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I. Wealth-Consumption Ratio and Consumption Risk Premium

We start from the aggregate budget constraint:

(1) Wt+1 = Rct+1(Wt − Ct).

The beginning-of-period (or cum-dividend) total wealth Wt that is not spent on aggregate
consumption Ct earns a gross return Rct+1 and leads to beginning-of-next-period total
wealth Wt+1. The return on a claim to aggregate consumption, the total wealth return,
can be written as

Rct+1 =
Wt+1

Wt − Ct
=
Ct+1

Ct

WCt+1

WCt − 1
.

We use the Campbell (1991) approximation of the log total wealth return rct = log(Rct )
around the long-run average log wealth-consumption ratio µwc ≡ E[wt − ct]:

rct+1 = κc0 + ∆ct+1 + wct+1 − κc1wct,

where the linearization constants κc0 and κc1 are non-linear functions of the unconditional
mean log wealth-consumption ratio µwc:

κc1 =
eµwc

eµwc − 1
> 1 and κc0 = − log (eµwc − 1) +

eµwc

eµwc − 1
µwc.

Throughout the paper, we use lower letters to denote logs.

The Euler equation for any asset i with lognormal return Ri implies:

(2) 0 = Et [sdft+1] + Et

[
rit+1

]
+

1

2
Vart [sdft+1] +

1

2
Vart

[
rit+1

]
+ Covt

[
sdft+1, r

i
t+1

]

We conjecture that the wealth-consumption ratio is linear in the state variables xt, σ
2
gt

and σ2
xt:

wct = µwc +Wxxt +Wgs

(
σ2
gt − σ2

g

)
+Wxs

(
σ2
xt − σ2

x

)

We first compute the different components of equation 2:

rct+1 = rc0 + [1 +Wx (ρ− κc1)]xt +Wgs (νg − κc1)
(
σ2
gt − σ2

g

)
+Wxs (νx − κc1)

(
σ2
xt − σ2

x

)

+ σgtηt+1 +Wxσxtet+1 +Wgsσgwwg,t+1 +Wxsσxwwx,t+1

Et

[
rct+1

]
= r0 + [1 +Wx (ρ− κc1)]xt +Wgs (νg − κc1)

(
σ2
gt − σ2

g

)
+Wxs (νx − κc1)

(
σ2
xt − σ2

x

)

rct+1 − Et

[
rct+1

]
= σgtηt+1 +Wxσxtet+1 +Wgsσgwwg,t+1 +Wxsσxwwx,t+1

Vt

[
rct+1

]
= σ2

gt +W 2
xσ

2
xt +W 2

gsσ
2
gw +W 2

xsσ
2
xw

rc0 = κc0 + µg + (1 − κc1)µwc
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Epstein and Zin (1989) show that the log real stochastic discount factor is

sdft+1 = θ log δ −
θ

ψ
∆ct+1 + (θ − 1) rct+1

= µs +

{
−
θ

ψ
+ (θ − 1) [1 +Wx (ρ− κc1)]

}
xt

+ {Wgs (νg − κc1) (θ − 1)}
(
σ2
gt − σ2

g

)
+ {Wxs (νx − κc1) (θ − 1)}

(
σ2
xt − σ2

x

)

+

{
θ

(
1 −

1

ψ

)
− 1

}
σgtηt+1 + (θ − 1) {Wxσxtet+1 +Wgsσgwwg,t+1 +Wxsσxwwx,t+1}

sdft+1 − Et [sdft+1] =

{
θ

(
1 −

1

ψ

)
− 1

}
σgtηt+1 + (θ − 1) {Wxσxtet+1 +Wgsσgwwg,t+1 +Wxsσxwwx,t+1}

Et [sdft+1] = µs +

{
−
θ

ψ
+ (θ − 1) [1 +Wx (ρ− κc1)]

}
xt

+ {Wgs (νg − κc1) (θ − 1)}
(
σ2
gt − σ2

g

)
+ {Wxs (νx − κc1) (θ − 1)}

(
σ2
xt − σ2

x

)

Vt [sdft+1] =

{
θ

(
1 −

1

ψ

)
− 1

}2

σ2
gt + (θ − 1)

2 {
W 2
xσ

2
xt +W 2

gsσ
2
gw +W 2

xsσ
2
xw

}

µs = θ log δ −
θ

ψ
µg + (θ − 1) rc0

Covt
[
rct+1, sdft+1

]
= Et

[
(rct+1 − Et

[
rct+1

]
)(sdft+1 − Et [sdft+1])

]

=

{
θ

(
1 −

1

ψ

)
− 1

}
σ2
gt +W 2

x (θ − 1)σ2
xt +W 2

gs (θ − 1)σ2
gw +W 2

xs (θ − 1)σ2
xw

Plugging these different components into equation (2) evaluated at i = c yields:

0 = rc0 + µs +
θ2

2

{(
1 −

1

ψ

)2

σ2
g +W 2

xσ
2
x +W 2

gsσ
2
gw +W 2

xsσ
2
xw

}
(3)

+θ

{
−

1

ψ
+ [1 +Wx (ρ− κc1)]

}
xt(4)

+
θ

2

{
2Wgs (νg − κc1) + θ

(
1 −

1

ψ

)2
}
(
σ2
gt − σ2

g

)
(5)

+
θ

2

{
2Wxs (νx − κc1) + θW 2

x

} (
σ2
xt − σ2

x

)
(6)



4 THE AMERICAN ECONOMIC REVIEW MAY 2010

Then setting all coefficients equal to zero we obtain:

(4) =⇒ Wx =
1 − 1

ψ

κc1 − ρ

(5) =⇒ Wgs =
θ
(
1 − 1

ψ

)2

2 (κc1 − νg)

(6) =⇒ Wxs =
θ

2 (κc1 − νx)

(
1 −

1
ψ

κc1 − ρ

)2

If the IES exceeds 1, then Wx > 0, Wgs < 0, and Wxs < 0.
Plugging these coefficients back into equation (3) implicitly defines a nonlinear equation
in one unknown (µwc), which can be solved for numerically, characterizing the average
wealth-consumption ratio.
According to (2), the risk premium (expected excess real return corrected for a Jensen
term) on the consumption claim is given by1:

Et

[
rc,et+1

]
= −Covt

[
rct+1, sdft+1

]

=

{
1 − θ

(
1 −

1

ψ

)}
σ2
gt +W 2

x (1 − θ) σ2
xt +W 2

gs (1 − θ)σ2
gw +W 2

xs (1 − θ)σ2
xw

= λησ
2
gt +Wxλeσ

2
xt +Wgsλgwσ

2
gw +Wxsλxwσ

2
xw

with the market price of risk vector Λ = [λη, λe, λgw , λxw] given by:

λη = −

{
θ

(
1 −

1

ψ

)
− 1

}
= γ > 0

λe = (1 − θ)Wx =
γ − 1

ψ

κc1 − ρ

λgw = (1 − θ)Wgs = −
(γ − 1) (γ − 1

ψ
)

2 (κc1 − νg)

λxw = (1 − θ)Wxs = −
(γ − 1) (γ − 1

ψ
)

2 (κc1 − νx) (κc1 − ρ)2

If the IES is sufficiently large (γ > 1/ψ), then λe > 0, λgw < 0, and λxw < 0.

II. Equity Risk Premium

We log-linearize return on portfolio: rt+1 = κ0 + ∆dt+1 + pdt+1 − κ1pdt, and conjec-
ture that the price-dividend ratio is linear in the state variables: pdt = µpd + Dxxt +
Dgs

(
σ2
gt − σ2

g

)
+Dxs

(
σ2
xt − σ2

x

)

As we did for the return on the consumption claim, we compute innovations in the

1Recall that the log riskfree rate is yt(1) = −Et [sdft+1] −
1
2
Vart [sdft+1].
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dividend claim return, and its conditional mean and variance:

rt+1 = r0 + {φx +Dx (ρ− κ1)}xt +Dgs (νg − κ1)
(
σ2
gt − σ2

g

)
+Dxs (νx − κ1)

(
σ2
xt − σ2

x

)

+ϕdσgtηd,t+1 +Dxσxtet+1 +Dgsσgwwg,t+1 +Dxsσxwwx,t+1

rt+1 − Et [rt+1] = ϕdσgtηd,t+1 +Dxσxtet+1 +Dgsσgwwg,t+1 +Dxsσxwwx,t+1

Et [rt+1] = r0 + {φx +Dx (ρ− κ1)}xt +Dgs (νg − κ1)
(
σ2
gt − σ2

g

)

+Dxs (νx − κ1)
(
σ2
xt − σ2

x

)

Vart [rt+1] = ϕ2
dσ

2
gt +D2

xσ
2
xt +D2

gsσ
2
gw +D2

xsσ
2
xw

r0 = κ0 + µpd (1 − κ1) + µd

Covt [rt+1, sdft+1] = (θ − 1)
[
WgsDgsσ

2
gw +WxsDxsσ

2
xw

]
− γϕdτgdσ

2
gt + (θ − 1)WxDxσ

2
xt

Plug these different components into equation (2):

0 = µs + r0 +
1

2

[
γ2 − 2γϕdτdg + ϕ2

d

]
σ2
g +

1

2
[Wx (θ − 1) +Dx]

2 σ2
x +

1

2
[Wgs (θ − 1) +Dgs]

2 σ2
gw

+
1

2
[Wxs (θ − 1) +Dxs]

2
σ2
xw(7)

+

{
−

1

ψ
+ [φx +Dx (ρ− κ1)]

}
xt(8)

+

{
1

2

[
γ2 − 2γϕdτdg + ϕ2

d

]
+Wgs (κc1 − νg) (1 − θ) +Dgs (νg − κ1)

}(
σ2
gt − σ2

g

)
(9)

+

{
1

2
[Wx (θ − 1) +Dx]

2
+Wxs (κc1 − νx) (1 − θ) +Dxs (νx − κ1)

}(
σ2
xt − σ2

x

)
(10)

Then setting all coefficients equal to zero we get:

(8) =⇒ Dx =
φx −

1
ψ

κ1 − ρ

(9) =⇒ Dgs =

1
2

[
γ2 − 2γϕdτdg + ϕ2

d

]
− 1

2

(
γ − 1

ψ

)
(γ − 1)

κ1 − νg

(10) =⇒ Dxs =

1
2

[
φx−

1
ψ

κ1−ρ
−

γ− 1
ψ

κc1−ρ

]2
− 1

2

(γ−1)(γ− 1
ψ )

(κc1−ρ)
2

κ1 − νx

Plugging these into (7) implicitly defines a nonlinear equation in one unknown (i.e., µpd),
which can be solved for numerically, characterizing the mean price-dividend ratio.

The D coefficients are the betas of the equity market portfolio with respect to the four
fundamental consumption growth shocks.
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The equity risk premium is equal to:

Et

[
ret+1

]
= −Covt [rt+1, sdft+1]

= (ϕdτgd)λησ
2
gt +Dxλeσ

2
xt +Dgsλgwσ

2
gw +Dxsλxwσ

2
xw

=
[
G0 +Ggsσ

2
g +Gxsσ

2
x

]
+Ggs

(
σ2
gt − σ2

g

)
+Gxs

(
σ2
xt − σ2

x

)

G0 = Dgsλgwσ
2
gw +Dxsλxwσ

2
xw

Ggs = ϕdτgdγ

Gxs = Dxλe

III. Real Bond Returns and Risk Premium

We start off the expression for the real stochastic discount factor derived in the first
sub-section above. Let define the following three parameters: sx ≡ − 1

ψ
, sgs ≡ − 1

2 (γ −

1)(γ − 1
ψ

), and sxs ≡ − 1
2 (γ − 1)(γ − 1

ψ
) 1
(κc1−ρ)

2 . Using notation defined above and in the

previous sub-sections, the real stochastic discount factor is:

sdft+1 = µs + sxxt + sgs
(
σ2
gt − σ2

g

)
+ sxs

(
σ2
xt − σ2

x

)

−λησgtηt+1 − λeσxtet+1 − λgwσgwwg,t+1 − λxwσxwwx,t+1

Let pbt(n) = log
(
P bt (n)

)
be the log price and ybt (n) = − 1

n
pbt(n) the yield of an n-period

real bond.
We conjecture that the log prices of real bonds are linear in the state variables: pt(n) =
−B0(n) −Bx(n)xt −Bgs(n)

(
σ2
gt − σ2

g

)
−Bxs

(
σ2
xt − σ2

x

)

The coefficients are initialized at zero and satisfy the following recursions:

B0(n) = B0(n− 1) − µs −
1

2
[λgw +Bgs(n− 1)]

2
σ2
gw

−
1

2

{
[λxw +Bxs(n− 1)]

2
σ2
xw + λ2

ησ
2
g

}

−
1

2
[λe +Bx(n− 1)]

2
σ2
x

Bx(n) = ρBx(n− 1) +
1

ψ

Bgs(n) = νgBgs(n− 1) +
1

2
(γ − 1)(γ −

1

ψ
) −

1

2
γ2

Bxs(n) = νxBxs(n− 1) +
1

2
(γ − 1)

(γ − 1
ψ

)

(κc1 − ρ)2
−

1

2

[
γ − 1

ψ

κc1 − ρ
+Bx(n− 1)

]2

.
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These recursions imply the following limit values:

Bx(∞) =
1

ψ(1 − ρ)

Bgs(∞) =

1
2 (γ − 1)(γ − 1

ψ
) − 1

2γ
2

1 − νg

Bxs(∞) =

1
2 (γ − 1)

(γ− 1
ψ )

(κc1−ρ)
2 − 1

2

[
γ− 1

ψ

κc1−ρ
+Bx(∞)

]2

1 − νx
.

We define B(∞) ≡ [Bx(∞), Bgs(∞), Bxs(∞)]′.
The real bond risk premium on monthly holding period returns is equal to:

rbt+1(n) ≡ nybt (n) − (n− 1)ybt+1(n− 1)

rbt+1(n) − Et

[
rbt+1(n)

]
= −Bx(n− 1)σxtet+1 −Bgs(n− 1)σgwwg,t+1

−Bxs(n− 1)σxwwx,t+1

Et

[
rb,et+1(n)

]
= −Covt

[
rbt+1, sdft+1

]

=
[
F0(n) + Fgs(n)σ2

g + Fxs(n)σ2
x

]
+ Fgs(n)

(
σ2
gt − σ2

g

)
+ Fxs(n)

(
σ2
xt − σ2

x

)

F0(n) = −Bgs(n− 1)λgwσ
2
gw −Bxs(n− 1)λxwσ

2
xw,

Fgs(n) = 0,

Fxs(n) = −Bx(n− 1)λe.

We now define some vectors and matrices to present results in a more compact way.
Let the vector Xt summarize all real state variables: Xt ≡ [xt, σ

2
gt − σ2

g , σ
2
xt − σ2

x]
′.

Let εt+1 denote the corresponding gaussian, i.i.d shocks: εt+1 ≡ [et+1, wg,t+1, wx,t+1]
′.

We define Σt ≡ diag[σ2
xt, σ

2
gw, σ

2
xw]. The law of motion of the state vector Xt is Xt+1 =

ΓXt+Σ
1
2
t εt+1, where Γ is a 3 by 3 diagonal matrix with ρ, ϕzg, and ϕzx on the diagonal.

LetB(n) denote all the n-period real bond parameters: B(n) ≡ [Bx(n), Bgs(n), Bxs(n)]′.
Using this notation, we can rewrite the real bond risk premium as:

Et

[
rb,et+1(n)

]
= −B(n− 1)′ΣtΛ.

IV. Nominal Bond Returns and Risk Premium

We start off the expression for the real stochastic discount factor derived above. We use
a $ superscript to denote nominal variables. The nominal stochastic discount factor is
then:

sdf$
t+1 ≡ sdft+1 − πt+1

= µs − µπ + sxxt + sgs
(
σ2
gt − σ2

g

)
+ sxs

(
σ2
xt − σ2

x

)
− (π̄t − µπ)

− (λη + ϕπg) σgtηt+1 − (λe + ϕπx)σxtet+1 − λgwσgwwg,t+1 − λxwσxwwx,t+1 − σπξt+1

Let p$
t (n) = log

(
P $
t (n)

)
be the log price and y$

t (n) = − 1
n
p$
t (n) the yield of an n-period
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nominal bond.
We conjecture that the log prices of nominal bonds are linear in the state variables:
p$
t (n) = −B$

0(n) −B$
x(n)xt −B$

gs(n)
(
σ2
gt − σ2

g

)
−B$

xs

(
σ2
xt − σ2

x

)
−B$

π(n) (π̄t − µπ)

The coefficients are initialized at zero and satisfy the following recursions:

B$
0(n) = B$

0(n− 1) − µs + µπ −
1

2

{[
σπ +B$

π(n− 1)σz

]2
+
[
λgw +B$

gs(n− 1)
]2
σ2
gw

}

−
1

2

{[
λxw +B$

xs(n− 1)
]2
σ2
xw +

[
ϕπg + λη + ϕzgB

$
π(n− 1)

]2
σ2
g

}

−
1

2

[
ϕπx + λe +B$

x(n− 1) + ϕzxB
$
π(n− 1)

]2
σ2
x

B$
x(n) = ρB$

x(n− 1) + αxB
$
π(n− 1) − sx

B$
gs(n) = νgB

$
gs(n− 1) − sgs −

1

2

[
λη + ϕπg + ϕzgB

$
π(n− 1)

]2

B$
xs(n) = νxB

$
xs(n− 1) − sxs −

1

2

[
λe + ϕπx +B$

x(n− 1) + ϕzxB
$
π(n− 1)

]2

B$
π(n) = απB

$
π(n− 1) + 1.

These recursions imply the following limit values:

B$
x(∞) =

αxB
$
π(∞) − sx
1 − ρ

B$
gs(∞) =

−sgs −
1
2

[
λη + ϕπg + ϕzgB

$
π(∞)

]2

1 − νg

B$
xs(∞) =

−sxs −
1
2

[
λe + ϕπx +B$

x(∞) + ϕzxB
$
π(∞)

]2

1 − νx

B$
π(∞) =

1

1 − απ
.

We define B$(∞) ≡ [B$
x(∞), B$

gs(∞), B$
xs(∞), B$

π(∞)]′.

The nominal bond risk premium on monthly holding period returns is equal to:

rb,$t+1(n) ≡ ny$
t (n) − (n− 1)y$

t+1(n− 1)

rb,$t+1(n) − Et

[
rb,$t+1(n)

]
= −

(
B$
x(n− 1) +B$

π(n− 1)ϕzx

)
σxtet+1 −B$

gs(n− 1)σgwwg,t+1

−B$
xs(n− 1)σxwwx,t+1 −B$

π(n− 1) (ϕzgσgtηt+1 + σzξt+1)

Et

[
rb,$,et+1 (n)

]
= −Covt

[
rb,$t+1, sdf

$
t+1

]

=
[
F $

0 (n) + F $
gs(n)σ2

g + F $
xs(n)σ2

x

]
+ F $

gs(n)
(
σ2
gt − σ2

g

)
+ F $

xs(n)
(
σ2
xt − σ2

x

)

F $
0 (n) = −

{
λgwB

$
gs(n− 1)σ2

gw + λxwB
$
xs(n− 1)σ2

xw + σπσzB
$
π(n− 1)

}

F $
gs(n) = − (λη + ϕπg)ϕzgB

$
π(n− 1)

F $
xs(n) = − (λe + ϕπx)

(
B$
x(n− 1) +B$

π(n− 1)ϕzx

)
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Define the following vector and matrix objects:

Λ̂$ ≡ [λη + ϕπg, λe + ϕπx, λgw, λxw, σπ],

B̂$(n) ≡ [B$
π(n)ϕzg , B

$
x(n) +B$

π(n)ϕzx, B
$
gs(n), B$

xs(n), B$
π(n)σz ],

Σ̂t ≡ diag[σ2
gt, σ

2
xt, σ

2
gw, σ

2
xw, 1],

ε̂t+1 ≡ [ηt+1, et+1, wg,t+1, wx,t+1, ξt+1]

Then we can write the nominal bond risk premium compactly as:

Et

[
rb,$,et+1 (n)

]
= −B̂$′(n− 1)Σ̂tΛ̂

$.

V. Decomposition of the Real SDF

The following proposition shows how to decompose the SDF of the long-run risk model
into a martingale component and the dominant pricing component.

Proposition 1. The stochastic discount factor of the long-run risk model can be decom-
posed into a martingale component and the dominant pricing component:

MT
t+1

MT
t

= β exp
(
−B′

∞
(I − Γ)Xt +B′

∞
Σ

1
2
t εt+1

)
,

MP
t+1

MP
t

= β−1 exp
(
µs + [S′ +B′

∞
(I − Γ)]Xt − (Λ′ +B′

∞
)Σ

1
2
t εt+1 − λησgtηt+1

)
.

To show this, we start from the definition of the dominant pricing component of the
pricing kernel:

MT
t = lim

n→∞

βt+n

P bt (n)
,

Recall that log real bond prices are affine in the state vector:

pbt(n) = −B0(n) −Bx(n)xt −Bgs(n)
(
σ2
gt − σ2

g

)
−Bxs

(
σ2
xt − σ2

x

)

= −B0(n) −B(n)′Xt.

We can then write the dominant pricing component of the SDF as:

MT
t = lim

n→∞

βt+n exp (B0(n) +B(n)′Xt) .

The constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann
(2005):

0 < lim
n→∞

P bt (n)

βn
<∞.

Recall that B0(n) is defined recursively:

B0(n) = B0(n− 1) − µs −
1

2

{
[λgw +Bgs(n− 1)]

2
σ2
gw

}

−
1

2

{
[λxw +Bxs(n− 1)]

2
σ2
xw + λ2

ησ
2
g + [λe +Bx(n− 1)]

2
σ2
x

}
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Because of the affine term structure of the model and the stationarity of the state
vector X , the limit limn→∞B(n) = B(∞) is finite. Taking limits on both sides of the
equation above leads to:

lim
n→∞

B0(n) −B0(n− 1) = −µs −
1

2

{
[λgw +Bgs(∞)]

2
σ2
gw

}

−
1

2

{
[λxw +Bxs(∞)]

2
σ2
xw + λ2

ησ
2
g + [λe +Bx(∞)]

2
σ2
x

}

The limit of B0(n) − B0(n − 1) is finite, so that B0(n) grows at a linear rate in the
limit. We choose the constant β to offset the growth in B0(n) as n becomes very large.
Setting

β = exp

(
µs +

1

2

{
[λgw +Bgs(∞)]

2
σ2
gw + [λxw +Bxs(∞)]

2
σ2
xw + λ2

ησ
2
g + [λe +Bx(∞)]

2
σ2
x

})

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied.
We can now write the dominant pricing component of the SDF as:

MT
t+1

MT
t

= β exp
(
−B′

∞
(I − Γ)Xt +B′

∞
Σ

1
2
t εt+1

)
,

To derive the martingale component of the SDF, let us go back to the SDF itself. Let
S and Λ denote the parameters of the real SDF: S ≡ [sx, sgs, sxs]

′, Λ ≡ [λe, λgw, λxw]′.
Then the real SDF is:

SDFt+1 =
Mt+1

Mt

= exp
(
µs + S′Xt − Λ′Σ

1
2
t εt+1 − λησgtηt+1

)
.

As a result, the martingale component of the SDF is:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1 exp
(
µs + [S′ +B′

∞
(I − Γ)]Xt − (Λ′ +B′

∞
)Σ

1
2
t εt+1 − λησgtηt+1

)
.

We need to verify that the martingale component is a martingale, i.e that Et[M
P
t+1/M

P
t ] =

1.
To do this, recall that the bond parameters evolve as:

Bx(n) = ρBx(n− 1) − sx

Bgs(n) = νgBgs(n− 1) − sgs −
1

2
λ2
η

Bxs(n) = νxBxs(n− 1) − sxs −
1

2
[λe +Bx(n− 1)]2 .

Taking limits as n→ ∞ leads to:

B(∞)′(I − Γ) = −S′ + [0, −
1

2
λ2
η, −

1

2
[λe +Bx(∞)]

2
]′.
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To check the martingale condition, plug the definition of β in the following expression:

Et

[
MP
t+1

MP
t

]
= β−1 exp

(
µs + [S′ +B′

∞
(I − Γ)]Xt +

1

2
(Λ′ +B′

∞
) Σt (Λ +B∞) +

1

2
λ2
ησ

2
gt

)
.

The term in front of Xt is equal to [0, − 1
2λ

2
η, − 1

2 [λe +Bx(∞)]
2
]′. Terms in σ2

gt and

σ2
xt cancel out. We next plug in the expression for β and check that Et[

MP
t+1

MP
t

] = 1.

We now turn to the conditional variances of the log SDF and its dominant pricing and
martingale components, Vart[sdft+1], Vart[sdf

T
t+1] and Vart[sdf

P
t+1].

Vart[sdft+1] = Λ′ΣtΛ + λ2
ησ

2
gt

Vart[sdf
T
t+1] = B′

∞
ΣtB∞

Vart[sdf
P
t+1] = (Λ′ +B′

∞
)Σt(Λ +B∞) + λ2

ησ
2
gt.

The conditional variance ratio Vart[sdf
P
t+1]/Vt[sdft+1] equals

Vt[sdf
P
t+1]

Vt[sdft+1]
= 1 −

−B′

∞
ΣtΛ − 1

2B
′

∞
ΣtB∞

1
2Λ′ΣtΛ + 1

2λ
2
ησ

2
gt

The first term in the numerator corresponds to the bond risk premium (−B′

∞
ΣtΛ).

It includes the Jensen term (1
2B

′

∞
ΣtB∞). As a result, the numerator corresponds to

the bond risk premium without the Jensen term. The denominator corresponds to the
maximum risk premium (also without the Jensen term).

Note that the maximal Sharpe ratio in the model is:

MaxSRt = σt(log SDFt+1)

=
√
λ2
eσ

2
xt + λ2

gwσ
2
gw + λ2

xwσ
2
xw + λ2

ησ
2
gt

=
(
Λ′ΣtΛ + λ2

ησ
2
gt

) 1
2

VI. Decomposition of the Nominal SDF

The following proposition shows how to decompose the nominal SDF of the long-run
risk model into a martingale and a dominant pricing component. To avoid confusion, we
use MN to denote the nominal pricing kernel.

Proposition 2. The stochastic discount factor of the long-run risk model can be decom-
posed into a martingale component and the dominant pricing component:

MNT
t+1

MNT
t

= β̃ exp
(
−B$′

∞
(I − Γ̃)X̃t + B̂$′

∞
Σ̂

1
2
t ε̂t+1

)
,

MNP
t+1

MNP
t

= β̃−1 exp
(
µs − µπ +

[
S̃′ +B$′

∞

(
I − Γ̃

)]
X̃t − (Λ̂$ + B̂$

∞
)′Σ̂

1
2
t ε̂t+1

)
.

To show this, we start from the definition of the dominant pricing component of the
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pricing kernel:

MNT
t = lim

n→∞

β̃t+n

P $b
t (n)

,

Recall that log real bond prices are affine in the state vector:

p$b
t (n) = −B$

0(n) −B$
x(n)xt −B$

gs(n)
(
σ2
gt − σ2

g

)
−B$

xs

(
σ2
xt − σ2

x

)
−B$

π (π̄t − µπ)

= −B$
0(n) −B$(n)′X̃t,

where we define X̃t = [xt, σ
2
gt − σ2

g , σ
2
xt − σ2

x, π̄t − µπ].

We can then write the dominant pricing component of the SDF as:

MNT
t = lim

n→∞

β̃t+n exp
(
B$

0(n) +B$(n)′X̃t

)
.

The constant β̃ is chosen in order to satisfy Assumption 1 in Alvarez and Jermann
(2005):

0 < lim
n→∞

P $b
t (n)

βn
<∞.

Recall that B$
0(n) is defined recursively:

B$
0(n) = B$

0(n− 1) − µs + µπ −
1

2

{[
σπ +B$

π(n− 1)σz

]2
+
[
λgw +B$

gs(n− 1)
]2
σ2
gw

}

−
1

2

{[
λxw +B$

xs(n− 1)
]2
σ2
xw +

[
ϕπg + λη + ϕzgB

$
π(n− 1)

]2
σ2
g

}

−
1

2

[
ϕπx + λe +B$

x(n− 1) + ϕzxB
$
π(n− 1)

]2
σ2
x

Because of the affine term structure of the model and the stationarity of the state
vector X̃, the limit limn→∞B$(n) ≡ B$(∞) is finite. Taking limits on both sides of the
equation above leads to:

lim
n→∞

B$
0(n) −B$

0(n− 1) = −µs + µπ −
1

2

{[
σπ +B$

π(∞)σz

]2
+
[
λgw +B$

gs(∞)
]2
σ2
gw

}

−
1

2

{[
λxw +B$

xs(∞)
]2
σ2
xw +

[
ϕπg + λη + ϕzgB

$
π(∞)

]2
σ2
g

}

−
1

2

[
ϕπx + λe +B$

x(∞) + ϕzxB
$
π(∞)

]2
σ2
x

The limit of B$
0(n) − B$

0(n − 1) is finite, so that B$
0(n) grows at a linear rate in the

limit. We choose the constant β̃ to offset the growth in B$
0(n) as n becomes very large.
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Setting

β̃ = exp

(
µs − µπ +

1

2

{[
σπ +B$

π(∞)σz

]2
+
[
λgw +B$

gs(∞)
]2
σ2
gw

}

+
1

2

{[
λxw +B$

xs(∞)
]2
σ2
xw +

[
ϕπg + λη + ϕzgB

$
π(∞)

]2
σ2
g

}

+
1

2

[
ϕπx + λe +B$

x(∞) + ϕzxB
$
π(∞)

]2
σ2
x

)

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied.

We can now write the dominant pricing component of the SDF as:

MNT
t+1

MNT
t

= β̃ exp
(
−B$′

∞
(I − Γ̃)X̃t +B$

π(∞)ϕzgσgtηt+1 +B$
π(∞)σzξt+1

+[B$
x(∞) +B$

π(∞)ϕzx]σxtet+1 +B$
gs(∞)σgwwg,t+1 +B$

xs(∞)σxwwx,t+1

)

= β̃ exp
(
−B$′

∞
(I − Γ̃)X̃t + B̂$′

∞
Σ̂.5t ε̂t+1

)
,

where

Γ̃ =





ρ 0 0 0
0 νg 0 0
0 0 νx 0
αx 0 0 απ





To derive the martingale component of the SDF, let us go back to the SDF itself. Let
S̃ ≡ [sx, sgs, sxs,−1]′. Then the nominal SDF is:

MNt+1

MNt
= exp

(
µs − µπ + S̃′X̃t − (λη + ϕπg)σgtηt+1

− (λe + ϕπx)σxtet+1 − λgwσgwwg,t+1 − λxwσxwwx,t+1 − σπξt+1)

= exp
(
µs − µπ + S̃′X̃t − Λ̂$′Σ.5t ε̂t+1

)

As a result, the martingale component of the SDF is:

MNP
t+1

MNP
t

=
MNt+1

MNt

(
MNT

t+1

MNT
t

)−1

= β̃−1 exp
(
µs − µπ +

[
S̃′ +B$′

∞

(
I − Γ̃

)]
X̃t − [λη + ϕπg +B$

π(∞)ϕzg]σgtηt+1

−[λe + ϕπx + B$
x(∞) +B$

π(∞)ϕzx]σxtet+1

−[λgw +B$
gs(∞)]σgwwg,t+1 − [λxw +B$

xs(∞)]σxwwx,t+1 − [σπ +B$
π(∞)σz ]ξt+1

)

= β̃−1 exp
(
µs − µπ +

[
S̃′ +B$′

∞

(
I − Γ̃

)]
X̃t − (Λ̂$ + B̂$

∞
)′Σ̂.5t ε̂t+1

)
.

We need to verify that the martingale component is a martingale, i.e that Et[M
P
t+1/M

P
t ] =
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1. To do so, recall that the bond parameters evolve as:

B$
x(n) = ρB$

x(n− 1) + αxB
$
π(n− 1) − sx

B$
gs(n) = νgB

$
gs(n− 1) − sgs −

1

2

[
λη + ϕπg + ϕzgB

$
π(n− 1)

]2

B$
xs(n) = νxB

$
xs(n− 1) − sxs −

1

2

[
λe + ϕπx +B$

x(n− 1) + ϕzxB
$
π(n− 1)

]2

B$
π(n) = απB

$
π(n− 1) + 1.

Taking limits as n→ ∞ leads to:

B(∞)$′(I−Γ̃)+S̃′ =

[
0, −

1

2

[
λη + ϕπg + ϕzgB

$
π(∞)

]2
, −

1

2

[
λe + ϕπx +B$

x(∞) + ϕzxB
$
π(∞)

]2
, 0

]
′

.

To check the martingale condition, we plug in the definition of β̃ in the expression for
the martingale component of the nominal SDF, and use the above equation forB(∞)$′(I−

Γ̃) + S̃′. After some algebra, we indeed find that

Et

[
MNP

t+1

MNP
t

]
= 1.

We now turn to the conditional variances of the log SDF and its dominant pricing and

martingale components, Vart[sdf
$
t+1], Vart[sdf

$,T
t+1] and Vart[sdf

$,P
t+1 ].

Vart[sdf
$
t+1] = (λη + ϕπg)

2
σ2
gt + (λe + ϕπx)

2
σ2
xt + λ2

gwσ
2
gw + λ2

xwσ
2
xw + σ2

π

= Λ̂$′
∞

Σ̂tΛ̂
$
∞

Vart[sdf
$,T
t+1] = B$

π(∞)2ϕ2
zgσ

2
gt + [B$

x(∞) +B$
π(∞)ϕzg ]

2σ2
xt

+B$
gs(∞)2σ2

gw +B$
xs(∞)2σ2

xw +B$
π(∞)2σ2

z

= B̂$′
∞

Σ̂tB̂
$
∞

Vart[sdf
$,P
t+1 ] = [λη + ϕπg +B$

π(∞)ϕzg]
2σ2
gt + [λe + ϕπx +B$

x(∞) +B$
π(∞)ϕzx]

2σ2
xt

+[λgw +B$
gs(∞)]2σ2

gw + [λxw +B$
xs(∞)]2σ2

xw + [σπ +B$
π(∞)σz ]

2

= (Λ̂$ + B̂$
∞

)′Σ̂t(Λ̂
$ + B̂$

∞
)

The conditional variance ratio Vart[sdf
P
t+1]/Vt[sdft+1] equals

Vt[sdf
$,P
t+1 ]

Vt[sdf
$
t+1]

= 1 −
−B̂$′

∞
Σ̂tΛ̂

$ − 1
2 B̂

$′
∞

Σ̂tB̂
$
∞

1
2 Λ̂$′

∞
Σ̂tΛ̂$

∞

The first term in the numerator corresponds to the nominal bond risk premium of an
infinite horizon bond, which includes a Jensen term. The second term in the numera-
tor is that Jensen term. As a result, the numerator corresponds to the nominal bond
risk premium without the Jensen term. The denominator corresponds to the maximum
nominal risk premium, also without the Jensen term.
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VII. Calibration

Table 1 reports the model parameter values we use; they are the ones proposed in
Bansal and Shaliastovich (2007). Table 2 reports the model loadings on state variables.

The model is simulated for 60,000 months and aggregated up to quarterly frequency
for comparison with our quarterly data. In the simulation, negative values for σ2

g,t+1 and

σ2
x,t+1 are replaced by very small positive values in simulation.
Table 4 reports the mean, standard deviation and autocorrelation of the stochastic dis-

count factor (SDF ), its martingale (SDFP ) and dominant pricing (SDFT ) components,
the conditional variance ratio ω, the maximum risk premium without Jensen adjustment
(Max RP ) and the risk premium of an infinite maturity bond without Jensen adjustment
(BRP (∞)). Table 3 reports the mean and standard deviations of the real and nominal
yields and bond risk premia in the model and compare them to the same moments in
the actual nominal data. Table 5 reports moments of quarterly inflation in the model
and in the data. Quarterly inflation is obtained as the sum of three consecutive monthly
inflation rates.

The Bansal and Shaliastovich (2007) calibration generates an annual consumption
growth rate of 2.12 percent with a standard deviation of 3.52 percent. It generates
an annual inflation rate of 3.52 percent with a standard deviation of 2.49 percent.

VIII. Robustness Checks

As robustness checks, we considered both changes on the real and on the nominal side
of the economy.

On the real side, we conduct two experiments. First, we find that a slight decrease in
the persistence of the long-run component in consumption growth ρx could decrease the
long-horizon consumption variance ratios and the real variance ratio significantly, and
increase the long term real yield from negative to positive values. As a result, the model
would need to rely less on a large inflation risk premium in order to match the nominal
yield curve, thus lowering the variation of MT

t in the nominal pricing kernel. However, if
all the other parameters are maintained at their previous values, the model would then
imply too much volatility of the wealth-consumption ratio and an equity risk premium
that is much too low. Second, we shut down the heteroscedasticity in consumption
growth by calibrating σxw and σgw to very low values. We keep all the other parameters
at their previous values. In this case, the real and nominal conditional variance ratios
are respectively 1.20 and 0.63 (see Table 6). They are closer to 1, but equity and bond
risk premia are constant.

On the nominal side, we first check the robustness of our results to a slightly different
calibration of the inflation dynamics. First, we vary each inflation parameter indepen-
dently in either direction. We report in Table 7 the mean maximum risk premium (MRP ),
the mean bond risk premium BRPJ (including the Jensen term) and the mean variance
ratio ω for different values of the inflation parameters. We simulate the model for a low
and a high value of each parameter (25 percent above and below the benchmark value
reported in Table 1). The only exception is the parameter απ , which we cannot increase
by 25 percent without running into stationarity issues. The high value is a 10 percent
increase for that parameter. We find that ωt only changes noticeably with αx and απ .

To further investigate the sensitivity to these two parameters, Figure 1 in the appendix
plots ωt (left axis) and the five-year nominal bond risk premium (right axis) against αx
(horizontal axis). As we vary αx away from its benchmark value of -0.35, we simultane-
ously vary απ to match the observed persistence of quarterly inflation. We also choose
µπ and σπ to keep the mean and volatility of inflation at their benchmark values. The
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figure shows that ωt is essentially unchanged over a wide range of values for αx and never
comes close to the desired value of one.

Next, we consider a calibration that matches the observed mean, variance, and per-
sistence of inflation, the 5-1-year yield spread, and the persistence of the 5-year nominal
bond risk premium. This calibration delivers a nominal variance ratio ωt that is much
too high.

Finally, we ask whether we can find inflation parameters that deliver a nominal variance
ratio of 1. We find that we can, while matching the mean inflation, the slope of the
nominal term structure, and the persistence of the nominal BRP, but inflation ends up
being 2.5 times too volatile and not persistent enough.
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Figure 1. Variance Ratio and Nominal Bond Risk Premium: Sensitivity Analysis

The figure plots the conditional variance ratio ωt (against the left axis) and the five-year nominal bond risk premium (against
the right axis) for different values of the parameter αx (on the horizontal axis). As we vary αx away from its benchmark value

of -0.35, we simultaneously vary απ to match the observed persistence of quarterly inflation. We also choose µπ and σπ to
keep the mean and volatility of inflation at their benchmark values.

IX. Empirical Variance Ratios

Alvarez and Jermann (2005) show that – assuming that the processXt satisfies the same
regularity conditions as above and thatXt+1/Xt is strictly stationary and limk→∞

1
k
Var(Et+k[Xt]) =

0 – then

Var

(
XP
t+1

XP
t

)
= lim

k→∞

1

k
Var

(
Xt+k

Xt

)
,

Note that the entropy measure used by Alvarez and Jermann (2005) collapses to the half-
variance since all variables are conditionally normal. This result implies that long-horizon
variance ratios are informative about the variance of the martingale component. We now
turn to the empirical variance ratios of the two components of the SDF, e.g consumption
growth and the wealth consumption ratio.

If changes in log consumption or changes in the log wealth-consumption ratio are i.i.d,
then the variance of long-horizon changes in each variable should grow with the horizon.

We compute variance ratios at horizon h as V R(h) = Var[
∑h

j=0 ∆xt+j ]/[hVar(∆xt)],
for x = c and x = wc. We simulate the model at monthly frequency. Table 1 in the
appendix reports the model parameters. We start from the parameter values in Bansal
and Shaliastovich (2007).
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Figure 2 reports these variance ratios for consumption growth, the change in the wealth-
consumption ratio, and inflation. The left panel corresponds to actual data; the right
panel uses simulated series. Let us first focus on actual data. The variance ratio of
the wealth-consumption ratio clearly decreases with the horizon. It is below 0.6 within
five years. Consumption growth exhibits a very different pattern: its variance ratio
first increases for horizons up to 5 years; it then decreases, but even after 15 years, the
variance ratio is still above one. As a result, there is strong evidence of persistence and
mean-reversion in the wealth-consumption ratio, but not in consumption growth.

Let us now turn to simulated data. The variance ratios of the wealth-consumption
ratio are in line with the data. They decrease linearly with the horizon, from 1 to
approximately 0.5 at the 30-year horizon. In the data, the variance ratio decreases from
1 to 0.6. Consumption growth, however, exhibits a very different pattern. At long
horizons, it displays more persistence in the model than in the data. The bottom panel
shows that the inflation persistence is similar in model and data, with a slight divergence
maybe at longer horizons.
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Figure 2. Variance Ratios for Consumption Growth, the Change in the Log Wealth Consump-

tion Ratio and Inflation in the Data and in the Model.

The variance ratio of ∆xt is equal to V R(h) = V ar[
∑h
j=0 ∆xt+j ]/[hV ar(∆xt)]. The left panel corresponds to actual data.

The right panel corresponds to simulated data. Data are quarterly. Actual data come from Lustig et al. (2009). The sample is
1952:II-2008:IV.
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Table 1—Model Parameter Values

Parameter BS(2007)

Preference Parameters:

Subjective discount factor δ 0.9987

Intertemporal elasticity of substitution ψ 1.5

Risk aversion coefficient γ 8

Consumption Growth Parameters:

Mean of consumption growth µg 0.0016

Long-run risk persistence ρ 0.991

News volatility level σg 0.004

News volatility persistence νg 0.85

News volatility of volatility σgw 1.15e − 6

Long run-risk volatility level σx 0.004σg

Long run-risk volatility persistence νx 0.996

Long run-risk volatility of volatility σxw 0.062σgw

Dividend Growth Parameters:

Mean of dividend growth µd 0.0015

Dividend leverage φx 1.5

Dividend loading on news volatility φgs 0

Dividend loading on long-run risk volatility φxs 0

Volatility loading of dividend growth ϕd 6.0

Correlation of consumption and dividend news τgd 0.1

Inflation Parameters:

Mean of inflation rate µπ 0.0032

Inflation leverage on news ϕπg 0

Inflation leverage on long-run news ϕπx −2.0

Inflation shock volatility σπ 0.0035

Expected inflation AR coefficient απ 0.83

Expected inflation loading on long-run risk αx −0.35

Expected inflation leverage on news ϕzg 0

Expected inflation leverage on long-run news ϕzx −1.0

Expected inflation shock volatility σz 4.0e − 6

This table reports the calibrated parameters values for our simulation. We take them from
Table IV and Table C.I in Bansal and Shaliastovich (2007).
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Table 2—Model Loadings on State Variables

constant x σ2
gt − σ2

g σ2
xt − σ2

x

wc µwc Wx =
1− 1

ψ
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Wgs =

θ
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1
ψ
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1
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6.4 31 −7.7 −1.8 × 106

pd µpd Dx =
φx−

1
ψ

κ1−ρ
Dgs =

1
2 [γ2

−2γϕdτdg+ϕ2
d]
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1
2





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ψ
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1
+

1
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]2
+
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2
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


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+
1
2
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ψ

)
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]

κ1−νg
+ φxs

κ1−νx

5.6 66 1.3 × 102
−4.3 × 106

ERP (1 − θ)WgsDgsσ
2
gw Ggs = γϕdτgd Gxs = (1 − θ)WxDx

+(1 − θ)WxsDxsσ
2
xw

+ϕdτgdγσ
2
g

+Dx (θ − 1)Wxσ
2
x

0.003 0 4.8 4.6 × 104

BRP (θ − 1)WgsBgs(n− 1)σ2
gw Fx(n) = 0 Fgs(n) = 0 Fxs(n) = (θ − 1)WxBx(n− 1)

(Real) + (θ − 1)WxsBxs(n− 1)σ2
xw

+ (θ − 1)WxBx(n− 1)σ2
x

−0.0014 0 0 −2.1 × 104

BRP (θ − 1)WgsB
$
gs(n− 1)σ2

gw F $
x (n) = 0 F $

gs(n) = − (γ + ϕπg) F $
xs(n) = [(θ − 1)Wx − ϕπx]

(Nominal) + (θ − 1)WxsB
$
xs(n− 1)σ2

xw ×ϕzgB
$
π(n− 1) ×

(
B$

x(n− 1) +B$
π(n− 1)ϕzx

)

+σπσzB
$
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π(n− 1)σ2

g

+((θ − 1)Wx − ϕπx)
(
B$

x(n− 1) +B$
π(n− 1)ϕzx

)
σ2

x

0.0015 0 −0 4.3 × 104

This table reports the model loadings on a constant and the state variables. We consider the log wealth-consumption ratio (wc), the log
price-dividend ratio (pd), the equity risk premium (ERP ), the real and nominal bond risk premia (BRP ) at the n-year horizon.
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Table 3—Real and Nominal Yield Curves

Maturity 1 2 3 4 5 30 200

Nominal Bonds - Data

Mean Y ields 5.33 5.52 5.69 5.80 5.89

Std 2.81 2.77 2.70 2.69 2.65

Nominal Bonds - Model

Mean Y ields 5.19 5.46 5.75 6.06 6.38 12.82 20.02

Std 2.92 2.79 2.65 2.53 2.43 1.60 0.36

Mean BRP 0.33 0.93 1.59 2.27 2.97 16.81 24.43

Std 0.07 0.18 0.28 0.38 0.46 1.13 1.18

Real Bonds - Model

Mean Y ields 1.26 1.05 0.83 0.61 0.39 −4.71 −13.63

Std 1.39 1.35 1.32 1.30 1.29 1.10 0.25

Mean BRP −0.39 −0.83 −1.28 −1.73 −2.19 −11.14 −16.21

Std 0.05 0.10 0.15 0.19 0.23 0.52 0.55

The top panel reports the mean and standard deviation of nominal bond yields in the Fama-Bliss data. The data are for 1952
until 2008, and only bond yields of maturities one through five years are available. The maturity is in years. The yields and

returns are annualized and reported in percentage points. The middle panel does the same for nominal bond yields for a 60,000
month simulation of the LRR model. It also reports the mean and standard deviation of the nominal bond risk premia. The

bottom panel reports the same model-implied moments for real bonds.

Table 4—Conditional Variance Ratio

Mean Std AR(1)

Nominal SDF

SDF $ 0.99 0.23 −0.01

SDF $,P 1.00 0.14 −0.01

SDF $,T 0.98 0.10 −0.01

ω$
t 0.37 0.06 0.98

Max RP 30.62 2.52 0.99

BRP (∞) 18.72 1.04 0.99

Real SDF

SDF 1.00 0.23 −0.01

SDFP 1.00 0.30 −0.01

SDF T 1.02 0.07 −0.01

ωt 1.65 0.11 0.98

Max RP 30.69 2.54 0.99

BRP (∞) −19.05 0.58 0.99
This table reports the mean, standard deviation and autocorrelation of the stochastic discount factor (SDF ), its martingale

(SDFP ) and dominant pricing (SDFT ) components, the conditional variance ratio ω, the maximum risk premium without
Jensen adjustment (Max RP ) and the risk premium of an infinite maturity bond without Jensen adjustment (BRP (∞)). The

table reports the autocorrelation of each monthly variable in logs. The top (bottom) panel focuses on the nominal (real)
stochastic discount factor. The numbers are computed from a 60,000 month simulation.
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Table 5—Inflation: Model vs Data

Data Model

Mean Std AR(1) Mean Std AR(1)

πt 0.85 0.62 0.86 0.88 1.25 0.76

This table reports the mean, standard deviation and autocorrelation of the quarterly inflation rate. The left panel corresponds
to actual data, from Lustig, Van Nieuwerburgh and Verdelhan (2009). The right panel corresponds to simulated data, from the

model. The mean and standard deviation are in percentage.

Table 6—Conditional Variance Ratio: No Heteroscedasticity

Mean Std AR(1)

Nominal SDF

SDF $ 1.00 0.12 −0.01

SDF $,P 1.00 0.13 −0.01

SDF $,T 1.00 0.01 −0.01

ω$
t 1.20 0.00 1.00

Max RP 8.74 0.00 1.00

BRP (∞) −1.74 0.00 1.00

Real SDF

SDF 0.99 0.12 −0.01

SDFP 1.00 0.10 −0.01

SDF T 0.99 0.03 −0.01

ωt 0.63 0.00 1.00

Max RP 8.70 0.00 1.00

BRP (∞) 3.18 0.00 1.00
This table reports the mean, standard deviation and autocorrelation of the stochastic discount factor (SDF ), its martingale

(SDFP ) and dominant pricing (SDFT ) components, the conditional variance ratio ω, the maximum risk premium without
Jensen adjustment (Max RP ) and the risk premium of an infinite maturity bond without Jensen adjustment (BRP (∞)). The

table reports the autocorrelation of each monthly variable in logs. The top (bottom) panel focuses on the nominal (real)
stochastic discount factor. The numbers are computed from a 60,000 month simulation.
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Table 7—Sensitivity to Inflation Specification

Max RP BRP (∞) ω

Low High Low High Low High

µp 30.62 30.62 18.72 18.72 0.37 0.37

ϕπg 30.62 30.62 18.72 18.72 0.37 0.37

ϕπx 30.64 30.60 18.70 18.74 0.37 0.37

σπ 30.62 30.62 18.72 18.72 0.37 0.37

απ 30.62 30.62 5.61 26.42 0.81 0.10

αx 30.62 30.62 14.54 21.84 0.51 0.27

ϕzg 30.62 30.62 18.72 18.72 0.37 0.37

ϕzx 30.62 30.62 18.63 18.81 0.38 0.37

σz 30.62 30.62 18.72 18.72 0.37 0.37

This table reports the mean maximum risk premium (Max RP) , the mean bond risk premium BRP(∞) (including the Jensen
term) and the mean variance ratio ω. We vary one parameter at a time, and simulate the model for a low and a high value of
each parameter (25 percent above and below the benchmark value reported in the first column of Table 1). The only exception
is the parameter απ , which we cannot increase by 25 percent without running into stationarity issues. The high value is a 10

percent increase for that parameter.


