
Proceedings of the 5th INFORMS Workshop on Data Mining and Health Informatics (DM-HI 2010) 
D. Sundaramoorthi, M. Lavieri, H. Zhao, eds. 

1 
 

 
 

A DISCRETE OPTIMIZATION APPROACH TO SUPERVISED RANKING 
 

Dimitris Bertsimas    Allison Chang     Cynthia Rudin 
 

Operations Research Center 
Massachusetts Institute of Technology 

Cambridge, MA 
aachang@mit.edu 

 
 

Abstract 
 
In many ranking tasks in machine learning, the goal is to construct a scoring function 𝑓:𝑋 → 𝑅, 
with X in Rd, that can be used to rank a set of labeled examples {(𝑥� ,𝑦�)}���� , where 𝑥� ∈ 𝑋 and 
𝑦� ∈ {0,1}, that are randomly drawn from an unknown distribution on 𝑋 × {0,1}. We present a 
mixed integer programming (MIP) method to generate this scoring function. In particular, the 
scoring function is chosen to be a linear combination of features, i.e., 𝑓(𝑥�) = 𝑤�𝑥�, such that 
the coefficients w are optimal with respect to a ranking quality measure (area under the curve, 
discounted cumulative gain, P-Norm Push, etc.) on a training set. Other methods for ranking 
approximate the ranking quality measure by a convex function, whereas our MIP approach is 
exact. As a result, the proposed approach provides a benchmark against which other methods can 
be judged. We use datasets from various applications, and show that this novel method performs 
well on both training and test data, compared with traditional machine learning techniques. 
 
Keywords: Discrete optimization, supervised ranking, rank statistics, machine learning. 
 
 
1 Introduction 
 
Supervised ranking tasks arise in many domains, such as information retrieval [8], recommender 
systems [2], natural language processing [9], bioinformatics [1], and industrial prioritization [11], 
among others. For many applications, improving the quality of a ranked list by even a small 
amount can have significant consequences. For instance, the accurate prioritization, or ranking, 
of manholes on the electricity grid in Manhattan, in order of vulnerability to dangerous events, 
helps prevent serious events such as fires and explosions [11]. In the area of drug screening, 
where developing a new drug costs over $1 billion, the ability to correctly rank the top of a list of 
millions of compounds according to the chance of clinical success can produce enormous 
savings, in terms of both time and money [1]. For Netflix, the accurate ranking of movies can 
translate into increased user satisfaction and millions of dollars in increased profit [2]. 
 
This paper focuses on a new mixed integer programming (MIP) technique for ranking tasks in 
machine learning. The primary advantage of using MIP for ranking is that it allows for direct 



2 
 

optimization of the true objective function rather than approximating with a heuristic choice of 
loss functions. This means that the cost function that we optimize with MIP is also the measure 
that we use to evaluate ranking quality, while other methods use heuristic loss functions that 
differ from the evaluation measure. All other current state-of-the-art machine learning methods 
make such a heuristic choice in order to obtain solutions faster. However, we will show that this 
heuristic choice is often made at the expense of finding better solutions. There are many 
applications, such as those mentioned above, for which the extra computation time needed to 
compute a better solution is worthwhile.  
 
Since our methods compute exact, rather than approximate, solutions, they serve as a benchmark 
by which other algorithms should be compared. Moreover, standard technology for solving MIP 
problems can quantify a feasible solution's closeness to optimality in case the problem is too 
large to solve, in contrast to heuristic methods that cannot measure closeness to optimality. We 
demonstrate experimentally that our exact methods yield better solutions than other approaches. 
In addition, we show that the linear relaxations of the MIP formulations may be used to generate 
good approximate solutions to the ranking problems as well. 
 
In the classical statistics literature, summary statistics of receiver operating characteristic (ROC) 
curves are used to measure the performance of a test in distinguishing between two populations 
[4]. In supervised ranking, statistics of ROC curves, that is rank statistics, are used for a different 
purpose, namely to measure the performance of a model on a sample. Supervised ranking 
algorithms optimize precisely these rank statistics over the sample to generate a model. Common 
rank statistics include the area under the ROC curve (AUC) [4] and the discounted cumulative 
gain (DCG) measure used in information retrieval [8]. In this paper, we present two MIP 
formulations for supervised ranking: one that optimizes the AUC and another that optimizes a 
general class of rank statistics that includes the DCG. Our MIP methods achieve higher ranking 
quality than current state-of-the-art algorithms for a wide range of supervised ranking problems. 
 
MIP methods are not commonly used to solve machine learning problems, partly due to a 
perception starting from the early 1970s that they are computationally intractable for most real-
world problems [3]. However, major advances within the last decade in computing power and 
algorithms for solving MIP problems have made larger scale computations possible, and modern 
solvers will continue to implement methodologies that take advantage of breakthrough 
developments in both computer architectures and the mathematical theory behind MIP. 
 
In Section 2, we describe our notation, specifically for supervised bipartite ranking tasks, and 
also explain the MIP formulations. In Section 3, we show computational results comparing the 
performance of MIP to that of several other methods. Finally, we conclude with a summary and 
list of future steps in Section 4. 
 
2 Supervised Bipartite Ranking and MIP 
 
In this section, we introduce the framework of supervised bipartite ranking and propose a new 
way of capturing and optimizing a general class of rank statistics. We also explain our means of 
handling ties, which is significant in the ability of our methods to optimize rank statistics. 
 



3 
 

2.1 Notation 
 
The data consist of labeled examples {(𝑥� ,𝑦�)}���� , with 𝑥� ∈ 𝑋 in Rd and 𝑦� ∈ {0,1}. Examples 
labeled “1” are “positive,” and examples labeled “0” are “negative.” There are n+ positive and n- 
negative examples. We define index sets 𝑆� = {𝑖:𝑦� = 1} and 𝑆� = {𝑘:𝑦� = 0}. To rank the 
examples, we construct a scoring function 𝑓:𝑋 → 𝑅 to assign real-valued scores {𝑓(𝑥�)}���� . We 
define rank and relative rank as functions of f by the following formulas respectively: 

rank�(𝑥�) = �𝟏[�(��)��(��)]

�

���

   ∀𝑖 = 1, … ,𝑛,                                       (1) 

relrank�(𝑥�) = � 𝟏[�(��)��(��)]
�∈��

   ∀𝑖 ∈ 𝑆�.                                         (2) 

That is, the rank of any example is the number of examples scored strictly below it, and the 
relative rank of a positive example is its rank relative to only the negative examples, i.e., the 
number of negative examples scored strictly below it. A misrank occurs when a negative is 
scored at least as high as a positive. We will use linear scoring functions 𝑓(𝑥�) = 𝑤�𝑥�, where 
𝑤 ∈ 𝑅�. Then the supervised bipartite ranking problem is to generate a function f such that the 
coefficients 𝑤�, … ,𝑤� are optimal with respect to a specified ranking quality measure. 
 
2.2 Rank Statistics 
 
The most popular quality metric for ranked lists is the AUC, given by (counting ties as misranks): 

AUC(𝑓) =
1

𝑛�𝑛�
� relrank�(𝑥�)
�∈��

=
1

𝑛�𝑛�
� � 𝟏[�(��)��(��)]

�∈���∈��

. 

 
Two related statistics are the misranking error and Wilcoxon-Mann-Whitney (WMW) U statistic: 

ERR(𝑓) = 1 − AUC(𝑓),      WMW(𝑓) = 𝑛�𝑛�∙AUC(𝑓). 
 
Here we define a general class of linear rank statistics: 
Definition 1. (Rank Risk Functional) Let 𝑎� ≤ 𝑎� ≤ ⋯ ≤ 𝑎�  be non-negative constants. A 
rank risk functional (RRF) is of the form: 

RRF(𝑓) = �𝑦��𝟏[rank�(��)����] ∙ 𝑎�

�

���

�

���

. 

This class is an extension of the class of conditional linear rank statistics [5]. The RRF equation 
coincides with the usual definition of these rank statistics when there are no ties. Special 
members of this class include the following (see [5] and [10]): 
• 𝑎� = 𝑙: Wilcoxon Rank Sum (WRS) – differs from WMW by a constant if there are no ties. 
• 𝑎� = 𝑙 ∙ 𝟏[���] for some fixed threshold t: partial WMW – concentrates at the top of the list. 
• 𝑎� = 𝟏[���]: Winner Takes All (WTA) – concerned only with the top example being positive. 
• 𝑎� = �

�����
: Mean Reciprocal Rank (MRR). 

• 𝑎� = �
����(�����)

: DCG – popular in information retrieval. 

• 𝑎� = 𝑙� for some 𝑝 > 0: P-norm Push – concentrates at the top of the list. 



4 
 

2.3 Treatment of Ties 
 
While the treatment of ties in rank is not critical in more classical applications of statistics such 
as hypothesis testing, it is of central importance in our approach because we want not only to 
compute rank statistics, but also to optimize them. This is precisely why we require a strict 
inequality in Equations (1) and (2). Consider, for instance, the AUC. Suppose that the relative 
rank were defined with an inequality instead of strict inequality in Equation (2). If the scoring 
function were given by 𝑤 = 0, namely 𝑓(𝑥�) = 𝑤�𝑥� = 0 for all i, so that all examples were tied 
with the trivial score of zero, then the AUC would be 1, i.e., the highest possible value. But 
clearly 𝑤 = 0 is not optimal in any reasonable sense. The strict inequalities in our definitions of 
rank and relative rank completely prevent this problem. In our formulation, increasing the 
number of ties lowers ranking quality, which allows us to avoid trivial solutions when optimizing 
rank statistics. 
 
2.4 MIP Formulations 
 
Formulation 1 (Maximize AUC): Let 𝑣� = 𝑤�𝑥�  be the score for example xi. For each pair 
(𝑥� , 𝑥�) such that 𝑖 ∈ 𝑆� and 𝑘 ∈ 𝑆�, the binary variable zik is 1 if 𝑣� > 𝑣�, and 0 otherwise. The 
user specifies a margin ε, so that 𝑧�� = 1 if 𝑣� − 𝑣� ≥ 𝜀 . The value of ε controls a tradeoff 
between speed of convergence and generalization; smaller values of ε typically yield shorter 
runtimes, but the resulting solutions may not perform as well on new data. 
 

𝑃AUC(𝜀):  max
�,�,�

     � � 𝑧��
�∈���∈��

                                                                                                

s.t.        𝑧�� ≤ 𝑣� − 𝑣� + 1 − 𝜀        ∀𝑖 ∈ 𝑆�,𝑘 ∈ 𝑆�                                        
𝑣� = 𝑤�𝑥�                              ∀𝑖 ∈ 𝑆�                                                      
𝑣� = 𝑤�𝑥�                            ∀𝑘 ∈ 𝑆�                                                     
−1 ≤ 𝑤� ≤ 1                         ∀𝑗 = 1, … ,𝑑                                             
𝑧�� ∈ {0,1}                            ∀𝑖 ∈ 𝑆�,𝑘 ∈ 𝑆�.                                      

 
Formulation 2 (Maximize RRF): Let 𝑣� represent the score of example xi. Now we consider all 
pairs of examples, so for all i and k, 𝑧�� = 1 if 𝑣� > 𝑣� and rank�(𝑥�) = ∑ 𝑧���

��� . The binary 
variables 𝑡��  are 1 if rank�(𝑥�) ≥ 𝑙 − 1 , which implies 𝑡�� − 𝑡�,��� = 1  if rank�(𝑥�) = 𝑙 − 1 . 
Thus the objective is to maximize the following over all possible choices of 𝑡��’s: 

�𝑦��𝑎��𝑡�� − 𝑡�,����,   𝑡�,��� = 0  ∀𝑖,  or equivalently   �𝑦��(𝑎� − 𝑎���)𝑡�� ,   𝑎� = 0.
�

���

�

���

 
�

���

�

���

 

 
Since we have 𝑡�� = 1 for all i, the cost function is: 

���(𝑎� − 𝑎���)𝑡�� + 𝑎�

�

���

�
�∈��

= |𝑆�|𝑎� + ��(𝑎� − 𝑎���)𝑡��

�

���

.
�∈��

 

 
Note that because 𝑎� − 𝑎��� ≥ 0, the method will set 𝑡�� = 1 whenever possible to maximize the 
objective. Let 𝑆� = {𝑙 ≥ 2: 𝑎� − 𝑎��� > 0}. The MIP formulation is: 



5 
 

𝑃RRF(𝜀):  max
�,�,�,�

     � �(𝑎� − 𝑎���)𝑡��
�∈���∈��

                                                                                

s.t.       𝑣� = 𝑤�𝑥�                               ∀𝑖 = 1, … ,𝑛                                               
𝑧�� ≤ 𝑣� − 𝑣� + 1 − 𝜀          ∀𝑖 ∈ 𝑆�, 𝑘 = 1, … ,𝑛                                

𝑡�� ≤
1

𝑙 − 1
�𝑧��

�

���

                 ∀𝑖 ∈ 𝑆�, 𝑙 ∈ 𝑆�                                          

−1 ≤ 𝑤� ≤ 1                          ∀𝑗 = 1, … ,𝑑                                              
𝑡�� , 𝑧�� ∈ {0,1}                        ∀𝑖 ∈ 𝑆�, 𝑙 ∈ 𝑆�,𝑘 ∈ 1, … ,𝑛                    

 
In our experiments, we will also use the associated linear relaxations of the MIP, in which the 
binary variables are allowed to take continuous values in [0,1]. In this case, the cost is no longer 
exactly the AUC or RRF, and the solution w is an approximate solution to the ranking problem. 
 
3 Experiments 
 
We solve PAUC using six datasets – FourClass and SVMGuide1 are from the LIBSVM collection, 
and all others are from the UCI Machine Learning Repository, except for ROC Flexibility, which 
is artificially created so that the ROC curves of the individual features differ substantially from 
each other. For each dataset, we randomly divide the data into training and test sets, and compare 
the performance of RankBoost (RB) [6], logistic regression (LR), a support vector machine 
(SVM)-style ranking algorithm, the linear relaxation (LP), and the MIP. This experiment is 
repeated ten times, using ε = 10-4 to solve all LPs and ε = 10-6 to solve all MIPs except for the 
ROC Flexibility data, for which we use ε = 10-5 to solve the MIPs. 
 
Table 1 shows the mean training and test AUC over ten instances for each dataset and algorithm; 
bold indicates the value is not significantly smaller than the highest value in its row at the 0.05 
significance level, according to a matched pairs t-test. The MIP achieves the statistically highest 
mean AUC for all training and test sets. Table 2 shows for each dataset the number of times out 
of ten that each method performs best on the test data; bold indicates the highest count in each 
row. The counts in the MIP column clearly dominate the counts of the other methods. 
 

Table 1: Problem dimensions and mean AUC (%) on training (top) and test (bottom) sets 
Dataset ntrain ntest d RB LR SVM LP MIP 

Liver Disorders 172 173 6 73.6621 74.0374 74.2802 74.2816 75.3802 
70.6463 70.8567 70.9705 70.9691 71.0257 

ROC Flexibility 250 250 5 71.0959 72.0945 71.1840 70.6327 80.6163 
65.9028 67.4607 67.7844 67.1797 81.7706 

FourClass 431 431 2 83.0278 82.9907 83.1853 83.1857 83.2230 
82.8790 82.8050 83.0438 83.0492 82.9861 

SVMGuide1 700 6389 4 99.1929 99.2255 99.2330 99.2327 99.2384 
99.0520 99.0563 99.0649 99.0651 99.0642 

Abalone 1000 3177 10 91.3733 91.4723 91.5078 91.5067 91.5135 
90.5580 90.6139 90.6415 90.6411 90.6419 

Magic 1000 18020 10 84.0105 84.0280 84.4880 84.4903 84.4943 
83.5273 83.5984 83.9349 83.9365 83.9370 



6 
 

 
Table 2: Number of times each method performs best on test data 
Dataset RB LR SVM LP MIP 
Liver Disorders 1 1 3 3 5 
ROC Flexibility 0 0 0 0 10 
FourClass 1 1 0 3 5 
SVMGuide1 1 3 0 2 4 
Abalone 1 1 2 2 4 
Magic 0 0 2 4 4 

 
Not all of the MIPs solve to provable optimality within the specified time limit – up to ten hours 
for the larger datasets – so given more time, it is possible that the MIP solutions could be even 
better. Tables 1 and 2 both demonstrate that the MIP has a distinct advantage over approximate 
methods. They also confirm that the LP can be used to generate good solutions. 
 
4 Conclusion 
 
We have introduced new powerful mixed integer programming algorithms for a large class of 
supervised ranking algorithms. In current work, we are devising comprehensive experiments to 
test our methods using the Gurobi [7] solver. Preliminary evidence suggests that these techniques 
outperform state-of-the-art techniques on the AUC problem, and we will continue to obtain more 
computational results for the RRF formulation. 
 
References 
 

1. Agarwal, S., Dugar, D., and Sengupta, S., 2010, “Ranking Chemical Structures for Drug 
Discovery: A New Machine Learning Approach,” J. Chem. Inf. Model., 50(5), 716-731. 

2. Bennett, J., Lanning, S., 2007, “The Netflix Prize,” Proceedings of KDD Cup. 
3. Bertsimas, D., Shioda, R., 2007, “Classification and Regression via Integer Optimization”, 

Operations Research, 55(2), 252-271. 
4. Bradley, A. P., 1997, “The Use of the Area under the ROC Curve in the Evaluation of Machine 

Learning Algorithms,” Pattern Recognition, 30(7), 1145-1159. 
5. Clemençon, S., Vayatis, N., 2008, “Empirical Performance Maximization for Linear Rank 

Statistics”, Advances in Neural Information Processing Systems, 21. 
6. Freund, Y., Iyer, R., Schapire, R., Singer, Y., 2003, “An Efficient Boosting Algorithm for 

Combining Preferences”, JMLR, 4, 933-969. 
7. Gurobi Optimization, Inc., 2010, “Gurobi Optimizer Reference Manual, Version 3.0”, 

http://www.gurobi.com. 
8. Järvelin, K., Kekäläinen, J., 2000, “IR Evaluation Methods for Retrieving Highly Relevant 

Documents”, SIGIR ’00: Proceedings of the 23rd Annual International ACM SIGIR Conference 
on Research and Development in Information Retrieval, 41-48. 

9. Ji, H., Rudin, C., Grishman, R., 2006, “Re-Ranking Algorithms for Name Tagging”, Proceedings 
of the Workshop on Computationally Hard Problems and Joint Inference in Speech and Language 
Processing, 49-56. 

10. Rudin, C., 2009, “The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at 
the Top of the List”, JMLR, 10, 2233-2271. 

11. Rudin, C., Passonneau, R., Radeva, A., Dutta, H., Ierome, S., Isaac, D., 2010, “A Process for 
Predicting Manhole Events in Manhattan,” Machine Learning, 80, 1-31. 


	References

