
Q. Inf. Science II (6.443/8.371/18.436) — Spring 2018

Assignment 5b - written part

Due: Monday, May 7, 2018 at 5pm

1. Simultaneous block-diagonalization of two reflections

Let ΠA,ΠB be two projectors onto subspaces of a d-dimensional space, let RA :=
2ΠA − Id, RB := 2ΠB − Id be the corresponding reflections, and let S := −RARB be
their product (up to a phase). Let a = tr ΠA, b = tr ΠB and choose orthonormal sets
of vectors |α1〉 , . . . , |αa〉 , |β1〉 , . . . , |βb〉 such that

ΠA =
a∑
i=1

|αi〉 〈αi| ΠB =
b∑
i=1

|βi〉 〈βi| (1)

Let D be the a× b matrix with entries Dij = 〈αi|βj〉. Let the singular value decompo-
sition of D be

D =
∑
i

di |li〉 〈ri| . (2)

This problem will relate the singular values of D to the spectrum of S.

(a) Define isometries VA =
∑a

i=1 |αi〉 〈i| and VB =
∑b

i=1 |βi〉 〈i|. Express ΠA,ΠB, D in
terms of VA, VB. Show that the subspace spanned by {VA |li〉 , VB |ri〉} is invariant
under the action of both ΠA and ΠB.

(b) From the previous part we know that S is block diagonal with block i corre-
sponding to the space spanned by {VA |li〉 , VB |ri〉}. Find the eigenvalues of S
corresponding to these blocks. When do we get a rank-1 matrix? (Hint: consider
an orthonormal basis for Span{VA |li〉 , VB |ri〉} and write down S in terms of these
bases.)

(c) Oblivious amplitude amplification. Suppose we know how to perform a unitary
U on m + n qubits such that there exist linear operators V,W such that for any
|ψ〉 ∈ C2n ,

U |0m〉 |ψ〉 = sin(θ) |0m〉V |ψ〉+ cos(θ)W |ψ〉 . (3)

Here V is a 2n×2n unitary matrix, W is a 2m+n×2n isometry and (〈0m|⊗I2n)W =
0. We can think of V as the desired evolution and W as some unwanted evolution;
i.e. our goal is to map |ψ〉 to V |ψ〉. One way to do this is to perform U and measure
the first m qubits, keeping the outcomes where we obtain 0m. However this has
probability of success only sin2(θ) and upon failure can damage the state.

Instead we will construct two reflections:

RA = (I2m − 2 |0m〉 〈0m|)⊗ In2 (4)

RB = U †RAU. (5)

What are the eigenvalues of S = −RARB? (Hint: use part b) How can we apply
powers of S to increase our chances of obtaining V |ψ〉?
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Describe qualitatively what happens if we drop the assumption that V,W are
isometries? (However, note that (3) and the fact that U is unitary will still
impose some constraints on the possible choices of V,W .)

2. Types. Given a sequence xn = x1, x2, . . . , xn ∈ [d]n and a symbol a ∈ [d], let
N(a|xn) be the number of occurrences of a in xn. The type (or empirical probability
distribution) of xn is the distribution that results from choosing a random letter from
xn, i.e. Pxn(a) = N(a|xn)/n. Here we use Pxn to denote the type of xn. Let Pn
denote the set of all possible types of sequences in [d]n; equivalently Pn is the set
of probability distributions on [d] whose entries are integer multiples of 1/n. Let
T np := {xn : Pxn = p}. Note that

|T np | =
(
n

np

)
:=

n!

np1!np2! · · ·npd!
. (6)

(a) List the elements of P3 when d = 3.

(b) Prove the upper bound
|Pn| ≤ (n+ 1)d−1. (7)

(c) Prove that for xn ∈ T np ,

pn(xn) := p(x1) · · · p(xn) = 2−nH(p) (8)

(d) For types p, q ∈ Pn, compute pn(T nq ) where we use the notation pn(S) to mean∑
xn∈S p

n(xn). Express your answer in terms of H(q) =
∑

x q(x) log(1/q(x)) and
D(q‖p) =

∑
x q(x) log(q(x)/p(x)) .

(e) It turns out that pn(T nq ) takes on its maximum value (as a function of q) when
q = p. You do not need to prove this. Use this fact, along with the previous
parts, to prove that

2nH(p)

(n+ 1)d
≤ |T np | ≤ 2nH(p). (9)

(f) Pinsker’s inequality (which you can use without proof) states that

D(q‖p) ≥ 1

2 ln 2
‖p− q‖21. (10)

Combine this with the last two parts to prove that

pn(T nq ) ≤ e−n
‖p−q‖21

2 . (11)

(g) One consequence of (11) is a weak version of a Chernoff bound. Suppose that we
have a coin with probability a of heads and probability 1− a of tails. If we flip it
n times show that the probability of ≥ nb heads for b > a decreases exponentially
with n.
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(h) We can also use types to define a sharper version of typical sets. Define

T np,δ =
⋃

q:‖p−q‖1≤δ

T nq . (12)

Prove that 1− pn(T np,δ) is exponentially small for fixed p and fixed δ > 0.

3. Unweighted Quantum Adversary Bound

In this problem, we will walk you through a simple version of the quantum adversary
bound. Suppose we are given a quantum query algorithm to compute a function f(x)
that, with the initial state |0n〉 and an N -bit input x produces the output state |φx〉
using T queries to the input. The input is specified by an oracleOx =

∑N
i=1(−1)xi |i〉 〈i|.

The algorithm consists of a sequence of unitary transformations and calls to the oracle:

U = UTOxUT−1Ox . . . U1OxU0.

(a) Suppose that the input x is encoded in an additional N -qubit register. From the
algorithm U , construct a unitary V such that V |0n〉 ⊗ |x〉 = |φx〉 ⊗ |x〉. Your
unitary should have the form V = VTO

′VT−1 . . . V1O
′V0, where Vt and O′ are

unitaries that act on the full n + N -qubit space. What are these matrices in
terms of Ut and Ox?

(b) The advantage of writing the algorithm in this way is that we can work with
superpositions over possible inputs. Let S be a set of input strings, and let the
initial state be

|ψ0〉 = |0n〉 ⊗
∑
x∈S

αx |x〉 . (13)

The final state after applying the algorithm V is

|ψT 〉 =
∑
x∈S

αx |φx〉 ⊗ |x〉 . (14)

Find the N -qubit reduced density matrices ρ0 and ρT describing the input (i.e. sec-
ond) register of |ψ0〉 and |ψT 〉. (In general, we will denote the reduced state of
this register at time t, i.e. immediately after the application of Vt, by ρt).

(c) Now, suppose that the algorithm computes f on all inputs with probability of
error ≤ ε, and choose two inputs x, y such that f(x) 6= f(y). Recall from the
trace distance problem (TD4.4) on pset 1a that this implies that

| 〈φx|φy〉 | ≤ 2
√
ε(1− ε). (15)

Show that
| 〈x| ρT |y〉 | ≤ 2

√
ε(1− ε)|αx||αy|. (16)
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(d) Choose sets X, Y such that f(x) 6= f(y) for all x ∈ X, y ∈ Y . Let S = X ∪ Y
and set the weights αx = 1√

2|X|
for x ∈ X and αy = 1√

2|Y |
for y ∈ Y . Further

suppose that there exists a relation R ⊆ X × Y such that for every x ∈ X, there
exist at least m different y ∈ Y such that (x, y) ∈ R, and for every y ∈ Y , there
exist at least m′ different x ∈ X such that (x, y) ∈ R. For each timestep, define
St =

∑
(x,y)∈R | 〈x| ρt |y〉 |. Show that

S0 − ST ≥ (
1

2
−
√
ε(1− ε))

√
mm′. (17)

(e) Now suppose the relation R from the previous part has the further property that
for every x ∈ X and i ∈ [N ], there exist at most ` values y ∈ Y such that
(x, y) ∈ R and xi 6= yi. Likewise, for every y ∈ Y and i ∈ [N ], there exist at most
`′ values x ∈ X such that (x, y) ∈ R and xi 6= yi. It turns out that for any two
successive timesteps t, t+ 1, the difference St+1 − St is upper bounded by

|St+1 − St| ≤
√
``′. (18)

(proving this is not a required part of this problem - but you are encouraged to
try).

Conclude that any algorithm to compute f with error ≤ 1/3 must make at least

Ω(
√

mm′

``′
) queries. Use this to deduce that it takes at least Ω(

√
N) queries to

compute the OR function. Specify your choice of X, Y , and R.

(f) Suppose f : {0, 1}N → {0, 1} is a symmetric function meaning that f(x) depends
only on the Hamming weight k = |x| = x1+. . .+xN . In other words f(x) = g(|x|)
for some function g : {0, 1, . . . , N} → {0, 1}. Suppose that g(k∗) 6= g(k∗ + 1)

for some k∗. Prove that the quantum query complexity of f is lower bounded by

Q(f) = Ω(
√

(N − k∗)(k∗ + 1)). (19)

What bound do you get for the MAJORITY function? (MAJORITY is 1 if
|x| ≥ N/2 and 0 if |x| < N/2.)
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