

2014 ASHRAE/IBPSA-USA
Building Simulation Conference

Atlanta, GA
September 10-12, 2014

IRRADIANCE CACHING FOR GLOBAL ILLUMINATION CALCULATION ON

GRAPHICS HARDWARE

Nathaniel L Jones and Christoph F Reinhart
Massachusetts Institute of Technology, Cambridge, MA

ABSTRACT
Recent developments in integrated circuit technology
tend toward increased numbers of cores rather than faster
clock speeds, so software must use parallelism to achieve
faster run times. The ray tracing performed by Radiance
is highly parallelizable in concept, with the exception of
irradiance caching that serially stores and retrieves
results of expensive indirect irradiation computations.
This paper describes a novel method of parallel
irradiance caching for global illumination on a graphics
processing unit (GPU).
The irradiance caching method in this paper closely
follows the placement and distribution of rays produced
by Radiance using the free OptiX™ ray tracing engine.
Ambient values are stored in GPU memory which can as
necessary be used to create a bounding volume hierarchy
(BVH) of known irradiance records. Queries into the
irradiance cache are performed by casting a short ray into
the BVH. The current implementation is able to generate
images similar to those created by Radiance’s RPICT
program up to twenty times faster.

INTRODUCTION
Moore’s law gave Radiance a free ride for many years.
Until the mid-2000’s, central processing unit (CPU)
clock speeds dependably doubled every 1.5 to 2 years in
accordance with the law, which states that the number of
transistors on integrated circuits increases at that rate.
This allowed Radiance’s developers and users to pursue
ever more complicated simulations with the assurance
that the software would speed up accordingly on new
generations of hardware. However, today’s integrated
circuit designers favor allocating the extra transistors of
new chip generations to additional cores rather than
higher clock speeds. As a result, the speed of serial
programs like Radiance has not increased in the last ten
years (Sutter, 2005). In order to integrate
computationally expensive uses of Radiance, such as
glare analysis and daylight autonomy studies, into design

tools that run at interactive speeds, software developers
must pursue multicore solutions.
The Radiance suite of programs (Larson & Shakespeare,
1998) has become the gold standard for global
illumination calculation used by architects and lighting
designers. This can be attributed to Radiance’s
flexibility, open source availability, and extensive
validation through comparison to physical architectural
spaces (Grynberg, 1989; Ng, et al., 2001; Galasiu & Atif,
2002), controlled environments (Mardaljevic, 1995;
Reinhart & Herkel, 2000; Mardaljevic, 2001; Reinhart &
Walkenhorst, 2001), and specific material properties
(Reinhart & Andersen, 2006). Radiance is used as a
simulation engine by widely-used building performance
simulation tools such as IES<VE>, Ecotect®,
OpenStudio, DAYSIM, and DIVA for Rhino. However,
Radiance simulations tend to be slow, especially in large
scenes. As a result, global illumination simulation with
Radiance tends to take place late in the design process,
after most design decisions are made, or use simplified
simulation settings that may not accurately predict
physical conditions. Faster simulations are necessary in
order to better predict and design interior lighting.
In this paper, we propose a solution to speed up Radiance
calculations by tracing multiple primary rays in parallel
on a graphics processing unit (GPU). First, we introduce
irradiance caching as a method commonly used in
Radiance to speed up serial calculations and describe our
method for reading an irradiance cache (IC) on the GPU
by mapping it to a bounding volume hierarchy (BVH).
Then, we describe how to create and adaptively vary the
size of an IC using a multi-stage method on the GPU.
Our strategy can be adapted to fit various scenes and
view types. Finally, we demonstrate the effectiveness of
our method on two scenes of vastly different scales: a
fictitious small office and Harvard University’s Gund
Hall. Our implementation using the OptiX™ 3.5.1 ray
tracing engine from NVIDIA® produces results up to
twenty times faster than Radiance with accuracy within
Radiance’s ambient accuracy parameter.

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

111

BACKGROUND
The Radiance package includes a number of executable
programs built around a specialized backward ray
tracing engine. In backward ray tracing, primary rays are
emitted from an origin point (a virtual camera or
illuminance sensor) to sample the environment.
Wherever a ray intersects a surface, it recursively spawns
one or more new rays, depending on the surface material,
and gathers their results into a single value that is
returned as the parent ray’s result (Whitted, 1980).
Typically, a small number of spawned rays are required
for direct and specular reflections, and a much larger
number of rays are spawned to sample the indirect
irradiance due to ambient lighting at the intersection
point. Consequently, ambient calculations tend to
dominate the total ray tracing computation time. In
Radiance, each ray returns red, green, and blue values in
units of radiance (W•sr−1•m−2). The array of values
returned from the primary rays produces an image.

Ray Tracing on the GPU
While GPUs have been primarily designed for raster
rendering, the development of GPU-based ray tracers has
closely paralleled the development of programmable
GPU raster pipelines. Early GPU ray tracers relied
significantly on coopting elements of the raster pipeline
and imitated its state machine programming interface
(Purcell, et al., 2002; Deitrich, et al., 2003). General
purpose GPU (GPGPU) language extensions such as
Compute Unified Device Architecture (CUDA™) from
NVIDIA® made it possible to implement all components
of a ray tracing engine on GPU shader processors (Aila
& Laine, 2009; Wang, et al., 2009). In 2010, NVIDIA®
released the OptiX™ ray tracing engine, which uses
CUDA™ to perform both ray traversal and shading on
the GPU (Parker, et al., 2010).
The OptiX™ library is designed to replace serial CPU-
based ray tracing engines in existing source code.
OptiX™ provides built-in BVH creation and ray
traversal algorithms to detect potential ray-surface
intersections. The programmer is only required to re-
implement ray generation, intersection testing, closest
hit, any hit, and miss algorithms as CUDA™ programs.
OptiX™ compiles these programs into assembly code
and uses a just-in-time compiler to create device-specific
instructions at runtime.
OptiX™ has been used to accelerate other building
performance simulation tasks. Clark (2012) and
Halverson (2012) demonstrate its use for modeling
radiative heat transfer involved in the urban heat island
effect. Andersen et al. (2013) use it for interactive
visualization of cached Radiance results. We have
previously demonstrated that by editing the source code
of Radiance’s RPICT and RTRACE programs, they can

perform ray tracing using OptiX™ at speeds twenty
times faster than Radiance’s default ray tracing engine,
provided no irradiance caching is performed (Jones &
Reinhart, 2014). However, in order to make the OptiX™
engine’s speed competitive with Radiance, irradiance
caching must be implemented on the GPU.

Irradiance Caching
While direct and specular reflections change abruptly
over spatial dimensions, ambient lighting due to indirect
irradiance is less variable. A single ambient value may
be applied to all ray intersections within a calculated
radius of the point where it was measured. An irradiance
cache (IC) is a collection of indirect irradiance values
and associated validity radii stored in a hierarchical
acceleration structure (an octree in Radiance) that allows
them to be quickly retrieved based on geometric
position. Given two cached irradiance values at points
E1 and E2 in Figure 1, the irradiance at point A may be
found by interpolation, and the irradiance at point B may
be found by extrapolation. Only when a ray intersection
is not contained within the validity radius of any IC
record (such as at point C) must a new record be
calculated and added to the IC. This strategy reduces
overall ray tracing time by an order of magnitude
(Larson & Shakespeare, 1998), but it also eliminates the
potential for straightforward parallelization because the
final value of each ray depends on the IC records created
by previous rays.

Figure 1 IC records may be applied to all points within

their valid radii (Larson & Shakespeare, 1998).

Radiance spawns many ambient rays to create each new
IC record. Each ray may in turn spawn new ambient rays
if it fails to hit within a preexisting IC record. Every IC
record is assigned a level corresponding to the number
of ambient bounces taken by the ray that created it. The
number of levels is limited by the “-ab” argument in
Radiance. At each lower level, IC records accumulate
more radiance as a result of a greater number of bounce
paths that reach their positions. An IC record cannot
influence the ambient radiance of a ray spawned more

E2

E1

A

B

C

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

112

than one level below, as this would reduce the number of
ambient bounces contributing to the calculated radiance
at that point. Only level zero IC records contribute to the
ambient radiance of primary rays. Thus, increasing the
number of ambient bounces also increases the indirect
illumination from sources that reaches the camera
(Figure 2). This creates a paradox for parallel IC
creation: the number and position of IC records at each
level depends on the radiance magnitude received from
the level above and the visibility to IC records at the level
below. If creation of records within each level is to be
fully parallelized, there is no starting place.
Various methods have been proposed for creating an IC
using concurrent threads. Strategies for CPU clusters
typically involve occasional synchronization of separate
local ICs assigned to each thread. This can occasionally
result in duplicate IC records created simultaneously by
more than one CPU. On UNIX systems, multiple
instances of Radiance may share a single irradiance
cache using network file locks (Larson & Shakespeare,
1998). Synchronization can also be performed using the
Message-Passing Interface (MPI) (Koholka, et al., 1999;
Debattista, et al., 2006). Dubla et al. (2009) propose a
multi-threaded approach that allows wait-free
synchronization of local ICs. All of these methods allow
different threads to create overlapping IC records, but
this happens infrequently because the number of
concurrent CPU threads is small.
Unfortunately, this assumption does not hold for the
GPU. Modern GPUs implement single-instruction,
multiple-thread (SIMT) architectures in which groups of
32 threads called warps simultaneously execute the same
command on different data. SIMT architecture allows
threads within a warp to take divergent execution paths
as a result of the data they receive, but this reduces
parallel efficiency, as some threads must idle while
others perform the divergent task (NVIDIA, 2012).
Faster GPU ray tracing is achieved when the rays
computed by each warp are coherent, hitting the same
triangles and calling the same intersection programs.
Were the Radiance IC strategy to be implemented
directly on the GPU, it is highly likely that many threads
in each warp would attempt to create overlapping IC
records, severely reducing computational efficiency.

Furthermore, adding records to the IC’s hierarchical
acceleration structure can require redistribution of nodes
within the structure, leaving the IC temporarily
unreadable to threads from other warps. Hence, efficient
IC creation is, by nature, a serial operation.
Using GPUs, others have implemented IC creation as a
pre-process carried out prior to ray tracing-based image
creation. The key insight of these approaches is that
appropriate locations for IC records can be predicted
based on the camera’s location within the scene.
Křivánek and Gautron (2009) use splatting to store
irradiance values in a two-dimensional cache that may
be projected onto the scene from the camera’s vantage
point. This avoids the need to store IC records in a
hierarchical acceleration structure, but it only considers
one ambient bounce. Wang et al. (2009) use adaptive
seeding and k-means clustering to select locations for IC
records, followed by photon mapping to evaluate
irradiance values at these points. Frolov et al. (2013)
create an irradiance cache in 20 to 30 passes, where each
pass involves both addition of IC entries visible to the
camera and elsewhere in the scene for secondary rays.
Locations for IC records within the field of view are
selected using image processing techniques, while those
elsewhere in the scene are chosen by z-curve clustering.
All of these existing methods have some limitations.
Because they depend on the camera’s field of view to
determine IC record locations, they do not scale well to
situations in which the camera moves or rotates, such as
in adaptive zone glare analysis (Jakubiec & Reinhart,
2012). They also assume that the rendered spaces are at
least mostly enclosed, and they provide no explicit
mechanism for dealing with views to the exterior, which
will be common in analysis of daylit scenes. We seek to
address these shortcomings.

ALGORITHMS
On the GPU, we must read from and write to the IC at
separate times. First, we discuss our method for reading
from the IC, which may be performed in conjunction
with various methods of IC creation. Then, we describe
two methods for creating IC records on the GPU, one
optimized for small enclosed spaces and the other
adapted to large open spaces.

Figure 2 RPICT renderings with number of ambient bounces ranging from 0 (left) to 5 (right). Adding ambient
bounces increases the overall radiance of the scene originating from the sky, though the effect is imperceptible

beyond five bounces. Mean image luminance (μ) is shown in cd/m2.

μ=1.18 μ=66.3 μ=147 μ=194 μ=204 μ=214

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

113

Reading from an Irradiance Cache in Parallel
Whether or not we use the GPU for IC creation, we can
save an IC to a binary file to enable multiple simulations
of a scene. Here, we describe how to use an existing IC
in OptiX™. Our first step is to enter all available level
zero IC records into a BVH acceleration structure. Each
IC record represents a disc over which a given indirect
irradiance value is valid, along with directional vectors
indicating the disc’s orientation in space and gradients in
the plane of the disc. While OptiX™ generates the BVH
automatically, we must specify a bounding volume for
each disc. Our OptiX™ bounding box program defines
an axis-aligned bounding box (AABB) for each entry as

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑃𝑃𝑖𝑖 ± 𝑎𝑎𝑎𝑎�1 − 𝐷𝐷𝑖𝑖2 (1)

where Pi and Di are the ith coordinates of the disc’s
center point and normal direction, respectively, r is its
radius, and a is Radiance’s ambient accuracy parameter
(Figure 3). The AABBs of all IC records are independent
and can be computed in parallel on the GPU, although
their insertion into the BVH tree is a serial operation.

Figure 3 An axis-aligned bounding box for a disc.

Once the IC records are mapped to the BVH, we proceed
with the final gather. We use the OptiX™
implementation described in Jones & Reinhart (2014),
which is itself based on the source code of RPICT. This
implementation follows the behavior of Radiance as
closely as possible at material intersections (although
currently only plastic, metal, translucent, glass, and light
materials are implemented). However, we make the
following alteration: at each intersection with a normal
material, instead of spawning thousands of ambient rays
into the scene, we spawn a single very short ray into the
IC BVH acceleration structure. Our OptiX™
intersection program checks each intersected IC record’s
level, validity radius, and normal direction using the tests
from Radiance’s sumambient() method, which is
responsible for summing the contributions of relevant IC
records, and adjusts the radiance value in the ray’s
payload accordingly. At the conclusion of this short ray’s
traversal, its payload contains the weighted average of

the ambient contributions from all IC records it
intersected that passed the tests.
If the existing IC does not provide good coverage of the
scene, it is possible that a short ray into the IC BVH will
not hit any IC records. In this case, it will return an
ambient radiance value of zero (Figure 4). To handle
this, we calculate the ambient value at the intersection
point by spawning new rays into the scene as in
Radiance’s doambient() method, which calculates
indirect irradiance at a point when no IC is available.
However, this causes poor warp coherence since each
ray’s samples are likely to hit different objects. To
improve performance, we use this method to fill gaps
only during the final gather and allow only one ambient
bounce in an attempt to reach other IC records.

Figure 4 The scene with poor ambient coverage (left)

can be filled in during final gather (right).

Creating an Irradiance Cache for Enclosed Spaces
In enclosed spaces, there is limited surface area that
needs to be covered by the IC, and there is a good chance
that each surface patch will be covered at multiple levels
of the IC. In this case, we sample the scene geometry
once to choose IC record locations, and we reuse the
same locations for new IC records at each level. This
eliminates the need to resample the scene geometry for
each IC level using additional OptiX™ kernel calls that
can double the overall computation time. We first sample
the scene to generate a list of candidate IC record
locations, then reduce the number of candidates while
maintaining even scene coverage using k-means

P

D
ar

AABBmin

AABBmax

10 104103 cd/m2102

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

114

clustering, and finally create IC records at each cluster in
an iterative manner, proceeding from highest to lowest
levels (Figure 5). The IC records for level zero are fed
into the final gather algorithm described in the previous
section.

Figure 5 In enclosed spaces, IC record locations from a
single call to the sampling kernel are used to create the

IC at each level.
First, we sample the scene to create a list of candidate IC
record locations. Using an OptiX™ kernel, we cast rays
from the eye position into the scene and record the
position and surface normal direction of the first hit
point. If the eye position and field of view are to remain
static, we choose the initial ray directions to form a grid
over the image using Radiance’s “-vt” argument and a
user-specified sampling density. If the eye rotates
between images, as it does in glare analysis (Jakubiec &
Reinhart, 2012), we distribute the initial ray directions
over equal solid angle sections of a sphere. In order to
include geometry that is not visible from the eye
position, we allow a user-defined number of bounces and
record an additional position and normal pair at each new
intersection. For each bounce, a random cosine-weighted
reflection direction is chosen within the hemisphere
defined by the surface normal. The output of this
OptiX™ kernel is a list of points and corresponding
normals which will be candidate IC record locations.
This list likely contains far more candidates than needed
to cover the surfaces in the space, which could cause
excessive ray traversal times. Fortunately, we can reduce
the list’s size by any of a number of clustering methods.
For simplicity, we perform iterative k-means clustering
to find a user-defined number of cluster centers using
CUDA™, starting from a randomly chosen set of
candidates. After clustering, the candidate IC record
location nearest each cluster center will be used in the
next step to generate an IC record.
K-means requires a distance metric in order to cluster
nearby objects. In this case, the metric must consider not
only Euclidian distance, but also the normal discrepancy

between candidates. We use the modification by Wang
et al. (2009) of the error in the split sphere model (Larson
& Shakespeare, 1998)

 𝜀𝜀 = 𝛼𝛼‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑘𝑘‖ + �2 − 2(𝑛𝑛𝑖𝑖 ∙ 𝑛𝑛𝑘𝑘) (2)

to relate error ε to the change in position x and normal
direction n from candidate i to cluster center k, given a
user-defined weighting factor α that accounts for scene
size. This modified error metric is preferable because it
can be used without calculating the indirect irradiance at
every candidate location.
The IC is built through iterative calls to an ambient
sampling OptiX™ kernel. In each call to this kernel, one
IC record is created in parallel for each chosen candidate
location. The process is similar to Radiance’s
doambient() method, which computes the indirect
irradiance at a point by sampling the scene with rays,
except that no supersampling takes place because
OptiX™ does not provide an efficient sorting
mechanism or memory to store a large number of
ambient samples per thread. This is acceptable because
the cost of using a large number of ambient divisions is
much lower on the GPU than on the CPU. The first call
to the kernel creates the highest IC level by sampling the
environment with no ambient bounces. After each kernel
call, the new IC records are entered into a BVH as
described in the previous section. Subsequent calls to the
kernel repeat the indirect irradiance calculation at each
location by sampling the IC from the previous round.
The IC generated at level zero is used by the final gather
as previously described.

Creating an Irradiance Cache for Open Spaces
In open spaces, higher-level IC records are likely to be
spread out geometrically, while lower-level records will
tend to cluster near the eye position. This differs from the
previous case in that we must now choose different
record locations for each IC level in order to achieve
optimal coverage for each ambient bounce (Figure 6).
We make three changes to the method described in the
previous section. First, the kernel used initially to sample
the scene generates only one point-normal pair per GPU
thread as no bounces are needed. The candidate
locations, again chosen by k-means clustering, serve as
the locations for only the IC records at level zero.
Second, we introduce a new scene sampling OptiX™
kernel that spawns rays from the previous cluster centers
to identify new candidate IC record locations using
Radiance’s ambient sampling distribution. The point-
normal pairs from this kernel also undergo k-means
clustering, and the results are used both as locations for
level one IC records and as new input to the same kernel.
This process recurses through the number of iterations
specified by Radiance’s “-ab” argument. Third, while the

Eye Direct

1st Bounce

Final
Gather

Ambient
Sampling

IC
Level 0

K-Means
Clusters

Scene
Sampling

2nd Bounce Ambient
Sampling

IC
Level 1

nth Bounce Ambient
Sampling

IC
Level n-1

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

115

IC creation kernel is still called once per level as in the
previous section, it now receives a different set of input
locations on each call, consuming both the cluster
centers from the corresponding level and the IC from its
previous invocation. As before, the level zero IC is used
for the final gather.

Figure 6 In open spaces, IC record locations are
separately calculated for each IC level based on

locations reached at the previous level.

VALIDATION
We demonstrate the speed and accuracy of our OptiX™
implementation by comparing it to Radiance’s RPICT
program for two scenes. The first, a fictitious small
furnished office composed of 278,695 triangles, fits the
criteria for an enclosed space. The second, a model of
Harvard University’s Gund Hall with 187,208 triangles,
is characteristic of open spaces. We calculate the
speedup factor as the ratio of RPICT computation time
to the computation time of our OptiX™ implementation
with the same number of ambient bounces. In order to
quantify the error introduced by our method, we report
the mean radiance of the OptiX™-generated image as a
percentage of the mean radiance in the RPICT-generated
image with the most ambient bounces. This is an
imperfect metric because RPICT does produce rendering
artifacts, but it serves to demonstrate the extent of
agreement between RPICT and the OptiX™
implementation.
Simulations were run on two machines. The first was an
active workstation with a 3.4 GHz Intel® Core™ i7-4770
processor and an NVIDIA® Quadro® K4000 graphics
card with 768 CUDA™ cores. The second was a
dedicated graphics workstation with a 2.27 GHz Intel®
Xeon® E5520 processor and two NVIDIA® Tesla® K40
graphics accelerators with 2880 CUDA™ cores each.
The OptiX™ implementation was configured to use
either one or both accelerators. The standard version of
RPICT was run only on the first machine with the faster
processor.

Enclosed Space
The small office scene was rendered with varying
numbers of ambient bounces in both RPICT and our
OptiX™ implementation (Figure 7). Using an ambient
accuracy of 5%, minimum ray weight of 0.2%, and 3000
ambient divisions, the number of rays cast by RPICT
leveled off at 1.28×108 after five ambient bounces, which
took 46.5 minutes. We take five ambient bounces to be
optimal for this scene with these settings.

Figure 7 The small office scene rendered with five

ambient bounces in RPICT (left) and 17 times faster in
our OptiX™ implementation (right).

The small office scene was rendered using the OptiX™
implementations for both enclosed and open spaces. The
enclosed method returned results in half the time of the
open method for tests with 4096 or more clusters.
Because ICs of this size provide good coverage of the
small scene, the two methods have comparable accuracy.
As a result, we report only the performance of the faster
enclosed method.
As with RPICT, the OptiX™ implementation’s
rendering time increases and its error decreases until five
ambient bounces, after which they become essentially
constant (Figure 8). Because IC records at higher levels
can be built using exponentially fewer rays, the speedup
factor is greater for higher numbers of bounces, reaching
a maximum of 17 times RPICT’s speed when using 4096
clusters.
Increasing the number of clusters also reduces error,
though the effect on speed is more complicated. Low

Eye Direct

1st Bounce

Final
Gather

Ambient
Sampling

IC
Level 0

K-Means
Clusters

Scene
Sampling

2nd Bounce Ambient
Sampling

IC
Level 1

K-Means
Clusters

Scene
Sampling

nth Bounce Ambient
Sampling

IC
Level n-1

K-Means
Clusters

Scene
Sampling

10 104103 cd/m2102

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

116

cluster counts result in reduced ambient coverage, which
produces more incoherent work during the final gather,
increasing computation time. High cluster counts
increase the time for ray traversal of the IC BVH. Using
five ambient bounces, a 24-fold speedup can be achieved
with 2048 clusters per IC level, but increased accuracy
can be achieved with more clusters.
In all cases, the OptiX™-generated images display less
radiance than their RPICT counterparts, though the
difference is minimal beyond five ambient bounces. The
discrepancy is due to less than optimal ambient
coverage. The 5% ambient accuracy value used for
RPICT produced visually-apparent poor coverage in the
OptiX™ implementation. The reported OptiX™
implementation trials used a setting of 10% ambient
accuracy, 5% less accurate than RPICT, in order to
increase the validity radii of IC records according to
equation (1). While this would introduce rendering
artifacts into RPICT by spacing IC records farther apart,
the ambient accuracy setting does not have this effect in
our OptiX™ implementation because the spacing of IC
records is determined by the clustering algorithm. In fact,
certain rendering artifacts introduced by RPICT are
notably absent in the OptiX™ rendering (e.g. the lower
left-hand wall in Figure 7) because the latter builds the
entire IC before calculating any pixel value. We also note
that the measured error in our images is less than the
difference in ambient accuracy settings.

Open Space
The Gund Hall scene was also rendered with varying
numbers of ambient bounces in RPICT and our OptiX™
implementation, although the enclosed method was not
used due to the scene’s size (Figure 9). Using the same

settings as before, the number of rays cast by RPICT
leveled off at 1.15×109 after five ambient bounces, which
took 198 minutes. We again take five ambient bounces
to be optimal for this scene with these settings.

Figure 9 The Gund Hall scene rendered with five

ambient bounces in RPICT (left) and 20 times faster in
our OptiX™ implementation (right).

Again, the OptiX™ implementation’s rendering time
increases and its error decreases until five ambient
bounces, after which they become more or less constant

10 104103 cd/m2102

Figure 8 For the small office scene, the speedup factor increases and error decreases with the number of ambient

bounces using 4096 clusters (left). Error decreases with the number of clusters, but large numbers of clusters
require greater traversal time using five ambient bounces (right).

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

Er
ro

r

Sp
ee

du
p

Fa
ct

or

Ambient Bounces

Dual Tesla K40
Tesla K40
Quadro K4000
Error

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

512 1024 2048 4096 8192

Er
ro

r

Sp
ee

du
p

Fa
ct

or

Clusters

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

117

(Figure 10). In this larger scene with 4096 clusters, the
maximum speedup is 21 times RPICT’s speed. Faster
speeds can be achieved using fewer clusters because the
coherence of final gather rays does not degrade as
quickly when IC level zero has its own set of record
locations. However, error still increases due to poor
coverage at higher levels when the number of cluster
centers is low.
The increased error in the Gund Hall scene indicates that
coverage is generally poorer here than in the small office
scene. This is to be expected, given that Gund Hall is a
larger space. To offset this effect, the OptiX™
renderings use an ambient accuracy setting of 25% to
increase IC record validity radii. This ultimately
produces a 17% difference in mean radiance between
RPICT and our OptiX™ implementation with 4096
clusters. While this error appears large, some of it must
be attributed to rendering artifacts produced by RPICT
(e.g. under the table in Figure 10). We again note that the
error observed is less than the 20% difference between
the OptiX™ implementation and RPICT ambient
accuracy settings.

CONCLUSION
Ray tracing for global illumination simulation has many
potential uses for architectural design, both actively used
and as yet unexplored. In many cases, such as in early
design or when global illumination simulation serves as
a preprocessing step to another type of analysis, it is
important that the simulation execute quickly. However,
software developers can no longer depend on faster clock
speeds to produce shorter execution times. Instead, they
must rely on parallelism.

In this paper, we have demonstrated that irradiance
caching, along with other core algorithms from
Radiance, can be implemented in OptiX™ to achieve a
twenty-fold speed increase in global illumination
simulation. By precomputing a separate IC for each
ambient bounce level, we can duplicate RPICT results
with reasonable accuracy. In enclosed spaces, we can
further reduce computation time by reusing the same
locations for IC records at each level.
The primary source of error at this preliminary stage of
development is poor ambient coverage of the scene. We
have shown that in enclosed spaces, ICs that provide
good scene coverage can be generated in parallel on the
GPU. However, ICs generated in parallel can produce
poor coverage for open spaces. Additional ambient rays
in the final gather stage can improve image appearance,
but it is still necessary to make up for the missing
radiance in other ways. Continued work is necessary to
determine appropriate number and placement of IC
records so as to maximize scene coverage. Ultimately,
the accuracy achieved by OptiX™ must be judged
against measurements of physical spaces in order to
avoid bias from RPICT rendering artifacts.
There are many potential benefits to the architecture
profession if Radiance algorithms can be parallelized on
the GPU. While single-threaded programs cannot be
expected to run faster on new generations of hardware,
newer generations of GPUs, like the Tesla® in our trials,
continue to outperform their predecessors. Future
hardware generations are likely to surpass the twenty-
fold speed increase we have demonstrated. Faster
simulation results can be produced more frequently as an
aid to design, and their sooner availability makes it less
likely that the design will change during the simulation,

Figure 10 For Gund Hall, the speedup factor increases and error decreases with the number of ambient bounces

using 4096 clusters (left). Error decreases with the number of clusters, but large numbers of clusters require
greater traversal time using five ambient bounces (right).

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

Er
ro

r

Sp
ee

du
p

Fa
ct

or

Ambient Bounces

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

512 1024 2048 4096 8192

Er
ro

r

Sp
ee

du
p

Fa
ct

or

Clusters

Dual Tesla K40
Tesla K40
Quadro K4000
Error

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

118

which renders the results useless. Accurate simulation
results make it easier for architects to correctly size
windows and provide adequate artificial lighting without
consuming unneeded electricity. They also reduce the
likelihood of glare, which can decrease productivity in a
work environment. Faster ray tracing will also make
annual simulations such as daylight autonomy studies
more practical, as these take much longer than point-in-
time simulations. Thus, we believe that the ability to
create and use ICs on the GPU will be of great benefit to
building designers.

ACKNOWLEDGMENT
This research was funded through the Kuwait-MIT
Center for Natural Resources and the Environment by
the Kuwait Foundation for the Advancement of
Sciences. The Tesla K40 accelerators used for this
research were donated by the NVIDIA Corporation.
Frédo Durand and Jaroslav Křivánek offered useful
insight into previous work on irradiance caching. Thanks
also to J. Alstan Jakubiec for providing the models and
Radiance input files used for timing and illustration.

REFERENCES
Aila, T. & Laine, S., 2009. Understanding the efficiency

of ray traversal on GPUs. Proceedings of High-
Performance Graphics 2009, pp. 145-149.

Andersen, M., Guillemin, A., Amundadottir, M. L. &
Rockcastle, S., 2013. Beyond illumination: An
interactive simulation framework for non-visual and
perceptual aspects of daylighting performance.
Proceedings of BS2013: 13th Conference of
International Building Performance Simulation
Association, Chambéry, France, August 26-28, pp.
2749-2756.

Clark, J. G., 2012. A Fast and Efficient Simulation
Framework for Modeling Heat Transport. Master’s
Thesis. University of Minnesota.

Debattista, K., Santos, L. P. & Chalmers, A., 2006.
Accelerating the irradiance cache through parallel
component-based rendering. Proceedings of the 6th
Eurographics conference on Parallel Graphics and
Visualization, pp. 27-35.

Deitrich, A., Wald, I., Benthin, C. & Slusallek, P., 2003.
The OpenRT application programming interface -
towards a common API for interactive ray tracing.
Proceedings of the 2003 OpenSG Symposium, pp.
23-31.

Dubla, P., Debattista, K., Santos, L. P. & Chalmers, A.,
2009. Wait-free shared-memory irradiance cache.
Proceedings of the 9th Eurographics Symposium on
Parallel Graphics and Visualization, pp. 57-64.

Frolov, V., Vostryakov, K., Kharlamov, A. &
Galaktionov, V., 2013. Implementing irradiance
cache in a GPU photorealistic renderer. In: M. L.
Gavrilova, C. K. Tan & A. Konushin, eds.
Transactions on Computational Science XIX.
Berlin: Springer, pp. 17-32.

Galasiu, A. D. & Atif, M. R., 2002. Applicability of
daylighting computer modeling in real case studies:
comparison between measured and simulated
daylight availability and lighting consumption.
Building and Environment, 37(4), pp. 363-377.

Grynberg, A., 1989. Validation of Radiance, Berkeley,
CA: Lawrence Berkeley Laboratories. Document ID
1575.

Halverson, S., 2012. Energy Transfer Ray Tracing with
OptiX. Master’s Thesis. University of Minnesota.

Jakubiec, J. A. & Reinhart, C. F., 2012. The ‘adaptive
zone’ - A concept for assessing discomfort glare
throughout daylit spaces. Lighting Research and
Technology, 44(2), pp. 149-170.

Jones, N. L. & Reinhart, C. F., 2014. Physically based
global illumination calculation using graphics
hardware. Proceedings of eSim 2014: The Canadian
Conference on Building Simulation, pp. 474-487.

Koholka, R., Mayer, H. & Goller, A., 1999. MPI-
parallelized Radiance on SGI CoW and SMP.
Proceedings of the 4th International ACPC
Conference Including Special Tracks on Parallel
Numerics and Parallel Computing in Image
Processing, Video Processing, and Multimedia:
Parallel Computation, pp. 549-558.

Křivánek, J. & Gautron, P., 2009. Practical global
illumination with irradiance caching. Synthesis
Lectures on Computer Graphics and Animation,
4(1), pp. 1-148.

Larson, G. W. & Shakespeare, R., 1998. Rendering with
Radiance: The Art and Science of Lighting
Visualization. San Francisco: Morgan Kaufmann
Publishers, Inc.

Mardaljevic, J., 1995. Validation of a lighting simulation
program under real sky conditions. Lighting
Research and Technology, 27(4), pp. 181-188.

Mardaljevic, J., 2001. The BRE-IDMP dataset: a new
benchmark for the validation of illuminance
prediction techniques. Lighting Research and
Technology, 33(2), pp. 117-136.

Ng, E. Y.-Y., Poh, L. K., Wei, W. & Nagakura, T., 2001.
Advanced lighting simulation in architectural

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

119

design in the tropics. Automation in Construction,
10(3), pp. 365-379.

NVIDIA, 2012. CUDA C Programming Guide, PG-
02829-001_v5.0, October 2012.

Parker, S. G. et al., 2010. OptiX: A general purpose ray
tracing engine. ACM Transactions on Graphics -
Proceedings of ACM SIGGRAPH 2010, 29(4).

Purcell, T. J., Buck, I., Mark, W. R. & Hanrahan, P.,
2002. Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics -
Proceedings of ACM SIGGRAPH 2002, 21(3), pp.
703-712.

Reinhart, C. F. & Andersen, M., 2006. Development and
validation of a radiance model for a translucent
panel. Energy and Buildings, 38(7), pp. 890-904.

Reinhart, C. F. & Herkel, S., 2000. The simulation of
annual daylight illuminance distributions - a state-
of-the-art comparison of six RADIANCE-based
methods. Energy and Buildings, 32(2), pp. 167-187.

Reinhart, C. F. & Walkenhorst, O., 2001. Validation of
dynamic RADIANCE-based daylight simulations
for a test office with external blinds. Energy and
Buildings, 33(7), pp. 683-697.

Sutter, H., 2005. A Fundamental Turn Toward
Cuncurrency in Software. Dr. Dobb's Journal,
30(3), pp. 16-22.

Wang, R., Zhou, K., Pan, M. & Bao, H., 2009. An
efficient GPU-based approach for interactive global
illumination. ACM Transactions on Graphics -
Proceedings of ACM SIGGRAPH 2009, 28(3).

Whitted, T., 1980. An improved illumination model for
shaded display. Communications of the ACM, 23(6),
pp. 343-349.

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

120

	Irradiance Caching for Global Illumination Calculation on Graphics Hardware
	ABSTRACT
	introduction
	Background
	Ray Tracing on the GPU
	Irradiance Caching

	Algorithms
	Reading from an Irradiance Cache in Parallel
	Creating an Irradiance Cache for Enclosed Spaces
	Creating an Irradiance Cache for Open Spaces

	Validation
	Enclosed Space
	Open Space

	Conclusion
	Acknowledgment
	References

