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MODEL REDUCTION

Efficiently find a simple model which matches well given
complex system data.

For LTI systems:

“efficiently” : takes reasonable time on practical examples
“simple”: low order

“matches well”: optimal approximation

“data’” : system equations or measurements

Hs-optimal LTI model reduction is an open problem



HANKEL OPTIMAL MODEL REDUCTION

Hankel norm ||G||g of transfer function G € Hy is the iInfi-
mum of |G 4+ Y||o, Where Y ranges over Ho.

Given a state space model of an n-th order transfer function
G, there is an algorithm for finding a transfer function G,,
of order less than m which minimizes |G — G|y in about
n* operations.

What is the Hankel optimality good for?



HANKEL OPTIMAL MODEL REDUCTION:
THE BENEFITS

e the minimum ¢Z(G) is a lower bound for H., optimal
model reduction

e the Hankel optimal reduced model G has H., approxi-
mation error not exceeding the sum of ¢/1(G) with k > m

e Oother used method of model reduction (e.g. moment
mathing) guarantee even less

Anything else?



HANKEL OPTIMAL MODEL REDUCTION:
INCONVENIENT PROPERTIES

e a finite dimensional state space model of G iIs required

e complexity of calculations grows quickly with n

e an analog for weighted norms is not available



MAXIMAL REAL PART NORMS

For a function W € L which IS nhon-zero on a set of posi-
tive measure, the corresponding maximal real part norm is
defined on H by

IGIIE = [IWRe(&)]loo

The problem of minimizing __Qlﬁs__m\ over all stable trans-
fer functions of order less than m is quasi-convex with re-
spect to a re-parameterization with 2 xm — 1 parameters.



THE QUASI-CONVEX PARAMETERIZATION

b(w?)
a(w?)’
where b,a are polynomials of degree less than m, and

a(w?) >0 VweR

Then the level set |G — QS__M\ < ~ is defined by the con-
straints

a(w?) >0, [b(w?) — Re G(jw)a(w?)| < va(w?) V w

which are convex with respect to a,b

Are the maximal real part norms good for anything??
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MAX-REAL PART NORMS:
STRONGER THAN HANKEL NORMS

Since |G| > |Re G|, we have

WAoo 2 [[WRe Alfoo

Since Re(G) = 0.5(G + G), we have

|[WRe Alloo > 0.5 _inf [[W(A + 7)o
Y eH



AN ASYMPTOTIC CONVERGENCE THEOREM

THEOREM:

Let
pm(G) = inf [|Re(G — Gm)|c

where the infimum is taken over all stable transfer functions
G, Of order less than m. Let G, be stable transfer functions
of order less than m such that

pm IIRE(G — Gm)|loo = O(1).
If 3 pm(G) < oo then |G — GE|loo — 0.



PROOF (A SKETCH):

|G = Gml|oo

G — GH||oo 4+ 2m
G — Gl + 2m
G — GH||oo +2m

VAN VAN VAN VAN

G — Giilloo + |Gyt — Gl

GE — Gy
GE — G|lg + 2m||Gm — Gl
G — G|l + 4m|Re (Gm — @)|lx
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MAXIMAL REAL PART NORM MODEL REDUCTION
OVER FINITE FREQUENCY SETS

The problem of minimizing
max (WiRe(G(jwg) — Gm(jwg))|

over all stable transfer functions GG,, of order less than m
can be re-parameterized as a quasi-convex optimization in
a similar way.

With a finite number of frequencies, this is an LMI opti-
mization.

This way, a complete model of G is not needed!
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USING VECTOR MAX-REAL NORMS

-: Re G(jw) — b(w?)/a(w?)

Im G(jw) — we(w?)/a(w?) ;oo — min

This yields a better lower bound
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EXAMPLE 1

A 6-th order reduced model for a 12-th order transfer func-
tion with three resonant peaks was constructed using Han-
kel and maximal real part optimality.

Here

IG — GH||g ~3.56, ||G— GY|e ~ 5.76,

IRe(G — GE)||oo &~ 3.37[4.0], ||G — GF|lc0 ~ 4.57.
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EXAMPLE 1: REAL/IMAGINARY VALUES
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EXAMPLE 2: NOISY DATA

200 noisy samples of rational trigonometric function of de-
gree 10.
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EXAMPLE 3: SYSTEM WITH DELAY

10-th order approximation of (1 — .9e %)~ 1(1 4 .3s)71
Lower bound 0.35, actual 1.4[0.54]

WL
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EXAMPLE 4: FOCUS SERVO OF A DVD PLAYER

59 frequency samples
10th order fit: lower bound ~ 1.57, actual ~ 6.2[4.9]
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