
6.443/8.371/18.436 Quantum Information Science II Lecture 6

Clifford group
Aram Harrow February 26, 2018

Topics:

• 5-qubit code

• Clifford Group

6.1 5 qubit code

We can define the stabilizer group for the 5-qubit code:

S = 〈ZXXZI, IZXXZ,ZIZXX,XZIZX〉 (6.1)

Later we will want to add a 5th “redundant” generator to the group:

S = 〈ZXXZI, IZXXZ,ZIZXX,XZIZX,XXZIZ〉 (6.2)

This last operator is technically not necessary to generate the group, since it is the product of the first four
generators. But it adding it does give the set a nice cyclic symmetry whose properties we will find useful
shortly.

We want to compute N(S), which are the normalizers of S. These are the group of Paulis Pn which
commute with all elements of the stabilizer group N(S) = {p ∈ Pn|pSp† = S}.

We can find that there are two Paulis which we can add to the generators of S to form N(S):

S = 〈S,XXXXX,ZZZZZ〉 (6.3)

We call these last two Paulis the “logical operators”, logical X and logical Z.

X̄ = XXXXX (6.4)

Z̄ = ZZZZZ (6.5)

A key property of these operators is that they act like “X” and “Z” within the logical space of the
code words, that is they have the suitable X̄2 = 1 properties, and that Z̄ |1̄〉 = |1̄〉 and Z̄ |0̄〉 = − |0̄〉, and
{X̄, Z̄} = 0, etc.

Claim 1. Any single-qubit error leads to a distinct syndrome.

Example 1. Let’s assume we have the error X1 = X ⊗ I ⊗ I ⊗ I ⊗ I. The syndrome is just a table
indicating which stabilizer commute or anticommute with the given error. For this we find the syndrome
is [1,−1, 1,−1,−1] (the 5th column is for the 5th redundant stabilizer). If we instead use F2 notation the
syndrome is [1, 0, 1, 0, 0], where the 1 indicates anticommuting and the 0 indicates commuting.

Now let’s say we want to find syndromes for X2, X3, etc. Do we have to recompute everything from
scratch? The benefit of adding the 5th column and adding the cyclic symmetry can now becomes obvious:
all we have to do is cyclically shift our syndrome:

X1 1 0 1 0 0
X2 0 1 0 1 0
X3 0 0 1 0 1
X4 1 0 0 1 0
X5 0 1 0 0 1

We can also find for Z:

6-1

Lecture 6: Clifford group 6-2

Z1 0 0 0 1 1
Z2 1 0 0 0 1
Z3 1 1 0 0 0
Z4 0 1 1 0 0
Z5 0 0 1 1 0

To find syndrome for Y, we can just add these tables together:

Y1 1 0 1 1 1
Y2 1 1 0 1 1
Y3 1 1 1 0 1
Y4 1 1 1 1 0
Y5 0 1 1 1 1

If we have a single qubit Pauli error, we can uniquely identify it using the syndrome and repair the state
(by acting with E†a). By linearity this extends to all single-qubit errors.

It turns out the error correcting condition is sufficient but not necessary. Actually we don’t need all of
this information to repair the code. For the Shor code, we can find that two different errors can cause the
same syndrome. This doesn’t matter as long as we know how to get back.

We can split things into two types of codes. Degenerate codes: some errors collapse onto the same error
syndrome. Nondegenerate codes: all errors have a unique syndrome.

In practice we get a small advantage from using degenerate codes over nondegenerate codes. Still not
obvious how to exploit these properties for something really useful.

In general for the normalizer group we have:

N(S) = 〈S, X̄1...X̄k, Z̄1...Z̄k〉 (6.6)

{X̄i, Z̄j} = 0 iff i = j else [X̄i, X̄j] = [Z̄i, Z̄j] = 0

Example 2. Trivial Code

VS ∈ {|0〉⊗n−k ⊗ |Ψ〉 : |Ψ〉 ∈ C2k}.
Our code space is very simple, we only care about the first n−k qubits and we don’t care about the last k.

The generators for the stabilizer group are S = 〈Z1, Z2....Zn−k〉 and N(S) = 〈S,Zn−k+1...Zn, Xn−k+1...Xn〉.
Schematically this looks similar to the other non-trivial codes we discussed earlier.

Claim 2. ∀ stabilizer code C (stabilized by S) , there exists unitary U such that UC (stabilized by USU†)
is equal to the trivial code.

To understand how to prove this we need to first prove how we can transform the codes at all under some
unitary transformation U :

VS 7→ UVS , UVS = {U |Ψ〉 : |Ψ〉 ∈ VS}
∀g ∈ S,UgU†U |Ψ〉 =Ug |Ψ〉

=U |Ψ〉

so
UVS = VUSU† (6.7)

What we’ve shown is that we can perform transformations on the stabilizers and the code subspace into a
new basis. We need the Clifford group to help complete this story.

Lecture 6: Clifford group 6-3

6.2 Clifford Group

The key idea is that we want to find the group of unitary operators such that UPU† ∈ Pn,∀P ∈ Pn.
Formally: Cln = {U : UPU† ∈ Pn ∀P ∈ Pn}.

What are some things we know imediately about the Clifford group? First Pn ⊆ Cln, and that since
HXH† = Z, and HYH† = X, the Hadamard gates Hi ∈ Cln.

Why don’t we keep track of Y in all of this? We don’t need it because if we know how X and Z behave,
we get Y’s behavior too, just like earlier. Formally X1, . . . , Xn, Z1, . . . , Xn generate Pn as a group, meaning
that multiplying them yields all of Pn. Similarly, they generate L(C2n) as an algebra, meaning that taking
linear combinations of products of them yields all of L(C2n).

We can define the Phase Shift gate S =
√
Z =

(
1 0
0 i

)
. Acting mechanically on this we can show SZS† = Z

and SXS† = iY .
One of the things we would like our group to have is entanglement. Otherwise we will just keep getting

trivial behavior. We can add the SWAP gates and cnot gates. SWAPij Xi SWAP†ij = Xj . cnot’s action is
more complicated:

Figure 6.1: How we derive the action of cnotX cnot†.

P cnotij P cnot†ij
X1 X1X2

X2 X2

Z1 Z1

Z2 Z1Z2

Claim 3. Cln = 〈Hi, Sj ,cnotij〉

It turns out with the gates we have enumerated we can generate the entire Clifford group. We don’t even
need the Pauli’s since they can be generated from S and H. It’s not obvious that this is true but we will
prove this on the PSET.

We want to study the action of the Clifford group from a linear algrebraic perspective. We start by
writing:

XaZb = σ

(
a
b

)
,
(
a
b

)
∈ F 2n (6.8)

Taking U ∈ Cln, we write: UσvU† = (−1)f(v)σg(v), for some functions f, g. To find constraints on these

Lecture 6: Clifford group 6-4

functions, note that (from last lecture) σv1σv2 = (−1)
vT
1

0 I
0 0

v2

σv1+v2 , and so

Uσv1+v2U† =(−1)
vT
1

0 I
0 0

v2

Uσv1σv2U†

=(−1)
vT
1

0 I
0 0

v2

Uσv1U†Uσv2U†

=(−1)
f(v1)+f(v2)+vT

1

0 I
0 0

v2

σg(v1)σg(v2)

=(−1)
f(v1)+f(v2)+vT

1

0 I
0 0

v2+g(v1)
T

0 I
0 0

g(v2)

σg(v1+v2)

On the other hand, this also equals (−1)f(v1+v2)σg(v1+v2). We conclude that g is linear, i.e. g(v1 + v2) =
g(v1) + g(v2). Since g is constrained to act this way, we can write g = Mv where M ∈ F2n

2 .
We also obtain a more complicated equation for f :

f(v1 + v2) = f(v1) + f(v2) + vT1

(
0 I
0 0

)
v2 + g(v1)T

(
0 I
0 0

)
g(v2). (6.9)

This suggests that f is of the form

f(v) = 〈α, v〉+ vT1

(
0 I
0 0

)
v2 + g(v1)T

(
0 I
0 0

)
g(v2) (6.10)

for some arbitrary α ∈ F2n
2 . We will not make use of this form, though.

Returning to g, we can ask whether all matrices M are possible. Clearly M = 0 is not, since it would
imply that UσvU† would always be the identity matrix, which is impossible. More generally, we know that
conjugating by U shouldn’t change whether two Paulis commute or anticommute.

To understand how this works, let’s develop some notation for the commuting/anticommuting condition.
The sympletic inner product is defined as:

(v, w) = vᵀΛw, (6.11)

where Λ :=
(
0 I
I 0

)
. When (v, w) = 1 then σv and σw anticommute, and when (v, w) = 0 then σv

and σw commute. If we perform a unitary transform on σv and σw, then it should preserve commuta-
tion/anticommutation, and so the corresponding transformation M (from above) should preserve the sym-
plectic inner product:

vᵀΛw =(Mv)ᵀΛMw

=vᵀMᵀΛMw

. Since this holds for any v, w, we have
Λ = MᵀΛM (6.12)

When M obeys this condition we say that M is a symplectic matrix or a symplectic transformation. It is
just another way of saying that it preserves the inner product defined by Λ. To relate this to something
familiar, note that if we set Λ = I in (6.12) then we are saying that M preserves the usual (real) inner
product, i.e. that M is orthogonal.

To summarize, we can express elements of the Clifford group as symplectic matrices M , along with a
vector α that affects only the phase of the output.

Example 3. Application: Any stabilizer code is equivalent to a trivial code
You will prove on the pset that any transformation that respects commutation relations (i.e. any sym-

plectic matrix) is part of the Clifford group. One application is that we can transform any stabilizer code to
a trivial code (discussed above). In general these transformations do not preserve distance, which is helpful
because the trivial code has a bad distance. But still it can help us understand the structure of general
stabilizer codes.

Lecture 6: Clifford group 6-5

Example 4. Gottesman-Knill Theorem
Quantum computations are sometimes said to be hard because of entanglement. But the Gottesman-

Knill theorem describes a large class of quantum circuits that can be simulated even though they can create
large amounts of entanglement.

Suppose we start in a state |0〉⊗n. We can perform a sequence of Clifford gates onto this starting state
to transform it. We can perform measurements in the Z-basis and even perform adaptive measurements,
meaning that we perform measurements and then based on the results of those measurements perform
different unitaries and measurements next.

Claim 4. We can simulate such circuits in polynomial time classically.

Proof. We track the stabilizers Z1...Zn:

1. Start with stabilizer state.“stabilizer state” means stabilized by n independent generators.

2. To perform a unitary U , replace the stabilizers with UZ1U
†, ...UZU†n. Or more generally if the stabi-

lizers are s1, . . . , sn, replace them with Us1U
†, . . . , UsnU

†.

3. Do measurement. For example, say we measure Z1.

• If Z1 ∈ S then we get outcome +1. The state was an eigenstate, so measurement causes no
change.

• Z1 ∈ S, then likewise we get outcome −1 and there is no change.

• Say ±Z1 /∈ S, which means we anticommute with one or more stabilizer generators, and the state
will change.

First we need to choose an appropriate set of stabilizer generators. Replace s1, . . . , sn with
s′1, . . . , s

′
n such that S = 〈s1, . . . , sn〉 = 〈s′1, . . . , s′n〉 and Z1 anticommutes only with s′1 and

commutes with s′2, . . . , s
′
n. Why is this possible? Because Z1 commutes with at least one of the

si. Relabel them so one of these is s1. For each sj that anticommutes with Z1, replace it with
s1sj . This doesn’t change S, but the new generator now commutes with Z1. Call the resulting
generators s′1, . . . , s

′
n.

Next, since s′1 anticommutes with Z1 it must be X1g where g acts on qubits 2, . . . , n. Now we
update the stabilizers by throwing out s′1 and replacing it with ±Z1, depending on whether the
outcome of the measurement was ±1 (which we choose randomly). By doing this we can update
the stabilizer to match the current code.

	5 qubit code
	Clifford Group

