

4.432/4.433 Modeling Urban Energy Flows

Lisbon Gr.02

Spring 2017

Panagiota Gianniou Samuel Letellier-Duchesne Shreshth Nagpal >>> pagian@mit.edu >>> samueld@mit.edu >>> shreshth@mit.edu

4.432/4.433 Modeling Urban Energy Flows

Lisbon Gr.02

Spring 2017

Panagiota Gianniou Samuel Letellier-Duchesne Shreshth Nagpal >>> pagian@mit.edu >>> samueld@mit.edu >>> shreshth@mit.edu

40 -27 -13 0 9 26 32 Psychrometric Chart

Psychrometric Chart

PROGRAM DISTRIBUTION

Residential	Commercial Retail
FAR:	2.5 3.2
Residentia	: 70 %
Commercia	al: 20 %
Retail:	10 %

DAYLIGHT PERFORMANCE

0	sDA	100			
FAR:		2.5 3.2	sDA:	29	80 ,
Residential:		70 %	Cash Flow (CFO):	<u>36.56</u> м	36.6
Commercial		20%	Investment Yield:	<u>14.51</u>	×14.54
Retail:		10 %	Added Cash Flow	: <u>24.0</u>	-24.3

ENERGY PERFORMANCE

Incident Solar Radiation (kWh/m²/yr) 0 500 1000 1500 2000 FAR: 2.53.2 sDA: **70**% **Residential:** 20% EUI: Commercial: 10% **PV**offset: Retail:

2980%

30_{kWh/m²-yr}

PROJECT OBJECTIVES: AUTONOMY

Comfort

achieve thermal comfort entirely passively

CO Electricity

offset all annual electricity with renewables

Water

eliminate domestic water heating energy

SEASONAL OUTDOOR COMFORT

Summer Comfort Zones E-W Streets, North of Buildings

Winter Comfort Zones

N-S Streets, South of Buildings

Maximum Comfort Overlap

Street Intersections, West of Buildings

STREET LAYOUT & HIERARCHY

— Primeira Avenida

Bus + Cars + Bikes + Pedestrians

- Rua Pequena

Cars + Bikes + Pedestrians

— Pedestre

Bikes + Pedestrians

COMMUNITY CONNECTIVITY

Walkability Score

60 70 80 90 100

k Existing Walk Score: **79**

Amenities Present but Points Deducted for Distance

Solution Existing Bike Score: 95

All Amenities within Biking Distance

NEIGHBORHOOD AMENITIES

NEIGHBORHOOD AMENITIES

WALKER'S PARADISE

NEIGHBORHOOD WALK SCORE

Walka	bility Score			
60	70	80	90	100

Proposed Walk Score: 98

Cash Flow (CFO): 36	.63 м	_ 37.85 м
Investment Yield:	14.54 %	_15.02%
Added Cash Flow:	24.3	- 30.3 \$/m²/yr

BASELINE ENERGY USE

Energy	y Use Intensi	ty (kWh/m²-	yr)	
0	30	60	90	120

Site EUI: Residential:

Commercial:

Retail:

 $75_{\text{kWh/m}^2-\text{yr}}$

30_{kWh/m²-yr}

60_{kWh/m²-yr} 100_{kWh/m²-yr}

110 kWh/m²-yr

ENERGY USE CHARACTERIZATION

Site EUI: Lights / Equipment: Heating / Cooling: Domestic Hot Water:

75_{kWh/m²-yr} PVoffset:

30_{kWh/m²-yr}

38kWh/m²-yr **07** kWh/m²-yr

30_{kWh/m²-yr}

■LIGHTING ■EQUIPMENT ■HEATING ■COOLING ■DHW

ø

-

-WALL INSULATION

40%

IMPROVED ENVELOPE

Lights / Equipment: Heating / Cooling:

Site EUI:

38kWh/m²-yr 0704_{kWh/m²-yr}

30_{kWh/m²-yr} Domestic Hot Water:

ELECTRICITY, WATER EFFICIENCY

NET ZERO ELECTRICITY

Site EUI: 7245_{kWh/m²-yr} Lights / Equipment: Heating / Cooling: Domestic Hot Water:

3829_{kWh/m²-yr} **0401** kWh/m²-yr **3015**kWh/m²-yr

PVoffset: 30_{kWh/m²-yr}

90

13% 80 5% 40% ¥ Ý. 70 60 50 40 ΡV Total Energy Intensity (kWh/m²-yr) Offset Potential 30 ~40 20 10 0 REFERENCE BASELINE ENVELOPE SYSTEMS DESIGN STRATEGIES DESIGN STRATEGIES

■LIGHTING ■EQUIPMENT ■HEATING ■COOLING ■DHW

DOMESTIC WATER HEATING

 Site EUI:
 7245kWh/m²-yr

 Lights / Equipment:
 3829kWh/m²-yr

 Heating / Cooling:
 0401kWh/m²-yr

 Domestic Hot Water:
 30kWh/m²-yr

PROGRAM USE DIVERSITY

Seasonal Hot Water Storage

Utilize Tanks to Store Rejected Heat from Commercial/Retail Cooling

DISTRICT ENERGY SYSTEMS

Seasonal Hot Water Storage Utilize Tanks to Store Rejected Heat from Commercial/Retail Cooling Tank Energy Storage Capacity

921 MWh based on Seasonal Changes in Power Supply and Demand

EXISTING TANKS TO STORE HEAT

Seasonal Hot Water Storage Utilize Tanks to Store Rejected Heat from Commercial/Retail Cooling Tank Energy Storage Capacity 921 MWh based on Seasonal Changes in Power Supply and Demand Tank Water Storage Volume

12,000 $m^3,$ Roughly two Tanks on Site covers 45% of DHW needs

90

80

70

■LIGHTING ■EQUIPMENT ■HEATING ■COOLING ■DHW

5%

÷.

40%

13%

LOCAL HEAT vs DISTRICT HEAT

Flat Plate Solar Collectors

 $6{,}000m^2$ for all DHW needs, Initial investment $1{,}000/m^2$ panels

District Solar Thermal Collectors

Cost of insulated buried pipes, linear heat density, pipes economics

Preliminary Cost Comparison

Local: DHW @ \$0.35/kWh | District: DHW+Heat @ \$0.29/kWh

CONCENTRATED SOLAR COLLECTORS

District Solar Thermal Collectors Cost of insulated buried pipes, linear heat density, pipes economics Preliminary Cost Comparison Local: DHW @ \$0.35/kWh | District: DHW+Heat @ \$0.29/kWh Concentrating Solar Collectors

Install Collectors on Two Tanks to meet remaining DHW needs

■LIGHTING ■EQUIPMENT ■HEATING ■COOLING ■DHW

