman

filter. The measurement innovations process for
the #** model (and associated Kalman filter) is

then ) .

¥ = Y, —n®(x;9,¢) ®)
The measurement innovations process is zero-
mean with covariance R.

The i*® measurement innovations process is, in-
tuitively, the part of the observation data that is
unexplained by the i®* model. The model that
explains the largest portion of the observations
is, of course, the model most likely to be correct.
Thus, at each time step, we calculate the proba-
bility Pr(® of the m-dimensional observations ¥
given the i** model’s dynamics,

exp (—3T{TR11{")
(2m)™/2Det(R)1/?

Pré)(Y,) = 9)



and choose the model with the largest probability.
This model is then used to estimate the current
value of the state variables, to predict their future
values, and to choose among alternative responses.

Note that when optimizing predictions of mea-
surements At in the future, Equation 8 must be
modified slightly to test the predictive accuracy of
state estimates from At in the past.

I = v, — X9, + £OXP ,,, A0)A¢ 1)
(10)
by substituting Equation 6.

3.2 Results

We have used this method to accurately remove
lag in a high-speed telemanipulation task by con-
tinuously re-estimating the user’s arm dynamics
(e.g., tense and stiff, versus relaxed and inertia-
dominated) {5].

In this case, the state vector X; consists of
the true position, velocity, and acceleration of the
hand in each of the z, y, and 2z coordinates, and
the observation vector Y consists of the position
readings for the z, y, and z coordinates. We found
that using this multiple-model approach we were
able to obtain significantly better predictions of
the user’s hand position that was possible using a
single dynamic or static model.

4 Hidden Markov Modeling

In the above multiple dynamic model, all the pro-
cesses have a fixed likelihood at each time step.
However, this is uncharacteristic of most driving
situations, where there is a fixed sequence of in-
ternal states each with its own dynamics. Con-
sider driving through a curve; the driver may be
modeled as having transitioned through a series of
states A = (s1, 82, ---8&), s:€5, for instance, enter-
ing a curve, in the curve, and exiting a curve, and
other. Transitions between these states happened
only in the order indicated, with a final transition
from other to entering the curve.

Thus in considering state transitions among a
set of dynamic models we should make use of our
current estimate of the driver’s internal state. We
can accomplish this fairly generally by considering
the Markov probability structure of the transitions
between the different states. The input to de-
cide the driver’s current state (e.g., which dynamic
model currently applies) will be the measurement
innovations process as above, but instead of using
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this directly in Equation 9 we will instead consider
the Markov inter-state transition probabilities.

While a substantial body of literature exists on
HMM technology [7, 8, 10, 13], we will first briefly
outline a traditional discussion of the algorithms.
After outlining the fundamental theory in training
and testing of a discrete HMM, we will generalize
these results to the continuous density case appli-
cable to switching between dynamic models. For
broader discussion of the topic, {8, 11] are recom-
mended.

A time domain process demonstrates a Markov
property if the conditional probability density
of the current event, given all present and past
events, depends only on the j** most recent events.
If the current event depends solely on the most
recent past event, then the process is a first order
Markov process.

The initial topology for an HMM can be deter-
mined by estimating how many different states are
involved in the observed phenominon. Fine tuning
this topology can be performed empirically. Fig-
ure 1, for instance, shows a four state HMM with
skip transitions that we have used to classify com-
plex hand motions.

A A

Figure 1: The four state HMM used for recogni-
tion, from [6].

There are three key problems in HMM use.
These are the evaluation, estimation, and the de-
coding problems. The evaluation problem is that
given an observation sequence and a model, what
is the probability that the observed sequence was
generated by the model (Pr(Y|\)) (notational
style adapted from [8])7 If this can be evaluated
for all competing models for an observation se-
quence, then the model with the highest probabil-
ity can be chosen for recognition.

Pr(Y|A) can be calculated several ways. The
naive way is to sum the probability over all the
possible state sequences in a model for the obser-
vation sequence:

k
PreYly) = S [[ams @b (1)

ieS t=1

where ax (i) are the state transition probabilities,



and b (Y") are the output probabilites.

However, this method is exponential in time,
so the more efficient forward-backward algorithm
is used in practice. The following algorithm de-

fines the forward variable a and uses it to generate
Pr(Y|3),

o a;(?) = m;0;(0y), for all states i, where 7; are
the initial state probabilities (by default we

can let m; = -,:—l),

e Calculating () along the time axis, for ¢t =
2,...,k, and all states j, compute

o (f) = [Z a1 (i)ai)b; (V) (12)
e Final probability is given by
Pr(Y|)) =Y ax(i) (13)

€S

The first step initializes the forward variable
with the initial probability for all states, while the
second step inductively steps the forward variable
through time. The final step gives the desired re-
sult Pr(Y|A), and it can be shown by construct-
ing a lattice of states and transitions through time
that the computation is only order O(N2T). The
backward algorithm, using a process similar to the
above, can also be used to compute Pr(Y]|A).

The estimation problem concerns how to adjust
A to maximize Pr(Y|A) given an observation se-
quence Y. Given an initial model, which can have
flat probabilities, the forward-backward algorithm
allows us to evaluate this probability. All that
remains is to find a method to improve the ini-
tial model. Unfortunately, an analytical solution
is not known, but an iterative technique can be
employed.

Using the actual evidence from the training
data, a new estimate for the respective output
probability can be assigned:

- Ete(y,=y) ¥e(4)
Zf:_l 7:(5)

where (%) is defined as the posterior proba-
bility of being in state ¢ at time t given the ob-
servation sequence and the model. Similarly, the
evidence can be used to develop a new estimate
of the probability of a state transition (a@;;) and
initial state probabilities (7;).

Thus all the components of model () can be re-
estimated. Since either the forward or backward

b;(Y) (14)
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algorithm can be used to evaluate Pr(Y]|)) ver-
sus the previous estimation, the above technique
can be used iteratively to converge the model to
within some error criterion. While the technique
described only handles a single observation se-
quence, it is easy to extend to a set of observation
sequences. A more formal discussion can be found
in [7, 8, 13].

While the estimation and evaluation processes
described above are sufficient for the development
of an HMM system, the Viterbi algorithm pro-
vides a quick means of evaluating a set of HMM’s
in practice as well as providing a solution for the
decoding problem. In decoding, the goal is to re-
cover the state sequence given an observation se-
quence. The Viterbi algorithm can be viewed as
a special form of the forward-backward algorithm
where only the maximum path at each time step
is taken instead of all paths. This optimization re-
duces computational load and additionally allows
the recovery of the most likely state sequence. The
steps to the Viterbi are

¢ Initialization. For all states i, &;(i) =
mbi(Y1); 4: (1) = 0

o Recursion. From ¢ = 2 to k and for all states

7y 6(F) = max;[6;—1(3)ai;16;(Ye); ¥e(G) =
argmax;[6;-1(i)ai;]

e Termination. P = maX,s[0s(s)); sx =
argmax,, [0 (s)]

¢ Recovering the state sequence. Fromt = k-1
t0 1, 5t = Yey1(Se41)

Note that since Viterbi only guarantees the
maximum of Pr(Y,S|)\) over all state sequences
S (as a result of the first order Markov assump-
tion) instead of the sum over all possible state se-
quences, the resultant scores are only an approx-
imation. However, [10] shows that this is often
sufficient.

4.1 The Continuous Case

So far this discussion of HMMs has assumed some
sort of quantization of feature vectors into classes.
However, instead of using vector quantization, the
actual probability densities for the features may
be used. Baum-Welch, Viterbi, and the forward-
backward algorithms can be modified to handle a
variety of characteristic densities [9]. In this con-
text, however, the densities will be assumed to be
Gaussian. Specifically, from Equation 9,



exp (—%FS)TR"IFS))
(27)™/2Det(R)1/2

bi(¥) = (15)

Initial estimations of x and o may be calculated
by dividing the evidence evenly among the states
of the model and calculating the mean and vari-
ance in the normal way. Whereas flat densities
were used for the initialization step before, the ev-
idence is used here. Now all that is needed is a way
to provide new estimates for the output probabil-
ity. This can be accomplished by the Kalman filter
update equations.

4.2 Results

We have used this method, albeit with only the
simplest of dynamic models, to interpret and clas-
sify a set of forty complex, two-hand motions [6].
The motions were continuous and showed severe
co-articulation effects. Input descriptions were
hand position, orientation, and aspect ratio. We
were able to obtain 99.2% accuracy at this classi-
fication task.

5 Work in Progress

We are now using this approach to use observa-
tions of driver head, hand, and leg movements to
classify the driver’s internal state. We are cur-
rently investigating results from Land [1] suggest-
ing that a 4 state HMM with simple dynamic mod-
els may be sufficient to use driver head position
to predict when a driver is preparing to enter or
leave a curve, and to estimate the change in steer-
ing angle. The ability to accurately predict such
control input from observations of driver head po-
sition may make it possible (for instance) to dyam-
ically tune the vehicle suspension.

This research is being conducted within the Nis-
san Cambridge Basic Research driving simulator.
The simulator consists of the front half of a Nissan
240SX convertible and a 60 deg (horizontal) by 40
deg (vertical) image projected onto the wall facing
the driver. The 240SX is instrumented to record
driver control input such as steering wheel angle,
brake position, and accelerator position. Head and
eye positions can be measured simultaneously us-
ing the ISCAN HeadHunter Eye Tracking System.
A timing pulse is sent over a serial connection from
the simulation computer to the eye tracking com-
puter to synchronize the data for the off-line anal-
ysis.
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We arecurrently simulating driving situations
such as driving at a constant speed on a smoothly
curving road with no traffic, and maintaining the
distance behind a lead car moving at a constant
speed along the same curvy route. The head and
eye position data and driver input data from these
“prototypical” driving situations are then used to
develop the dynamic models of driver behavior for
a specific driving state. For instance, in the first
driving situation, initial results show a predictive
relationship between driver head angle and steer-
ing wheel movement. We believe that similar re-
lationships may also be obtained in other experi-
mental conditions. The results from these initial
experiments will be reported at the conference.
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