
6.443/8.371/18.436 Quantum Information Science II Lecture 5

Stabilizers
Aram Harrow February 20, 2018

In this lecture we discuss:

• Stabilizer subgroups and subspaces

• Example

• Projectors onto stabilizer subspaces

• F2 linear algebra perspective

• Logical operations and undetectable errors

5.1 Stabilizer subgroups and subspaces

Stabilizer codes are an important class of quantum codes whose construction is analogous to classical linear
codes.

Let Pn be the real valued group of matrices ±{I,X, iY, Z} as the basis. Note that this is a group, because
it is closed under multiplication and contains inverses. However, it is not commuting. p ∈ Pn can be written
as (−1)aXbZc, where b = (b1, · · · , bn)T , c = (c1, · · · , cn)T and Xb = Xb1

1 X
b2
2 · · ·Xbn

n . These Paulis are
going to be the parity check.

Our code will be defined in terms of a “stabilizer group” S ≤ Pn . The stabilizer subspace is VS = {|ψ〉 :
g|ψ〉 = |ψ〉,∀g ∈ S}. In order that S stabilizes a non-trivial vector space, two conditions must be satisfied:

1. the elements of S commute (S is an abelian subgroup of Pn), and

2. −I is not an element of S.

In general ∀g, h ∈ Pn, gh = ±hg. For 2, obviously the only solution to (−I)|ψ〉 = |ψ〉 is |ψ〉 = 0. For 1,
suppose that g, h ∈ S and {g, h} = 0, then gh + hg = 0 leads to the result that −I ∈ S. This is because if
{g, h} = 0 then S 3 ghgh = −ghhg = −I.

The basic idea of stabilizer formalism is that many quantum states can be more easily described by
working with the operators that stabilize them than by working explicitly with the state itself.

5.2 Examples

1. VS = span{|00〉}: S = {II, IZ, ZI, ZZ} = 〈IZ, ZI〉. 〈IZ, ZI〉 means that S is generated by IZ, ZI.

2. VS = span{ |00〉+|11〉√
2
}: S = 〈XX,ZZ〉.

3. VS = span{|001〉}: S = 〈ZII,−IZI,−IIZ〉.

4. VS = span{|000〉 , |111〉} from the repetition code. Then S = 〈ZZI, IZZ〉.

5. VS = span{|+ + +〉 , |− − −〉}. Then S = 〈XXI, IXX〉.

6. VS is the 9 qubit Shor code. Then S = 〈Z1Z2, Z2Z3, Z5Z5, Z5Z6, Z1Z2, Z6Z8, Z8Z9, X1 . . . , X6, X4 . . . X9〉.

5-1

Lecture 5: Stabilizers 5-2

5.3 Stabilizer subspace projectors

Let ΠS := Proj(VS) be the projector onto the subspace VS . We claim that

Claim 1.

ΠS =
1

|S|
∑
g∈S

g

Proof. First observe that if g ∈ S then
gΠS = ΠS . (5.1)

To see this we calculate
g
∑
h∈S

h =
∑
h∈S

gh =
∑

h′=gh∈S

h′. (5.2)

This uses the fact that g acts on S by permuting its elements. The same idea works for any group.
From (5.1) we have that Π†SΠS = ΠS implying that ΠS is indeed a projector. Note that if g ∈ S then

g† ∈ S and therefore g†ΠS = ΠS and therefore Π†SΠS = ΠS . Hence the ΠS is a projector and has eigenvalues
0 or 1.

Next we show that Im ΠS = VS . Indeed for any |ψ〉 and any g ∈ S we have gΠS |ψ〉 = ΠS |ψ〉, implying
that ΠS |ψ〉 ∈ VS . Hence ImΠS ⊆ VS . Next if |ψ〉 ∈ VS then ΠS |ψ〉 = |ψ〉 and therefore VS ⊆ ΠS . This
completes the proof.

We can use this to calculate the dimension. Let |S| = 2` with generators S = 〈s1, . . . , s`〉. Indeed

dimVS = tr ΠS =
1

|S|
∑
g∈S

tr g =
1

2`

∑
g∈S

2nδg,I = 2n−`, (5.3)

Note that
g ∈ S ⇐⇒ g = sa1

1 . . . san
n , a1, . . . , an ∈ {0, 1}n

Therefore, we can write ΠS in another way, as

ΠS =
1

2`

∑
a∈F`

2

sa1
1 · · · s

a`

` =
∏̀
i=1

∑
ai=0,1

sai

2
=
∏̀
i=1

(
I + si

2

)
. (5.4)

For example, I+Z
2 = |0〉〈0| and I−Z

2 = |1〉〈1|.

5.4 The F2-linear algebra perspective

If p ∈ Pn then we can write p = (−1)aXbZc for a ∈ F2, b, c ∈ Fn
2 . If q = (−1)a

′
Xb′Zc′ then

pq = (−1)a+a′
XbZcXb′Zc′ . (5.5)

Let’s look at the middle two terms

ZcXb′ = Zc1
1 · · ·Zcn

n X
b′1
1 · · ·X

b′n
n = Xb′Zc(−1)〈b

′,c〉. (5.6)

Thus we have
pq = (−1)a+a′+〈b′,c〉Xb+b′Zc+c′ . (5.7)

This is as though we represent p, q by the vectors

ab
c

 ,

a′b′
c′

 which simply add when we multiply p, q

except there is an extra phase of 〈b′, c〉. If we choose the other ordering a similar calculation shows

qp = (−1)a+a′+〈b,c′〉Xb+b′Zc+c′ . (5.8)

Lecture 5: Stabilizers 5-3

Putting this together we have
pq = (−1)〈c,b

′〉+〈b,c′〉qp. (5.9)

This phase can be thought of as coming from the symplectic inner product between

(
b
c

)
and

(
b′

c′

)
.

〈c, b′〉+ 〈b, c′〉 =
(
bT cT

)(0n In
In 0n

)(
b′

c′

)
=
(
bT cT

)
Λ

(
b′

c′

)
, (5.10)

where Λ :=

(
0n In
In 0n

)
. Finally we have a simple linear-algebraic way of describing when Pauli matrices

commute or anticommute. p, q commute iff

(
b
c

)
⊥
(
b′

c′

)
. Here ⊥ is with respect to the symplectic inner

product defined by Λ.
We can use this linear algebra framework to talk about S as a subspace of F2n

2 . if we neglect phases.
Since the code properties don’t depend on these phases, this can be a good way to investigate the properties
of the code.

Let’s return to undetected errors. If S is a stabilizer group, let L(S) be the subspace of Fn
2 corresponding

to S. Then the above discussion implies that

L(N(S)) = L(S)⊥. (5.11)

5.5 Detecting errors and logical operators

Recall the classical check matrix H. We have that x ∈ Ccl ⇐⇒ Hx = 0. Now if we add the bit flip error
e we have that x + e is undetectable if H(x + e) = He = 0. We have the same for the stabilizer codes.
Therefore undetected errors are exactly the codes. For any two A,B ∈ Pn we have AB = ±BA; i.e. they
either commute (+) or anti-commute (-). Suppose |ψ〉 ∈ VS and E ∈ Pn. Then

E |ψ〉 ∈ VS ⇔ gE |ψ〉 = E |ψ〉 ∀g ∈ S. (5.12)

Since g,E are both Paulis they either commute or anticommute. So if gE |ψ〉 = E |ψ〉 for all g ∈ S then E
is an “undetected error”. It leaves the state within VS while possibly changing it. (Note that this includes
the possibility that E ∈ S and so E acts trivially. Also we call this an “error” although it might be been an
intended change.) On the other hand if E anticommutes with some g ∈ VS then it is a “detected error” and
it maps VS to an orthogonal subspace. The set of undetected errors is also called the “normalizer” group of
S and its denoted

N(S) = {g : gh = hg∀h ∈ S}. (5.13)

Note that since S is abelian we have S ≤ N(S); however in general N(S) can be larger.

	Stabilizer subgroups and subspaces
	Examples
	Stabilizer subspace projectors
	The F2-linear algebra perspective
	Detecting errors and logical operators

