

Implications of Very Light Jets for the Air Transportation System

Philippe A. Bonnefoy bonnefoy@mit.edu

R. John Hansman rjhans@mit.edu

Global Airline Industry Program Industrial Advisory Board /Airline Industry Consortium Joint Meeting

MIT

November 4th 2005

Motivation & Introduction

Business aviation industry

- Segment of the General Aviation industry:
 - 37 B\$ annually (0.4% of 2000 GDP)
 - Employment: 511 000
- Growing Industry
 - +67% in # of aircraft (turbine) over the last 10 years
- Emerged Models in the 1980s:
 Fractional Ownership Programs

Future entry of Very Light Jets

- New opportunities:
 Large scale on-demand air networks
- Need to understand the dynamics of entry of VLJs at the N.A.S. level and anticipate the potential impacts in order to allow a successful integration of these new models

Data source: NBAA, Fact Book 2004.

^{*} Data source: The National Economic Impact of Civil Aviation, DRI-WEFA Inc., 2002. (GA figures include Business Aviation and Air Taxi)

Very Light Jets (VLJs):

A New Class of Aircraft

Very Light Jets in Development

A/C name:
Company:
A/C type:
Country:
Orders:
as of:
First Delivery*:

Eclipse500
Eclipse Aviation
Twin Jet
U.S.
2300August 2005
Q2 2006

Mustang Cessna Twin Jet U.S. 240 July 2005 Q3 2006 Adam700
Adam Aircraft
Twin jet
U.S.
75
July 2004
2006+

EMB-VLJ Embraer Twin Jet Brazil

2008

ProJet
Avocet Aircraft
Twin Jet
Israel / U.S.
not disclosed

*expected

153

Safire26

Z.

A/C name:
Company:
A/C type:
Country:
Orders:
as of:
First Delivery

First Delivery*:
*expected

Epic LT
Epic
Twin Jet
U.S.
Not disclosed

HondaJet
Honda
Twin Jet
Japan
No
commercialization
commitment

Safire 26 Safire Aircraft Twin Jet U.S. D-Jet
Diamond Aircraft
Single Jet
Austria/Canada
Not disclosed

2006

Excel Sport Jet

... and others entering the race: Spectrum 33

Potential Size of this Segment of the Industry

Data Source:

- -FAA Forecast 2005-2016: http://www.faa.gov/data_statistics/aviation/aerospace_forecasts/2005-2016/
- -Rolls-Royce outlook: http://www.rolls-royce.com/civil_aerospace/overview/market/outlook/default.jsp
- -Aviation International News, Forecasts predict growth for business aviation, http://www.ainonline.com/issues/11 04/11 04 forecastp10.html,

Potential Modes of Operations

Owner flown

(\approx 900 aircraft)

Owned and operated by individuals or companies

Fractional Ownership Programs

• e.g. Our Plane (Canada & U.S.)

OurPL ANF inc

(≈ 20 aircraft)

Clubs

e.g. Aviace (Switzerland)

(≈ 110 aircraft)

 $(\approx 1700 \text{ aircraft})$

Large Scale On-Demand Air Networks

• Charter: e.g. Pogo (U.S)

Per Seat: e.g. DayJet (U.S.)

Mix Charter/Per Seat: e.g. LinearAir (U.S.) LINEAR

Freight

(≈? aircraft)

Logistic Networks
 (e.g. Supply Chain Back Up Networks, Package delivery, etc)

With runway length requirements of 3000 ft VLJs will be able to have access to a larger set of airports

Data Source: FAA, Form 5010

Analysis of Traffic by Existing Business Jets: Traffic Share by Aircraft Type

Data Source: ETMS traffic data

Horizontal Pattern Analysis

One day of traffic in the NAS by Light Jets

Light Business Jet Traffic* in 2003

•Traffic at 3400 public airports Light Jets include: Cessna CJ1, CJ2, CJ3, Bravo, Excel, LearJet35, Hawker400

Airport Utilization (by airport type)

30 % of the total activity (departures and arrivals) is performed at airports part of the 16 metropolitan regions

50 % of all flights* have at least one end airport in one of 16 metropolitan regions

Volume of Operations in the U.S.

Historical data and forecast

^{*} This scenario assumes a delivery rate of 500 very light jets per year starting in 2006.

Analysis of Traffic Distribution at the Regional Airport System Level

example of the New York Region*

Historical and Forecasted Volumes of Traffic at Airports within the Regional Airport System

example of the New York Region*

Conclusions & Future Directions of Research

Conclusion

- In the short and medium term, VLJ traffic is unlikely to differ from existing LJ traffic.
- Concentration of traffic implies:
 - Outside high density metro areas: Not an issue, capacity exists
 - Inside high density metro areas
 - Some key airports will become even more congested
 - Capacity crisis at key airports will occur even without VLJs
 - Traffic redistribution mechanisms will take place
 - Core airports
 - Secondary airports; emergence of new secondary airports
 - Core GA reliever airports; strengthening of existing and emergence of new reliever airports
 - Surrounding GA airports; growth of business jet (and Very Light Jet) traffic
- Strengthened role of small regional airports within key metropolitan areas
- Need to promote the development of airport systems on a region wide basis

Future Directions of Research

 Investigating the feasibility and the implications of the integration of air carrier and on-demand air networks

Questions & Comments