SOUTH BOSTON WATERFRONT

Balancing Past, Present, & Future

4.433 Modeling Urban Energy Flows Jamie Bemis, Rachel Belanger, Tianyi Chen, Alex Mercuri May 3, 2016

DESIGN PHILOSOPHY & GUIDING PRINCIPLES

Design for district-scale efficiency

Create a community that builds on Boston's beloved neigbhorhoods

Design with a changing climate in mind

RESPONDING TO CONFLICTING VALUES:

MORE HOUSING

Provide new housing stock to address Boston's regional housing crunch

Aim to meet Boston's citywide 2020 greenhouse gas emission reduction goals

STAY HISTORIC

Preserve the historic character of South Boston and the "triple-decker" feel

MODERNIZE Provide new buildings that can meet modern performance standards

DENSIFY Satisfy environmental, financial, and livability goals with sufficient density

MANAGED RETREAT Scale back development in flood-prone coastal areas in anticipation of sea level rise

LESS GHG

REFERENCE BLOCK: TYPICAL SOUTH BOSTON

primarily 3-5 story residential buildings

> narrow gaps between buildings

taller buildings located at corners

mixed uses on ends of blocks

CONNECTING TO THE NEIGHBORHOOD

PROTOBLOCK A: HISTORIC BOSTON

Classic triple-decker feel

PROTOBLOCK B: NEW SEAPORT

High-density and high value

DAYLIGHTING ANALYSIS

	DESIGN A	DESIGN B
Floor Area Ratio	2.04	1.51
Window-to-Wall Ratio (%)	60	Res 50 (SE 60), Ret & Off 60 (SE 80)
Occupants	767	674
Energy Use Intensity (kWh/m2)	136	122
Energy Use per Occopant (kWh/p)	3540	2526
Global Spatial Daylight Autonomy (%)	13.6	30.5

Base FAR

High FAR

DENSITY

sDA

NATURAL VENTILATION POTENTIAL

ENERGY USE INTENSITY

OVERHEATING HOURS

URBAN REGULATIONS

"BOOT" GEOMETRY ANALYSIS

"PAC-MAN" GEOMETRY ANALYSIS

Regulating EUI is our best option for reconciling our neighborhood goals with potential energy efficiency gains

FULL SITE DESIGN IN CONTEXT

SUMMARY

Floor Area R

Gross Floor A

Residential

Office

Retail

Occupants

Public Park (

Max. Buildin

Average Build

latio	2
Area (m ²)	335,708
	63%
	28%
	9%
	10,814
% of total area)	13%
ng Height	9 floors
ding Height (Story)	4 floors
	1 110010

MAIN STREETS

South: Maximum open space and flood mitigation plan

Middle: Mixed-use with walkable design and ample public amenities

North: Mixed-use with higherdensity office development

SOUTH SIDE

Inspiration from South Boston residential style

Energy simulation allows for better performance while still evoking historic typologies

Density gradient from low (south) to medium to mediate between two constrasting neighborhood characters

NORTH SIDE

Increased building heights with small block footprints

north

Stylized to fit with boston waterfront developments to the

DESIGNING FOR DISTRICT-SCALE EFFICIENCY

Energy use intensity varies significantly between our two block typologies

Intuitively important metric for a residential/mixed use neighborhood such as ours

Sacrifice in energy efficiency for historical style and neighborhood quality

DESIGNING FOR DISTRICT-SCALE EFFICIENCY

	BASELINE	REVISED
Infiltration Rate	0.35	0.35
Attic U-Value		Added more fiberglass insulation
Basement U-Value	Fiberglass batting	XPS Board
Basement Wall U-Value		0.50
Wall U-Value	Fiberglass batting	XPS Board
Total Heating COP	0.9	0.92
Total Cooling COP	3	3.2
Windows (U-values)	Clear	Low E
Equipment	4	3.5
Lighting	7	5
Cooling Setpoint	24	25
Heating Setpoint	20	19.5

ENERGY CONSUMPTION BY HOUR ON JANUARY 23RD

ENERGY CONSUMPTION BY HOUR ON JULY 9TH

DAYLIGHTING POTENTIAL

A 300 lux threshold doesdn't make sense for our expected neighborhood uses

Daylighting threshold relaxed to 150 lux for residential uses and 200 lux for all other uses

14% of space meets new standards

FINANCIAL PERFORMANCE

INPUTS		
Annual Rent Rates (\$/m2/a)	Residential	600
	Official	575
	Retail	450
Daylighting Premium (%)		0.2

RESULTS	Baseline
Cash Flow from Operations	\$147,036,491
CFO/Construction Cost	21.2%

COSTS AND ANNUAL INCOME

Millions \$

with Daylighting Premium

\$148,594,813

21.4%

BUILDING OFF BOSTON'S NEIGHBORHOODS – WALKABILITY

WALKABILITY – OUTDOOR THERMAL COMFORT

SPRING MORNING: MAY AT 10:00AM

Urban Thermal Comfort Index:	
No thermal stress	95%
Moderate heat stress	5%

- The areas of moderate heat stress are close to buildings.
- Heat stress appears to correlate with the areas of lower wind speeds.

SUMMER LUNCHTIME: JULY AT 1:00PM

Urban Thermal Comfort Index:	
No thermal stress	15%
Slight heat stress	2%
Moderate heat stress	31%
Strong heat stress	52%

- Design should creating shade through street trees, awnings, or overhangs.
- Design interventions that reduce wind speeds would not be desirable

No thermal stress

FALL EVENING COMMUTE: SEPTEMBER AT 5:00PM

Urban Thermal Comfort Index:

100%

DESIGNING FOR A CHANGING CLIMATE

DESIGNING FOR A CHANGING CLIMATE

RECOMMENDED STRATGIES

- Permeable Streets
- Operable Windows
- All occupied floors above BFE

Potential flooding due to a major storm in 2050, assuming 2 ft of sea level rise and a 5 ft storm surge Image Credit: Sasaki Associates

• Critical systems located above first floor

• First floor designed to withstand flooding

Image Credit: Building Resilience In Boston Report, 2013

SOUTH BOSTON WATERFRONT

Land area (m2) Building area (m2) Residents (pp/m2 land) Workers (pp/m2 land)

kWh/m2y **OPERATION ENERGY**

2050

kWh/m2 EMBODIED ENERGY (50y)

140

kgCO2/m2 **BUILDING GHG** EMISSIONS (50y)

4

AREA

% WS WALKABILITY SCORE

220,000 350,000 0.017 0.016

CONCLUDING THOUGHTS

- 1. Design for district-scale efficiency
 - Energy-efficient buildings reduce environmental impact
 - Rooftop PV can offset peak demands
 - Load shifting and demand response should be considered in the future
 - Tradeoffs require that certain design parameters are prioritized (EUI vs. sDA)
- 2. Design with a changing climate in mind
 - Flood mitigation is a critical aspect of this sites design
 - Street trees and permeable surfaces can offset summer heat
- Create a community that builds on Boston's best neighborhoods 3.
 - Human scale, walkability, and thoughtful building design were key aspects of our site