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The objective of this appendix is to present and derive the theoretical propositions of the paper

regarding the model-implied prices of carry trade returns, interest rates, currency options, and

risk-reversals. The appendix is self-contained, and thus reproduces some material presented in the

paper. It is organized as follows. Section 1 recalls the laws of motion of the SDFs in both countries

and the key model assumptions. Section 2 presents the Black and Scholes (1973) formula applied

to currency options. Section 3 restates the discrete-time Girsanov’s lemma in order to prove a key

lemma that will be used for the derivations of all the proofs. Section 4 presents the propositions

and their proofs. Section 5 reports simulation results. Finally, Section 6 presents our data set and

reports additional estimates and pricing errors.
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1 Model Assumptions

Let us first summarize the notation used in the main text, starting with the two SDFs.

Pricing Kernels In the home country, the log SDF evolves as:

logMt,t+τ = −gτ + ε
√
τ −

1

2
var(ε)τ

+

{
0 if there is no disaster at time t + τ

log (J) if there is a disaster at time t + τ

}
.

Likewise, the log of SDF in the foreign country evolves as:

logM?
t,t+τ = −g?τ + ε?

√
τ −

1

2
var(ε∗)τ

+

{
0 if there is no disaster at time t + τ

log (J?) if there is a disaster at time t + τ

}
.

The parameters g and g∗ are drift parameters which are constant between t and t+τ . The

random variables ε and ε? are jointly normally distributed with mean 0, variance σ and σ∗ and

correlation ρ. The probability of a disaster between t and t + τ is given by pτ . J and J∗, which

measure the magnitudes of the disaster, are independent of the process driving the realization of a

disaster. The variables ε and ε? are independent of random variables J and J?, and of the process

driving the realization of a disaster.

Exchange Rates In a complete markets economy, the change in the nominal exchange rate is

given by the ratio of the SDFs:
St+τ
St

=
M?
t,t+τ

Mt,t+τ

.

Disaster Uncertainty We introduce within-month uncertainty about the realization of J and J?

by considering that home and foreign disaster size within a month are two-value random variable

define by:

J (η) = J̄ · (1 + ησJ) , J∗ (η∗) = J̄∗ · (1 + η∗σJ∗) (1)

where η, η∗ are i.i.d. variables equal to 1 and −1 with equal probability.

Risk Exposure We define: J̃ = pJ̄
1−pτ and J̃∗ = pJ̄∗

1−pτ . The disaster exposure and the Gaussian

exposure as defined by:
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ΠD = pE(J − J∗) = J̃ − J̃∗ +O(τ),

ΠG = cov(ε, ε− ε∗) = σ2 − σσ∗ρ.

Conditional Moments Conditional on no disaster, the expected SDFs are:

ENDMt,t+τ = e−gτ ,

ENDM?
t,t+τ = e−g

∗τ .

where superscript ND indicates that expectations are taken conditional on no disaster.

The expected ratio of the SDFs conditional on no disaster is:

END
M∗

M
= ENDe

(
−g∗τ+ε∗

√
τ− 1

2
σ∗2τ
)
−
(
−gτ+ε

√
τ− 1

2
σ2τ

)
= e

(
g−g∗+ 1

2
(σ2−σ∗2)

)
τENDe(ε∗−ε)

√
τ

= e

(
g−g∗+ 1

2
(σ2−σ∗2)

)
τe

1
2

(
σ2+σ∗2−2ρσσ∗

)
τ

= e

(
g−g∗+ΠG

)
τ

where we used the definition of the Gaussian risk exposure (ΠG = σ2 − σσ∗ρ).

We denote by σ2
h the volatility of the change in exchange rate conditional on no disaster:

varND(logMt,t+τ − logM?
t,t+τ) = var(ε− ε∗)τ = σ2

hτ.

In all that follows, we drop the time subscripts for notational simplicity.

2 The Black and Scholes (1973) formula

V PBS(S,K, σ, r, r ?, τ) and V CBS(S,K, σ, r, r ?, τ) denote the Black and Scholes prices for a put and a

call, respectively, when the spot exchange rate is S, the strike is K, the exchange rate volatility is

σ, the time to maturity is τ , the home interest rate is r , and the foreign interest rate is r ?. The
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Black and Scholes prices of a call and a put are given by:

V CBS(S,K, σ, r, r ?, τ) = Se−r
?τN(d+)−Ke−rτN(d−), (2)

V PBS(S,K, σ, r, r ?, τ) = Ke−rτN(−d−)− Se−r?τN(−d+), (3)

d+ =
log(S/K) + (r − r ? + σ2/2)τ

σ
√
τ

, (4)

d− = d+ − σ
√
τ, (5)

where N is the cumulative standard normal distribution function. The Black–Scholes formula has a

simple scaling property with respect to the time to maturity τ and the interest rates r and r ?:

V PBS(S,K, σ, r, r ?, τ) = V PBS(Se−r
?τ , Ke−rτ , σ

√
τ, 0, 0, 1).

For notational convenience, we will omit the arguments 0 and 1 and simply write the value of a

generic put as V PBS(S,K, σ).

Options are quoted in terms of their implied volatility, the volatility parameter which has to be

plugged into the Black–Scholes prices in order to retrieve the market option prices. In the case of

currency options quotes, it is common to refer to the spot delta of a Black–Scholes option instead

of its strike. The spot delta of an option is its first derivative with respect to the underlying asset

S. We will refer to a spot delta as a delta for simplicity. In the case of Black–Scholes prices, the

delta is given by:

∆C
BS(S,K, σ, r, r ?, τ) = +e−r

∗τN(+d+),

∆P
BS(S,K, σ, r, r ?, τ) = −e−r∗τN(−d−)

Let (∆C,∆P ) be the values for the Black–Scholes call delta and a put delta respectively. Let

(σ∆C , σ∆P ) be the corresponding implied volatility. The strikes (K∆C , K∆P ) can be obtained by

inverting the formula for the Black–Scholes delta:

K∆C = Se−N
−1
(

+er
∗τ∆P

)
σ

∆C
√
τ+

(
r−r∗+1/2σ2

∆C

)
τ (6)

K∆P = Se+N−1
(
−er∗τ∆P

)
σ

∆P
√
τ+

(
r−r∗+1/2σ2

∆P

)
τ (7)
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3 Some Useful Lemmas

We start with a well-known Lemma, whose proof we provide for completeness.

Lemma 1. (Discrete-time Girsanov’s lemma) Suppose that (x, y) are jointly Gaussian distributed random

variables under probability measure P . Consider the measureQ such that dQ/dP = exp (x − E [x ]− var (x) /2).

Then, under Q, y is Gaussian, with distribution

y ∼Q N (E [y ] + cov (x, y) , var (y)) , (8)

where E [y ] , cov (x, y) , var (y) are calculated under P .

Proof. We calculate the characteristic function of y . For a purely imaginary number k , EQ
[
eky
]

is given by

E
[
ex−E[x ]−σ2

x/2eky
]

= exp

(
kE [y ] +

k2σ2
y

2
+ kcov (x, y)

)
= exp

(
k (E [y ] + cov (x, y)) +

k2σ2
y

2

)
.

That is indeed the characteristic function of distribution (8).

Lemma 2. For lnX, ln Y jointly Gaussian distributed,

E
[
(X − Y )+

]
= V CBS

(
E [X] , E [Y ] , var (logX − log Y )1/2

)
= V PBS

(
E [Y ] , E [X] , var (logX − log Y )1/2

)
,

where V CBS (S0, K, σ) and V PBS (S0, K, σ) are the Black and Scholes call and put prices with home

and foreign interest rates equal to 0, and horizon equal to 1.

Proof. Let us write X = E [X] ex−var(x)/2 and Y = E [Y ] ey−var(y)/2, where (x, y) are jointly Gaus-

sian distributed with mean 0 and respective variance var (logX) and var (log Y ) under probability

measure P. We define the probability measure Q by: dQ/dP = exp (x − E [x ]− var (x) /2) =

exp (x − var (x) /2) (as E [x ] = 0). Using Lemma 1:

E
[
(X − Y )+

]
= E

[(
E [X] ex−var(x)/2 − E [Y ] ey−var(y)/2

)+
]

= E
[
ex−var(x)/2 (E [X]− E [Y ] ez)+

]
= EQ

[
(E [X]− E [Y ] ez)+

]
,

where z = y − var (y) /2 − x + var (x) /2. Applying Lemma 1 implies that the variable z is

distributed as: z ∼Q N
(
EQ [z ] , var (y − x)

)
, where:

EQ [z ] = −var (y) /2 + var (x) /2 + cov (x, y − x) ,

= −var (y − x) /2,
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As a result, the variable z is distributed as:

z ∼Q N (−var (y − x) /2, var (y − x)) .

Let us define the variable u as:

u = (z − EQ(z))/var(y − x)1/2.

Thus the variable u is gaussian, with mean zero and variance 1: u ∼Q N (0, 1). We can define z

as a function of u:

u = (z + var(y − x)/2)/var 1/2(y − x)

z = u.var 1/2(y − x)− var(y − x)/2

ez = eu.var
1/2(y−x)−var(y−x)/2

Therefore,

E
[
(X − Y )+

]
= EQ

[(
E [X]− E [Y ] eu.var

1/2(y−x)−var(y−x)/2
)+
]

The Black and Scholes call and put prices are also given by:

V PBS(S,K, σ) = EQ
[(
K − Seσu−σ2/2

)+
]
,

V CBS(S,K, σ) = EQ
[(
Seσu−σ

2/2 −K
)+
]
,

where u is a normal variable with mean 0 and variance 1 under probability measure Q. Using the

previous result then implies:

E
[
(X − Y )+

]
= V PBS

(
E [Y ] , E [X] , var (logX − log Y )1/2

)
.

A similar reasoning implies that:

E
[
(X − Y )+

]
= V CBS

(
E [X] , E [Y ] , var (logX − log Y )1/2

)
.
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Lemma 3. For logX, log Y, logZ jointly Gaussian distributed,

cov
(
Z, (X − Y )+

)
= V CBS

(
E [ZX] , E [ZY ] , var (logX − log Y )1/2

)
− E [Z] V CBS

(
E [X] , E [Y ] , var (logX − log Y )1/2

)
= V PBS

(
E [ZY ] , E [ZX] , var (logX − log Y )1/2

)
− E [Z] V PBS

(
E [Y ] , E [X] , var (logX − log Y )1/2

)
.

Proof. The proof is a straightforward application of the previous Lemma.

4 Propositions and Proofs.

4.1 Interest rates and currency excess returns

Let us now turn to carry trade returns. Consider the case of an investment in foreign currency

funded by borrowing in domestic currency. The symmetric case — borrowing in foreign currency

to invest in domestic currency — would yield the opposite of the result. The trade has return X in

domestic currency, and does not require any investment:

X = er
∗τ St+τ
St
− erτ

Let Xe be the annualized expected value of the carry trade return conditional on no disaster:

Xe =
ENDX

τ

Proposition 1. Recall that J̃ = pJ̄
1−pτ and J̃∗ = pJ̄∗

1−pτ . In the limit of small time intervals (τ → 0),

the interest rate r in the home country is approximately equal to:

r = g − pE
(
J − 1

)
+O(τ)

In the limit of small time intervals (τ → 0), the carry trade expected returns (conditional on no

disasters) are approximately equal to:

Xe = ΠD + ΠG +O(τ)
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where:

ΠD = pE(J − J∗) = J̃ − J̃∗ +O(τ)

ΠG = cov(ε, ε− ε∗)

Proof. Let us first focus on interest rates. The home interest rate r is determined by the Euler

equation:

E
[
Merτ

]
= 1

The Euler equation implies:

e−rτ = E
[
M
]

= e−gτ
(

1 + pτE
(
J − 1

))
(9)

Taking logs gives:

rτ = gτ − log
(

1 + pτE
(
J − 1

))
A Taylor expansion yields:

log
(

1 + pτE
(
J − 1

))
= pτE

(
J − 1

)
+O(τ2)

The interest rate is thus:

r = g − pE
(
J − 1

)
+O(τ)

Now let’s turn to the carry trade excess return. The Euler equation for the unhedged carry

trade excess return X is:

E [MX] = 0,

Recall that the change in the nominal exchange rate is given by the ratio of the SDFs:

St+τ
St

=
M?

M

Therefore, the currency excess return is equal to:
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X = er
∗τM

∗

M
− erτ

The Euler equation can be decomposed in two terms, corresponding to the expected gaussian

and disaster states:

E [MX] = (1− pτ)END [MX] + pτED [MX] ,

= (1− pτ)END[M]END[X] + (1− pτ)covND(M,X)

+ pτED [MX] ,

= 0,

where superscripts ND and D denote moments conditional on no disasters and disasters respec-

tively. The expected currency excess returns conditional on no disasters is thus:

END[X] =
−pτED[MX]− (1− pτ)covND(M,X)

(1− pτ)END[M]
,

= −
p

(1− pτ)
egττED[MX]− egτcovND(M,X). (10)

The first term in Equation (10) yields:

−
p

(1− pτ)
τegτED[MX] =

p

(1− pτ)
τegτ

(
E[J]e(r−g)τ − E[J∗]e(r∗−g∗)τ

)
which leads to:

−
p

(1− pτ)
τegτED[MX] = ΠDτ +O(τ2)

The second term in Equation (10) is given by:

−egτcovND(M,X) = −egτer∗τcovND(M,
M∗

M
),

The covariance between the home SDF and the ratio of SDFs is:
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covND
(
M,

M∗

M

)
= ENDM∗ − END

M∗

M
ENDM

= e−g
∗τ − e−g∗τeΠGτ

= e−g
∗τ
(
− ΠGτ +O(τ2)

)
The second term in Equation (10) is finally:

−egτcovND(M,X) = e(g−g∗+r∗)τ
(

ΠGτ +O(τ2)
)

= ΠGτ +O(τ2)

Collecting terms of Equation (10), the approximation at the order τ of the expected return,

conditional on no-disaster is given by:

Xe =
END[X]

τ
= ΠD + ΠG +O(τ)

Substituting in the definition of the Gaussian and the disaster risk exposure gives therefore:

Xe = pE(J − J∗) + cov(ε, ε− ε∗) +O(τ)

4.2 Option prices

In all that follows, options prices and strikes are normalized by the spot. The main results are

derived in the case of a put option but can easily be generalized to a call option.

Recall that J̃ = pJ̄
1−pτ and J̃∗ = pJ̄∗

1−pτ . We introduce within-month uncertainty about the realiza-

tion of J and J? by considering that home and foreign disaster size within a month are two-value

random variable define by:

J (η) = J̄ · (1 + ησJ) , J∗ (η∗) = J̄∗ · (1 + η∗σJ∗) (11)

where η, η∗ are i.i.d. variables equal to 1 and −1 with equal probability. The price of a put

option is immediate to derive:
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Proposition 2. In a model in which disaster sizes vary according to the expressions in (11) , the

put option price is given by

Pt,t+τ(K, J̃, J̃∗, σJ, σJ∗, σh) = E

[
PNDt,t+τ

(
K, J̃ · (1 + ησJ) , J̃∗ (1 + η∗σJ∗) , σh

)
+ PDt,t+τ

(
K, J̃ · (1 + ησJ) , J̃∗ (1 + η∗σJ∗) , σh

)]
where

PND(K) = V PBS

( e−r
∗τ

1 + J̃∗τ
,K

e−rτ

1 + J̃τ
, σh
√
τ
)

PD(K) = τV PBS

( e−r∗τ J̃∗
1 + J̃∗τ

,K
e−rτ J̃

1 + J̃τ
, σh
√
τ
)

where the strike is K, the exchange rate volatility conditional on no disaster is σh, the time to

maturity is τ , the home interest rate is r , the foreign interest rate is r ?, and the expectation is

taken over η, η∗, which are i.i.d. Bernoulli variables with values in {−1, 1}.

Proof. First let’s assume that the disaster sizes (J, J∗) are constant between t and t + τ . Using

the model expression for the exchange rate movement, we obtain the following put option price:

P (K) = E
(
KM −M∗

)+

Decomposing the expectation into its non-disaster and disaster components gives:

P (K) = (1− pτ)END
(
KM −M∗

)+

+ pτED
(
KM −M∗

)+

The non-disaster part can be expressed in terms of Black–Scholes formula using Lemma (2):

PND(K) = (1− pτ)END
(
KM −M∗

)+

= (1− pτ)V PBS

(
e−g

∗τ , Ke−gτ , σh
√
τ
)

Plugging the equation for the interest rate given in equation (9) gives:
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PND(K) = V PBS

(
e−r

∗τ 1− pτ
1 + pτ(J∗ − 1)

, Ke−rτ
1− pτ

1 + pτ(J − 1)
, σh
√
τ
)

Using the definition of J̃ and J̃∗ implies:

PND(K) = V PBS

( e−r
∗τ

1 + J̃∗τ
,K

e−rτ

1 + J̃τ
, σh
√
τ
)

When J, J∗ are constant between t and t + τ , the SDFs conditional on a disaster are also log-

normally distributed and so we can apply Lemma 2 to compute PD(K):

PD(K) = pτED
(
KM −M∗

)+

= τV PBS

(
e−g

∗τpJ∗, Ke−gτpJ, σh
√
τ
)

= τV PBS

(
e−r

∗τ pJ∗

1 + pτ(J∗ − 1)
, Ke−rτ

pJ

1 + pτ(J − 1)
, σh
√
τ
)

= τV PBS

( e−r∗τ J̃∗
1 + J̃∗τ

,K
e−rτ J̃

1 + J̃τ
, σh
√
τ
)

Finally given the expressions for J, J∗ given in equations (11), we obtain the expression for the

put price by taking expectation over (η, η∗). We obtain:

Pt,t+τ(K, J̃, J̃∗, σJ, σJ∗, σh) = E

[
PNDt,t+τ

(
K, J̃ · (1 + ησJ) , J̃∗ (1 + η∗σJ∗) , σh

)
+ PDt,t+τ

(
K, J̃ · (1 + ησJ) , J̃∗ (1 + η∗σJ∗) , σh

)]

From now on, we keep the assumption that the disaster sizes (J, J∗) are constant between t and

t+τ . The following lemma identifies some conditions under which we can simplify the non-disaster

component of a put price PND. Similar results can be obtained for a call price.

12



Lemma 4. We assume that the disaster sizes (J, J∗) are constant between t and t + τ . Given a

Black–Scholes delta ∆, let σ∆ be the option implied volatility and K∆ be the corresponding strike.

Let N() be the cumulative standard normal distribution and let n() be the standard normal

distribution. We define α = −φN−1
(
φ∆er

∗τ
)

where φ = 1 for a call delta and φ = −1 for a put

delta.

In the limit of small time intervals (τ → 0), the non–disaster component of a put price with a

strike K∆ can be approximated by:

PND(K∆) =

(
n
(
α
σ∆

σh

)
σh + αN

(
α
σ∆

σh

)
σ∆

)√
τ

+

(
N
(
α
σ∆

σh

)(
1/2
(

1 + α2
)
σ2

∆ − ΠD

)
+ 1/2αn

(
α
σ∆

σh

)
σ∆σh

)
τ +O(τ

√
τ)

where the exchange rate volatility conditional on no disaster is σh and ΠD is the disaster exposure.

Proof. Recall that the strike price given a Black-Scholes delta ∆ is given by equation (6) and (7):

K∆ = e−φN
−1
(
φer
∗τ∆

)
σ∆
√
τ+

(
r−r∗+1/2σ2

∆

)
τ

where φ = 1 for a call delta and φ = −1 for a put delta. Let’s define:

α = −φN−1(φer
∗τ∆)

β =
1/2σ2

∆ − ΠD

σ2
h

γ =
(

1/2
(

1 + α2
)
σ2

∆ − ΠD

)
Using these notations, the non-disaster component of the option price can be written :

PND(K∆) = (1− pτ)V PBS(e−g
∗τ , K∆e

−gτ , σh
√
τ)

= e−g
∗τ(1− pτ)

(
K∆e

−(g−g∗)τN(−d−)− N(−d+)
)

where:
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−d± =
log(K∆) + (g∗ − g ∓ 1/2σ2

h)τ

σh
√
τ

=
−φN−1

(
φer

∗τ∆
)
σ∆

√
τ +

(
r − r ∗ + 1/2σ2

∆ + g∗ − g ∓ 1/2σ2
h)τ

σh
√
τ

= α
σ∆

σh
+
(
β ∓ 1/2

)
σh
√
τ +O(τ

√
τ)

When τ is small, the Taylor expansion of N(−d±) gives :

N(−d±) = N
(
α
σ∆

σh

)
+ n
(
α
σ∆

σh

)(
β ∓ 1/2

)
σh
√
τ + 1/2n′

(
α
σ∆

σh

)(
β ∓ 1/2

)2

σ2
hτ +O(τ

√
τ)

Similarly, the Taylor expansion of K∆e
−(g−g∗)τ gives :

K∆e
−(g−g∗)τ = e−φN

−1
(
φer
∗τ∆

)
σ∆
√
τ+

(
r−r∗−(g−g∗)+1/2σ2

∆

)
τ

= 1 + ασ∆

√
τ + γτ +O(τ2)

Combining the terms, we get:

PND(K∆) = (1− g∗τ − pτ)

[(
1 + ασ∆

√
τ + γτ

)
.(

N
(
α
σ∆

σh

)
+ n
(
α
σ∆

σh

)(
β + 1/2

)
σh
√
τ + 1/2n′

(
α
σ∆

σh

)(
β + 1/2

)2

σ2
hτ

)
−
(
N
(
α
σ∆

σh

)
+ n
(
α
σ∆

σh

)(
β − 1/2

)
σh
√
τ + 1/2n′

(
α
σ∆

σh

)(
β − 1/2

)2

σ2
hτ

)]
+O(τ

√
τ)

= n
(
α
σ∆

σh

)
σh
√
τ + n′

(
α
σ∆

σh

)
βσ2

hτ + αN
(
α
σ∆

σh

)
σ∆

√
τ

+ N
(
α
σ∆

σh

)
γτ + αn

(
α
σ∆

σh

)(
β + 1/2

)
σ∆σhτ +O(τ

√
τ)

By plugging the expression for γ, and using n′(x) = −xn(x) we get:
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PND(K∆) =

(
n
(
α
σ∆

σh

)
σh + αN

(
α
σ∆

σh

)
σ∆

)√
τ

+

(
N
(
α
σ∆

σh

)(
1/2
(

1 + α2
)
σ2

∆ − ΠD

)
+ 1/2αn

(
α
σ∆

σh

)
σ∆σh

)
τ +O(τ

√
τ)

The following lemma identifies some conditions under which we can simplify the disaster com-

ponent of a put price PD. Similar results can be obtained for a call price.

Lemma 5. We assume that the disaster sizes (J, J∗) are constant between t and t + τ . Given a

Black–Scholes delta ∆, let σ∆ be the option implied volatility and K∆ be the corresponding strike.

In the limit of small time intervals (τ → 0), the disaster component of a put price with a strike

K∆ can be approximated by:

PD(K∆) =

{
(K∆pJ − pJ∗)τ +O(τ2) if J > J∗;

O(τ2) if J < J∗.

Proof. When J, J∗ are constant between t and t + τ , we get from proposition (2):

PD(K∆) = K∆pJe
−gτN(−d−)τ − pJ∗e−g∗τN(−d+)τ

where:

−d± =
log
(

(JK∆)/J∗
)
− (g − g∗ ± 1

2
σ2
h)τ

σh
√
τ

=
log
(
J/J∗

)
σh
√
τ

+O(1)

We want to approximate the cumulative normal terms N(−d±) by zero or one with sufficient

precision. We apply Chebychev’s inequality and derive the following bounds:

 1− 1
2d2
±
< N(−d±) < 1 if d± < 0;

0 < N(−d±) < 1
2d2
±

if d± > 0.
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The Taylor expansion of 1
2d2
±

gives :

1

2d2
±

= O(τ)

Notice from the Taylor expansion of −d± that when τ is small enough we have:

sign(d±) = sign(J∗ − J)

By plugging the above approximation for N(−d±) into the expression for PD(K∆), we obtain:

PD(K∆) =

{
(K∆pJ − pJ∗)τ +O(τ2) if J > J∗;

O(τ2) if J < J∗.

The following lemma identifies some conditions under which we can simplify the implied volatility

σ∆ for a given Black–Scholes delta ∆.

Lemma 6. We assume that the disaster sizes (J, J∗) are constant between t and t+ τ . For a given

Black–Scholes delta ∆, let σ∆ be the corresponding implied implied volatility.

In the limit of small time intervals (τ → 0), the implied volatility can be approximated by:

σ∆ =


σh +

∆

(
pJ−pJ∗

)
+

(
pJ∗−pJ

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ > 0;

σh +
∆

(
pJ−pJ∗

)
+

(
pJ−pJ∗

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ < 0.

where N() is the cumulative standard normal distribution and n() the standard normal distribu-

tion.

Proof. By definition, the implied volatility σ∆ verifies:

PND(K∆) + PD(K∆) = V PBS

(
e−r

∗τ , K∆e
−rτ , σ∆

√
τ
)

(12)

We guess that the Taylor expansion of the implied volatility with respect to the maturity has

the following form :

16



σ∆ = σh + A
√
τ +O(τ) (13)

and we want to find the value for A. We proceed in 3 steps:

1. Recall that when α = −φN−1(φer
∗τ∆), with φ = 1 for a call delta and φ = −1 for a put

delta, the approximation for the non-disaster component of the put price is given by lemma

(4):

PND(K∆) =

(
n
(
α
σ∆

σh

)
σh + αN

(
α
σ∆

σh

)
σ∆

)√
τ

+

(
N
(
α
σ∆

σh

)(
1/2
(

1 + α2
)
σ2

∆ − ΠD

)
+ 1/2αn

(
α
σ∆

σh

)
σ∆σh

)
τ +O(τ

√
τ)

Plugging the guess from equation (13) into this expression for PND gives:

PND(K∆) =

(
n
(
α
σh + A

√
τ

σh

)
σh + αN

(
α
σh + A

√
τ

σh

)(
σh + A

√
τ
))√

τ

+

(
N
(
α
σh + A

√
τ

σh

)(
1/2
(

1 + α2
)(
σh + A

√
τ
)2 − ΠD

)
+ 1/2αn

(
α
σh + A

√
τ

σh

)(
σh + A

√
τ
)
σh

)
τ +O(τ

√
τ)

=

(
n
(
α
σh + A

√
τ

σh

)
+ αN

(
α
σh + A

√
τ

σh

))
σh
√
τ

+

(
N
(
α
)(

1/2
(

1 + α2
)
σ2
h − ΠD

)
+ 1/2αn

(
α
)
σ2
h + αN

(
α
)
A

)
τ +O(τ

√
τ)

A Taylor expansion of the standard normal terms gives :
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PND(K∆) =

(
n
(
α
)
σh + n′

(
α
)
αA
√
τ + αN

(
α
)
σh + α2n

(
α
)
A
√
τ

)√
τ

+

(
N
(
α
)(

1/2
(

1 + α2
)
σ2
h − ΠD

)
+ 1/2αn

(
α
)
σ2
h + αN

(
α
)
A

)
τ +O(τ

√
τ)

=

(
n
(
α
)

+ αN
(
α
))
σh
√
τ

+

(
N
(
α
)(

1/2
(

1 + α2
)
σ2
h − ΠD

)
+ 1/2αn

(
α
)
σ2
h + αN

(
α
)
A

)
τ +O(τ

√
τ)

2. Now, let’s write the non-disaster component of the put price PND(K∆) as:

PND(K∆) = PND(K∆, p, g, g
∗, σh)

So PND(K∆) is formally equivalent to the right–hand side of equation (12) when p = 0, g = r ,

g∗ = r ∗ and σh = σ∆:

PND(K∆, p = 0, g = r, g∗ = r ∗, σh = σ∆) = V PBS

(
e−r

∗τ , K∆e
−rτ , σ∆

√
τ
)

So we can apply lemma (4) to compute the Taylor expansion for the right–hand side of

equation (12):

V PBS

(
e−r

∗τ , K∆e
−rτ , σ∆

√
τ
)

=

(
n
(
α
)

+ αN
(
α
))
σ∆

√
τ

+ 1/2

(
N
(
α
)(

1 + α2
)

+ αn
(
α
))
σ2

∆τ +O(τ
√
τ)

Plugging the expression for σ∆ in equation (13) gives :
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V PBS

(
e−r

∗τ , K∆e
−rτ , σ∆

√
τ
)

=

(
n
(
α
)

+ αN
(
α
))
σh
√
τ

+

(
n
(
α
)

+ αN
(
α
))
Aτ

+ 1/2

(
N
(
α
)(

1 + α2
)

+ αn
(
α
))
σ2
hτ +O(τ

√
τ)

3. Finally, when τ is small enough we can simplify the disaster component of the put price using

lemma (5):

PD(K∆) =
(
pJ − pJ∗

)+
τ +O(τ

√
τ)

Plugging these results into equation (12) gives:

−N
(
α
)(
pJ − pJ∗

)
+
(
pJ − pJ∗

)+
= n

(
α
)
A

So the unknown coefficient A is given by:

A =

(
pJ − pJ∗

)+ − N
(
α
)(
pJ − pJ∗

)
n
(
α
)

Recall the expression for α:

α = −φN−1(φer
∗τ∆)

= −φN−1(φ∆) +O(τ)

So we can simplify the expression for A depending on the type of option delta (φ = 1 for a

call delta and - 1 for a put delta):
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A =



∆

(
pJ−pJ∗

)
+

(
pJ∗−pJ

)+

n

(
N−1(|∆|)

) +O(τ) if φ = 1;

∆

(
pJ−pJ∗

)
+

(
pJ−pJ∗

)+

n

(
N−1(|∆|)

) +O(τ) if φ = −1.

Recall that by construction a call delta is positive and a put delta is negative. So by plugging

the value of A into equation (13) gives the expression for the implied volatility:

σ∆ =


σh +

∆

(
pJ−pJ∗

)
+

(
pJ∗−pJ

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ > 0;

σh +
∆

(
pJ−pJ∗

)
+

(
pJ−pJ∗

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ < 0.

4.3 Hedged currency excess returns

In all that follows, we assume that the foreign currency is the investment currency.

Let ∆P be a Black–Scholes put delta, i.e. ∆P < 0 and let K∆P be the corresponding strike.

The return X(K∆P ) to the hedged carry trade is the payoff of the following zero-investment trade:

borrow one unit of the home currency at interest rate r ; use the proceeds to buy λP (K∆P ) puts

with strike K∆P , protecting against a depreciation in the foreign currency below K∆P ; and invest the

remainder
(

1− λP (K∆P )P (K∆P )
)

in the foreign currency at interest rate r ?. So the hedged return

is given by:

X(K∆P ) =
(

1− λP (K∆P )P (K∆P )
)
er

?τ St+τ
St

+ λP (K∆P )

(
K∆P −

St+τ
St

)+

− erτ ,

where the hedge ratio λP (K∆P ) is given by:

λP (K∆P ) =
er
∗τ

1 + er∗τP (K∆P )

To summarize the notation: X denotes the carry trade return and Xe is its annualized expected

value conditional on no disaster; X(K∆P ) denotes the hedged carry trade return with strike K∆P ;

P (K∆P ) is the home currency price of a put yielding (K∆P − St+τ/St)+ in the home currency;
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Xe(K∆P ) is the annualized expected value of the hedged carry trade return conditional on no

disaster and END denotes expectations under the assumption of no disaster:

Xe(K∆P ) =
ENDX (K∆P )

τ
.

The following proposition offers a closed form formula for the hedged returns.

Proposition 3. We assume that the disaster sizes (J, J∗) are constant between t and t + τ with

J > J∗. Let ∆P be a Black-Scholes put delta i.e. ∆P < 0, and let K∆P be the corresponding strike.

We define:

β = n
(
N−1(−∆P )

)
− N−1(−∆P )(1 + ∆P )

γ =
(

1 + ∆P
)

∆PN−1(−∆P )−
(

2 + ∆P
)
n
(
N−1(−∆P )

)
where N() is the cumulative standard normal distribution and n() the standard normal distribu-

tion.

In the limit of small time intervals (τ → 0), the hedged carry trade expected return (conditional

on no disasters) can be approximated by:

Xe(K∆P ) =
(

1 + ∆P
)

ΠG +

(
β

(
pJ +

ΠDΠG

σ2
h

)
+ γΠG

)
σh
√
τ +O(τ)

where ΠG is the Gaussian exposure, σh is the exchange rate volatility conditional on no disaster

and ΠD is the disaster exposure.

Proof. Let’s write the hedged return as a function of the unhedged return X:

X(K∆P ) = X − λP (K∆P )P (K∆P )er
∗τM

∗

M
+ λP (K∆P )

(
K∆P −

M∗

M

)+

, (14)

Like in proposition (1), we can write the Euler equation for the hedged return as the sum of a

disaster component ΠHD and a non–disaster component ΠHG:

ENDX(K∆P )

τ
= ΠHD + ΠHG
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where:

ΠHD = −
pegτ

1− pτ E
DMX(K∆P )

and:

ΠHG = −
egτ

τ
covND

(
M,X(K∆P )

)
We then proceed in 3 steps:

1. First let’s replace the expression for the hedged return given by equation (14) in ΠHD.

From proposition (1), the first term in ΠHD can be approximated by:

−
pegτ

1− pτ E
DMX = (pJ − pJ∗) +O(τ)

Recall from lemma (4) and (5) that P (K∆P ) is of order O(
√
τ). So the second term in ΠHD

can be approximated by:

pegτ

1− pτ λ
P (K∆P )P (K∆P )er

∗τEDM∗ = λP (K∆P )P (K∆P )pJ∗ +O(τ)

Recall that K∆P is of order O(
√
τ). So when J > J∗ and τ is small enough the third term in

ΠHD can be approximated using lemma (5) by:

−
pegτ

1− pτ λ
P (K∆P )ED

(
K∆PM −M∗

)+
= −λP (K∆P )

(
K∆P pJ − pJ∗

)
+O(τ)

Summing up the components of ΠHD, we get:

ΠHD = (pJ − pJ∗) + λP (K∆P )P (K∆P )pJ∗ − λP (K∆P )
(
K∆P pJ − pJ∗

)
,

= pJ
(

1−K∆Pλ
P (K∆P )

)
− pJ∗

(
1− λP (K∆P )

(
1 + P (K∆P )

))
+O(τ)

The hedge ratio can be approximated by:

λP (K∆P ) =
1

1 + P (K∆P )
+O(τ)
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So the expression for ΠHD can be simplified to:

ΠHD =
(

1 + P (K∆P )−K∆P

)
.pJ +O(τ)

Let’s use the notation: α = N−1(−∆P ). Lemma (4) and (5) give:

P (K∆P ) =
(
n
(
α
)

+ αN
(
α
))
σh
√
τ +O(τ)

Recall that given a Black-Scholes put delta ∆P the strike K∆P is given by equation (7):

K∆P = eN
−1
(
−er∗τ∆P

)
σ

∆P
√
τ+

(
r−r∗+1/2σ2

∆P

)
τ

which can be simplified to:

K∆P = 1 + ασh
√
τ +O(τ)

Let’s define β = n
(
N−1(−∆P )

)
− N−1(−∆P )

(
1 + ∆P

)
. We can then ΠHD:

ΠHD =
(
n
(
α
)

+ αN
(
α
)
− α

)
.pJσh

√
τ +O(τ)

= β.pJ.σh.
√
τ +O(τ)

2. Now let’s replace the expression for the hedged return given by equation (14) in ΠHG.

From proposition (1) the first term in ΠHG can be approximated by:

−
egτ

τ
covND(M,X) = ΠG +O(τ)

In proposition (1) we derived:

covND
(
M,

M∗

M

)
= −ΠGτ +O(τ2)
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So the second term in ΠHG can be approximated by:

egτ

τ
λP (K∆P )P (K∆P )er

∗τcovND
(
M,

M∗

M

)
= −λP (K∆P )P (K∆P )ΠG +O(τ)

Recall that the ratio of the SDFs is given by:

END
M∗

M
= e

(
g−g∗+ΠG

)
τ

So using lemma 3 we have:

covND
(
M,
(
K∆P−

M∗

M

)+
)

= V PBS

(
e−g

∗τ , K∆P e
−gτ , σh

√
τ
)
−V PBS

(
e(−g∗+ΠG)τK∆P e

−gτ , σh
√
τ
)

Recall that a put delta is the first derivative of the put price with respect to the spot. So the

third term in ΠHG can be approximated by:

−egτλP (K∆P )

τ
covND

(
M,
(
K∆P −

M∗

M

)+
)

= λP (K∆P )∆P
BS

(
e(g−g∗)τ , K∆P , σh

√
τ
)

ΠG +O(τ)

Summing up the components of ΠHG gives:

ΠHG =

(
1 + λP (K∆P )

(
∆P
BS

(
e(g−g∗)τ , K∆P , σh

√
τ
)
− P (K∆P )

))
ΠG +O(τ)

which can be simplified using the approximation for λP (K∆P ):

ΠHG =
(

1 + ∆P
BS

(
e(g−g∗)τ , K∆P , σh

√
τ
))
.
(

1− P (K∆P )
)

ΠG +O(τ)

Recall the expression for a Black–Scholes put delta:
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∆P
BS

(
e(g−g∗)τ , K∆P , σh

√
τ
)

= −N
(
− d−

)
where:

−d− =
log(K∆P ) + (g∗ − g + 1/2σ2

h)τ

σh
√
τ

and the strike K∆P is given by equation (7):

K∆P = eN
−1
(
−er∗τ∆P

)
σ

∆P
√
τ+

(
r−r∗+1/2σ2

∆P

)
τ

When J > J∗, the implied volatility σ∆P given by lemma (6) is:

σ∆P = σh +

(
1 + ∆P

)
ΠD

n
(
N−1(−∆P )

)√τ +O(τ)

So when τ is small, the Taylor expansion of −d− is:

−d− =
N−1

(
− er∗τ∆

)
σ∆

√
τ +

(
r − r ∗ + 1/2σ2

∆ + g∗ − g + 1/2σ2
h)τ

σh
√
τ

= α+
(
σh −

ΠD

n(α)σh
β
)√

τ +O(τ)

where α = N−1(−∆P ) and β = n
(
N−1(−∆P )

)
−N−1(−∆P )(1 + ∆P ). So the Taylor expansion

of −N() around α gives :

∆P
BS

(
e(g−g∗)τ , K∆P , σh

√
τ
)

= ∆P −
(
n
(
α
)
σh − β

ΠD

σh

)√
τ +O(τ)

Plugging this expression and the approximation for P (K∆) given by lemma (4) and (5) back

into ΠHG gives :
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ΠHG =

((
1 + ∆P

)
−
(
n
(
α
)
σh − β

ΠD

σh

)√
τ

)
.

(
1−

(
n
(
α
)

+ αN
(
α
))
σh
√
τ

)
ΠG +O(τ)

=
(

1 + ∆P
)

ΠG −
(
n
(
α
)
σh − β

ΠD

σh
+
(

1 + ∆P
)(
n
(
α
)
− ∆Pα

)
σh

)
ΠG

√
τ +O(τ)

=
(

1 + ∆P
)

ΠG +

(
β

ΠD

σh
+ γσh

)
ΠG

√
τ +O(τ)

where γ =
(

1 + ∆P
)

∆PN−1(−∆P )−
(

2 + ∆P
)
n
(
N−1(−∆P )

)
.

3. Finally, we combine the terms to compute Xe
(
K∆P

)
:

Xe(K∆P ) =
(

1 + ∆P
)

ΠG +

(
β

(
pJ +

ΠDΠG

σ2
h

)
+ γΠG

)
σh
√
τ +O(τ)

4.4 Risk-reversals

Given a ∆ > 0 we can consider the corresponding Black–Scholes put delta : ∆P = −∆ and the

Black–Scholes call delta ∆C = ∆. A risk-reversal is defined as the difference between the implied

volatility at the Black–Scholes put delta and the implied volatility at the Black–Scholes call delta:

RR∆ = σ−∆ − σ∆

Proposition 4. Given ∆ > 0, when there is no disaster risk:

RR∆ = σ−∆ − σ∆ = 0

Proof. The result follows by taking p = 0 in proposition (2):
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σ∆ = σ−∆ = σh

So:

RR∆ = 0

In the presence of disaster risk the following proposition identifies conditions under which we

can simplify the expression for the risk–reversal.

Proposition 5. We assume that the disaster sizes (J, J∗) are constant between t and t + τ . Given

a Black–Scholes delta ∆ > 0, the risk–reversal σ−∆ − σ∆ can be approximated in the limit of small

time intervals (τ → 0) by:

RR∆ = σ∆ − σ−∆ =
1− 2∆

n
(
N−1(∆)

)ΠD

√
τ +O(τ)

where N() is the cumulative standard normal distribution, n() the standard normal distribution

and ΠD is the disaster risk exposure.

Proof. From lemma (6), we have:

σ∆ =


σh +

∆

(
pJ−pJ∗

)
+

(
pJ∗−pJ

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ > 0;

σh +
∆

(
pJ−pJ∗

)
+

(
pJ−pJ∗

)+

n

(
N−1(|∆|)

) √
τ +O(τ) if ∆ < 0.

Notice that
(
pJ − pJ∗

)+ −
(
pJ∗ − pJ

)+
=
(
pJ − pJ∗

)
. So given ∆ > 0, we obtain:

RR∆ = σ−∆ − σ∆

=
−∆
(
pJ − pJ∗

)
+
(
pJ − pJ∗

)+

n
(
N−1(∆)

) √
τ −

∆
(
pJ − pJ∗

)
+
(
pJ∗ − pJ

)+

n
(
N−1(∆)

) √
τ +O(τ)

=
1− 2∆

n
(
N−1(∆)

)ΠD

√
τ +O(τ)
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5 Simulation

Propositions (1), (3) and (5) are derived in the limit of small time intervals. We check their validity

for one-day and one-month horizons by simulating a calibrated version of the model.

Table 1 reports the parameter values used in the calibration, while Table 2 reports simulation

results.

[Table 1 about here.]

[Table 2 about here.]

We verify that the higher order term in Proposition 3 remains positive given reasonable values

for the parameter estimates. Notice that the higher order term is the sum of two positive terms(
pJ + πDπG

σ2
h

)
and πG which are multiplied by 2 coefficients β and γ respectively. In our simulation(

pJ + πDπG

σ2
h

)
is equal to 34% and πG is equal to 3% and in each of the subsample estimations we

considered pJ is roughly one order of magnitude larger than πG. At 10 delta, β is equal to 1.3 and

γ is equal to -0.2. At 25 delta, β is equal to 0.8 and γ is equal to -0.4. At 50 delta, β is equal to

0.4 and γ is equal to -0.6. These results supports the claim that the higher order term is positive

given a large range of values for the parameters of the model.

6 Data and Additional Estimation Results

6.1 Data

Our dataset contains spot exchange rates, one-month forward exchange rates and the U.S. LIBOR

interest rate obtained from Datastream, as well as one-month implied volatilities obtained from JP

Morgan, for the period 1/1996 to 08/2014. For each country, the spot and forward exchange rates

are expressed in U.S. dollars per unit of foreign currency. The foreign interest rates are computed

by using covered interest rate parity :

F = Se(rus−r∗)τ .

Using the JP Morgan volatility datasets, we express all the implied volatilities as options on spot

exchange rates for which the foreign currency is the base currency and the dollar is the quote
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currency1. The convention in the forex market is to quote these implied volatilities by using the

value of a Black and Scholes (1973) delta. With one-month maturity options (or any option with

maturity less than one year), if the country is a G7 country the convention is to use a Black–Scholes

spot delta. For instance, we call σ10C (σ10P ) is the implied volatility at 10 delta call (put). It is

the implied volatility given that the option Black–Scholes spot delta is equal to 0.1 (-0.1). We can

then retrieve the strikes K10C and K10P by using equation (6) and (7).

When the country is not a G7 country, then the spot delta is replaced by the forward delta in

the calculation of K10C and K10P :

∆BS,F (φ) = φN(φd+),

where φ = 1 for a delta call and φ = −1 for a delta put.

The at-the-money strike is a special case. With one-month maturity options (or any option with

maturity less than 10 years), if the country is a G7 country except Japan, the at-the-money strike

is the strike which cancels the spot delta of a straddle (i.e., the sum of a put and a call):

∆C
BS + ∆P

BS = 0

This implies:

Katm = Se(rus−r∗+ 1
2
σ2

atm)τ .

6.2 Pricing Errors

Figure 1 compares the distribution of pricing errors and the distribution of bid ask spreads.

[Figure 1 about here.]

Figure 2 compares the average implied volatilities at different strike in the model and in the data

at the country level.

[Figure 2 about here.]

1Prior to 2012 the JP Morgan volatility dataset was referring to currency pairs for which the quote currency was

the US dollar. Since 2012 they switched to the market convention where the only the Australian Dollar, the Euro, the

British Pound and the New-Zealand Dollar were quoted using the US Dollar as the quote currency. For more details

on the quotation of currency options, see Wystup (2007).
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6.3 Additional Estimates

Table (3) is similar to table 2 in the main paper, except that the sample period excludes fall 2008.

[Table 3 about here.]

Figure 3 reports the time-series estimates for the disaster risk exposure at the country level.

[Figure 3 about here.]

Finally, Figure 4 reports similar findings as in Figure 2 in the text. In Figure 4, however, the

average estimated disaster risk exposure is estimated over the period leading to the crisis (from

May 2008 to August 2008) and compared to the cumulative percentage change in exchange rate

for each country during the crisis (from September 2008 to January 2009), while in Figure 2 in the

text, both disaster risk and changes in exchange rates are estimated during the crisis.

[Figure 4 about here.]

6.4 Asset Pricing

Table 4 reports asset pricing results obtained with two risk factors: the average excess returns of a

U.S. investor on currency markets (denoted RX) and the risk-reversals at 25-delta on S&P500 index

options (denoted RR). The test assets are the six portfolios of Lustig, Roussanov and Verdelhan

(2011).

[Table 4 about here.]
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Table 1: Simulation Parameters

Parameter Symbol Value

Disaster probability p 3.60%

Disaster size (domestic) J 7.50

Disaster size (foreign) J? 6.67

SDF drift (domestic) g 26.17%

SDF drift (foreign) g? 26.23%

Volatility of gaussian shocks (domestic) σ 82.94%

Volatility of gaussian shocks (foreign) σ? 80.00%

Correlation of gaussian shocks ρ 99.15%

Notes: This table shows the parameters used in the simulation. The disaster probability is taken from Barro (2006).

The domestic and foreign disaster sizes (J and J?) as well as the domestic and foreign drifts (g and g?) of the pricing

kernel come from the estimation results for the high interest currency portfolio during the period 1/1996–12/2011

excluding fall 2008. In this estimation J and J? are assumed to be constant within each month (i.e. σJ = σ∗J = 0).

The domestic and foreign volatility (σ and σ?) of the Gaussian shocks, as well as their correlation (ρ), are calibrated

to match a Gaussian risk exposure of 3% and a volatility of the bilateral exchange rate equal to 10% to match their

counterparts on the high interest currency portfolio, as well as a maximum Sharpe Ratio equal to 80%.
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Table 2: Simulation Results

One-Month Horizon One-Day Horizon

Model Approximation Model Approximation

Excess Returns

Unhedged Returns 6.20 6.00 6.02 6.00

Hedged Returns at 10 delta 4.27 3.06

Order 0 2.70 2.70

Order
√
τ 4.13 2.96

Hedged Returns at 25 delta 3.22 2.53

Order 0 2.25 2.25

Order
√
τ 3.11 2.41

Hedged Returns at-the-money 1.99 1.66

Order 0 1.50 1.50

Order
√
τ 1.88 1.57

Risk Reversals

Risk-Reversals at 10 delta 2.39 3.95 0.58 0.72

Risk-Reversals at 25 delta 0.88 1.36 0.23 0.25

Notes: This table compares the simulation results obtained by running a Monte-Carlo simulation on the model quantities

of interest for a one-month and a one-day horizon to the closed form formula that derived in the paper. This simulation

uses the parameters described in Table 1. The results are expressed in percentage points. The excess returns are

annualized (multiplied by 12). The risk reversal is computed as the difference between the volatility of an out-of-the-

money put and an out-of-the-money call.
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Table 3: Exchanges Rate Changes, Risk-Reversals, and Currency Excess Returns

Portfolios 1 2 3

Panel I: Exchange Rates

Mean 0.39 1.32 2.45

[1.63] [1.72] [2.05]

Panel II: Interest Rates

Mean −1.91 0.14 2.31

[0.39] [0.30] [0.30]

Panel III: Risk-Reversals 10 Delta

Mean −0.39 0.67 1.30

[0.25] [0.20] [0.28]

Panel IV: Risk-Reversals 25 Delta

Mean −0.19 0.38 0.71

[0.14] [0.12] [0.15]

Panel V: Excess Returns

Mean −1.03 1.91 5.38

[1.80] [1.85] [2.24]

Sharpe Ratio −0.13 0.24 0.55

Notes: This table reports portfolio average changes in exchange rates, interest rates, risk-reversals, as well as average

currency excess returns. Countries are sorted by the level of foreign interest rates and allocated into three portfolios,

which are rebalanced every month. The first portfolio contains the lowest interest rate currencies while the last portfolio

contains the highest interest rate currencies. The table reports the mean excess return and its standard error, along

with the corresponding Sharpe ratio for excess returns. The mean and standard deviations for the exchange rates,

the interest rates, and the excess returns are annualized (multiplied respectively by 12 and
√

12). The Sharpe ratio

corresponds to the ratio of the annualized mean to the annualized standard deviation. The standard errors, reported

between brackets, are obtained by bootstrapping both the time-series using a block bootstrap and the cross-section of

countries. The block sizes are 10 months. Data are monthly, from J.P. Morgan. The sample period is January 1996

to August 2014 excluding the fall of 2008.
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Table 4: Asset Pricing with Risk Reversals

Panel I: Risk Prices

λRX λRR bRX bRR R2 RMSE χ2

GMM1 1.03 −4.66 −1.16 −60.09 90.80 0.75

[5.23] [2.96] [0.86] [37.38] 85.85

GMM2 2.20 −4.76 −0.95 −60.97 67.82 1.40

[3.85] [2.48] [0.77] [31.62] 87.62

FMB 1.03 −4.66 −1.15 −59.77 90.83 0.75

[1.63] [1.18] [0.47] [15.23] 46.83

(1.64) (2.27) (0.73) (29.28) 91.82

Panel II: Factor Betas

Portf . αj0 βjRX βjRR R2

1 −8.74 0.91 0.87 66.76

[2.24] [0.07] [0.38]

2 −3.04 0.86 0.14 69.88

[2.24] [0.06] [0.34]

3 −1.78 0.93 0.18 79.60

[1.90] [0.05] [0.31]

4 0.99 0.94 −0.08 78.75

[1.94] [0.05] [0.30]

5 2.48 1.12 −0.15 77.56

[2.95] [0.07] [0.47]

6 10.09 1.24 −0.96 68.01

[3.45] [0.08] [0.59]

Notes: Panel I reports results from GMM and Fama-McBeth asset pricing procedures. The market prices of risk λ, the

adjusted R2, the square-root of mean-squared errors RMSE and the p-values of χ2 tests on pricing errors are reported

in percentage points. The log pricing kernel is here: mUS
t+1 = 1−bRXRXt+1−bRRRRt+1, where b denotes the vector of

factor loadings. Excess returns used as test assets and risk factors do not take into account bid-ask spreads. All excess

returns are multiplied by 12 (annualized). Shanken (1992)-corrected standard errors are reported in parentheses. We

do not include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor betas.

R2s and p-values are reported in percentage points. The alphas are annualized and in percentage points. The standard

errors in brackets are Newey and West (1987) standard errors computed with the optimal number of lags according to

Andrews (1991). Note that risk reversals are not excess returns. As a result, constants in the time-series regressions

reported in the second panel do not have to be zero. (Each constant αj0 is equal to βj(λ − E(f ), where λ denotes

the vector of risk prices and E(f ) the mean of the risk factors. When the factor is an excess return, then the Euler

equation implies that αj0 = 0). The test assets are the six currency portfolios of Lustig et al. (2011). Countries are

sorted on the basis of their interest rates. The first portfolio corresponds to low interest rate countries while the last

portfolio corresponds to high interest rate countries. Data are monthly, from the Datastream and CRSP databases.

The sample period is 2/1996–12/2011.
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Figure 1: Distribution of Pricing Errors and Bid-Ask Spreads

This figure presents the empirical distribution (left panel) and cumulative distribution for the pricing errors (full line) and

the bid-ask spreads (dotted line). Pricing errors are computed as the absolute difference in implied volatility between

the model and the data. Spot and forward exchange rates are from Datastream, currency options are from JP Morgan,

bid-ask spreads are from Bloomberg. Data are monthly. The sample period for the pricing error (bid-ask spreads) is

1/1996 – 08/2014 (09/2004 – 08/2014).
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Figure 2: Average Currency Option Smiles in the Model and in the Data

This figure presents the average quoted implied volatilities in the data (dotted line) and in the model (full line) as a

function of their strikes. To maintain comparability across currencies and periods, the implied volatilities at different

strikes are scaled by the average implied volatility of at-the-money options. The quoted strikes are normalized by the

spot exchange rate. Spot and forward exchange rates are from Datastream, while currency options are from J.P.

Morgan. Data are monthly. The sample period is 1/1996 – 08/2014.
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Figure 3: Country-level Estimates of Disaster Risk Exposure

This figure shows time-series estimates for the disaster risk exposure for each country. Spot and forward exchange rates

are from Datastream, currency options are from JP Morgan. Data are monthly. The sample period is 1/1996–08/2014.
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Figure 4: Disaster Risk Exposures and Changes in Exchange Rates During the Crisis

This figure reports the average estimated disaster risk exposure leading to the crisis (from May 2008 to August 2008)

and the cumulative percentage change in exchange rate for each country during the crisis (from September 2008 to

January 2009). Spot and forward exchange rates are from Datastream, currency options are from JP Morgan. Data

are monthly.
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