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In this lecture we discuss quantum error correction:

• quantum error correcting codes

• quantum error correction conditions

• Examples

• Stablizer codes (quantum generalization of classical linear codes)

4.1 Quantum error correcting codes

In the previous lecture we discussed classical error correction. We saw that classical codes encode information
in subsets of n-bit strings, ie, C ⊆ {0, 1}n. In contrast, a quantum code is a subspace like C ≤ C2n . The no-
cloning theorem rules out a quantum generalization repetition codes, since we are unable to find a quantum
operation that maps E(|ψ〉) = |ψ〉⊗|ψ〉 for an arbitrary state |ψ〉. As a result ,in order to establish quantum
error correction we need new ideas.

In order to encode k qubits into a larger n qubit Hilbert space we use an encoding map, which is an

isometry E : C2k → C2n (or super operator E(ρ) = EρE†). The quantum code corresponding to E is Im(E).
Similar to classical error correction we can define a quantum decoding map D, which is a quantum operation

: L(C2n) → L(C2k). A noise operation N is a map : L(C2n) → L(C2n). The decoding map must correct
noise in the sense that D(N (E(ρ))) = ρ. Note in genera D is not unitary, since it needs to get rid of noise.
It is also useful to define a recovery map R : L(C2n)→ L(C2n) which maps a noisy state onto the corrected
state inside the quantum code subspace. In particular we want R(N (E(ρ))) = E(ρ). Recovery maps are
useful when we want to do computation on the code space. Using a recovery map we only need the encoding
map once at the beginning of computation and a decoding map at the end.

Given a quantum code we can define a linear subspace S of correctable errors ≤ L(C2n). A noise operation

N (ρ) =
∑
iEiρE

†
i is correctable if Ei ∈ S, ∀i. In the Stinespring picture such noise operation acts as the

isometry

|ψ〉Q 7→
∑
i

Ei |ψ〉Q ⊗ |i〉E

|i〉E is an orthonormal basis. Let {Dj}j be the set of Kraus operators of D. The decoding map acting on
N (|ψ〉Q) must give

|ψ〉Q 7→
∑
i,j

DjEi |ψ〉Q ⊗ |j〉R ⊗ |i〉E = |ψ〉Q ⊗ |γ〉ER

for some vector γER. This condition can be summarized as DjEi |ψ〉Q ∝ |ψ〉Q (including zero), for all i, j.
Since S is a linear subspace, if we can correct two Krause operators, then we can correct any linear

combination of them. For example, if we can correct a Z error, we can also correct eiθZ = cos θ + i sin θZ
for arbitrary θ.

Low weight errors: a typical choice for S is the set of errors that affect only l ≤ d−1
2 qubits. Hence

without loss of generality we can assume

S = span{σp1 ⊗ . . .⊗ σpn ≡ σ~p : ~p ∈ {0, 1, 2, 3}n s.t ‖~p‖ ≤ l}

This doesn’t mean that noise is unitary, it is just that without loss of generality we can assume these operators
in the Pauli basis. We could have considered a form like S = span{A1⊗. . .⊗An : s.t at most l of Ai ’s 6= I}.
Correcting S is equivalent to C having distance d. We use the notation [[n, k, d]] for a code that encodes k
logical qubits into n qubits and corrects errors up to distance d.
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4.2 Quantum error correction conditions

We are now ready to give the general definition of quantum codes. Recall the formal definition of a quantum
code:

Definition 1 (Quantum code). A quantum code C is a subspace that satisfies

• C ⊆ C2n , which means C uses n physical bits.

• dimC = 2k, which means C encodes k logical bits.

By contrast with the above operational definition of error correction, we also state a more mathematical
definition.

Claim 2 (QEC Condition). ∀ |ψ1〉 , |ψ2〉 ∈ C and ∀E1, E2 ∈ E, if 〈ψ1|ψ2〉 = 0, then 〈ψ1|E†1E2|ψ2〉 = 0

It means if we can distinguish two code states |ψ1〉 and |ψ2〉 perfectly, we can still do so after they are
each affected by errors. An equivalent form of this conditions is to say

ΠCE
†
2E1ΠC = (E1, E2)ΠC

Here ΠC is the projector onto the code space and (·, ·) is a bilinear form on matrices.
We will not give the proof of this claim in this course. You can read it in 8.370 or Nielsen-Chaung.

4.3 Examples

Let us give some examples

1. Classical codes: given a classical code Ccl ≡ {C1, . . . , C2k} ⊆ {0, 1}n we can define the quantum
code Cq ≡ span{|C1〉 , . . . , |C2k〉} ⊆ C2n . If Ccl has distance d, then the set of errors is the set of X
operators on ≤ d−1

2 positions.

2. eiθX3 on the repetition code span{|000〉 , |111〉}. C can correct span{I,X1, X2, X3} ≡ {A0, . . . , A3} 3
eiθX3 . We can verify that (Ai, Aj) = δij .

3. Any classical code on in the |±〉 basis (which can correct Z errors affecting d−1
2 qubits). C ≡

span{H⊗n |C1〉 , . . . ,H⊗n |C2k〉} ⊆ C2n . Here H is the Hadamard matrix.

4. Concatenated code Let C1 be a [[n1, k1, d1]] code and C2 be a [[n2, k2, d2]] code with encoding maps
E1 and E2. Then the concatenation of these two codes is a [[n1n2, k1, d1d2]] with the encoding map
E⊗n1

2 E1.

4.4 Stabilizer codes: introduction

Stabilizer codes are generalizations of linear codes. Recall the linear code with generator G or check matrix
H is Ccl = Im(G) = ker(H) ≤ Fn2 . Equivalently the check matrix interpretation is the same as

Hx = 0 ⇐⇒ 〈x, h〉 ∀h ∈ Im(H)

This interpretation can be generalized to the quantum setting and yields stabilizer codes. Here we give a
quantum formulation of the above definition. Instead of Ccl we define the quantum code C = span{|x〉 : x ∈
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Ccl} corresponding to the check matrix H. Instead of h ∈ Im(H) we choose the operator Zh = Zh1
1 . . . Zhn

n .
Then Zh |x〉 = Zh1

1 |x1〉⊗. . .⊗Zhn
n |xn〉 = (−1)〈h,x〉 |x〉. Since 〈h, x〉 = 0 for all h ∈ Im(H) we can equivalently

write
|x〉 ∈ C ⇐⇒ x is inside the + 1 eigenspace of Zh

or in other words
C = {|ψ〉 : Zh |ψ〉 = |ψ〉 ∀h ∈ Im H}

The second condition is the same as saying |ψ〉 is stabilized by Zh for all h ∈ Im H.
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