Q. Inf. Science II (6.443/8.371/18.436) — Spring 2018

Assignment 5b - written part

Due: Monday, May 7, 2018 at 5pm

1. Simultaneous block-diagonalization of two reflections

Let Π_A, Π_B be two projectors onto subspaces of a *d*-dimensional space, let $R_A := 2\Pi_A - I_d, R_B := 2\Pi_B - I_d$ be the corresponding reflections, and let $S := -R_A R_B$ be their product (up to a phase). Let $a = \operatorname{tr} \Pi_A, b = \operatorname{tr} \Pi_B$ and choose orthonormal sets of vectors $|\alpha_1\rangle, \ldots, |\alpha_a\rangle, |\beta_1\rangle, \ldots, |\beta_b\rangle$ such that

$$\Pi_{A} = \sum_{i=1}^{a} |\alpha_{i}\rangle \langle \alpha_{i}| \qquad \Pi_{B} = \sum_{i=1}^{b} |\beta_{i}\rangle \langle \beta_{i}| \qquad (1)$$

Let D be the $a \times b$ matrix with entries $D_{ij} = \langle \alpha_i | \beta_j \rangle$. Let the singular value decomposition of D be

$$D = \sum_{i} d_{i} \left| l_{i} \right\rangle \left\langle r_{i} \right|.$$
⁽²⁾

This problem will relate the singular values of D to the spectrum of S.

- (a) Define isometries $V_A = \sum_{i=1}^{a} |\alpha_i\rangle \langle i|$ and $V_B = \sum_{i=1}^{b} |\beta_i\rangle \langle i|$. Express Π_A, Π_B, D in terms of V_A, V_B . Show that the subspace spanned by $\{V_A | l_i\rangle, V_B | r_i\rangle\}$ is invariant under the action of both Π_A and Π_B .
- (b) From the previous part we know that S is block diagonal with block *i* corresponding to the space spanned by $\{V_A | l_i \rangle, V_B | r_i \rangle\}$. Find the eigenvalues of S corresponding to these blocks. When do we get a rank-1 matrix? (Hint: consider an orthonormal basis for Span $\{V_A | l_i \rangle, V_B | r_i \rangle\}$ and write down S in terms of these bases.)
- (c) Oblivious amplitude amplification. Suppose we know how to perform a unitary U on m + n qubits such that there exist linear operators V, W such that for any $|\psi\rangle \in \mathbb{C}^{2^n}$,

$$U |0^{m}\rangle |\psi\rangle = \sin(\theta) |0^{m}\rangle V |\psi\rangle + \cos(\theta)W |\psi\rangle.$$
(3)

Here V is a $2^n \times 2^n$ unitary matrix, W is a $2^{m+n} \times 2^n$ isometry and $(\langle 0^m | \otimes I_{2^n})W = 0$. We can think of V as the desired evolution and W as some unwanted evolution; i.e. our goal is to map $|\psi\rangle$ to $V |\psi\rangle$. One way to do this is to perform U and measure the first m qubits, keeping the outcomes where we obtain 0^m . However this has probability of success only $\sin^2(\theta)$ and upon failure can damage the state. Instead we will construct two reflections:

$$R_A = (I_{2^m} - 2 |0^m\rangle \langle 0^m|) \otimes I_2^n \tag{4}$$

$$R_B = U^{\dagger} R_A U. \tag{5}$$

What are the eigenvalues of $S = -R_A R_B$? (Hint: use part b) How can we apply powers of S to increase our chances of obtaining $V |\psi\rangle$?

Describe qualitatively what happens if we drop the assumption that V, W are isometries? (However, note that (3) and the fact that U is unitary will still impose some constraints on the possible choices of V, W.)

2. Types. Given a sequence $x^n = x_1, x_2, \ldots, x_n \in [d]^n$ and a symbol $a \in [d]$, let $N(a|x^n)$ be the number of occurrences of a in x^n . The type (or empirical probability distribution) of x^n is the distribution that results from choosing a random letter from x^n , i.e. $P_{x^n}(a) = N(a|x^n)/n$. Here we use P_{x^n} to denote the type of x^n . Let \mathcal{P}_n denote the set of all possible types of sequences in $[d]^n$; equivalently \mathcal{P}_n is the set of probability distributions on [d] whose entries are integer multiples of 1/n. Let $\mathcal{T}_p^n := \{x^n : P_{x^n} = p\}$. Note that

$$|\mathcal{T}_p^n| = \binom{n}{np} := \frac{n!}{np_1!np_2!\cdots np_d!}.$$
(6)

- (a) List the elements of \mathcal{P}_3 when d = 3.
- (b) Prove the upper bound

$$|\mathcal{P}_n| \le (n+1)^{d-1}.\tag{7}$$

(c) Prove that for $x^n \in \mathcal{T}_p^n$,

$$p^{n}(x^{n}) := p(x_{1}) \cdots p(x_{n}) = 2^{-nH(p)}$$
(8)

- (d) For types $p, q \in \mathcal{P}_n$, compute $p^n(\mathcal{T}_q^n)$ where we use the notation $p^n(S)$ to mean $\sum_{x^n \in S} p^n(x^n)$. Express your answer in terms of $H(q) = \sum_x q(x) \log(1/q(x))$ and $D(q||p) = \sum_x q(x) \log(q(x)/p(x))$.
- (e) It turns out that $p^n(\mathcal{T}_q^n)$ takes on its maximum value (as a function of q) when q = p. You do not need to prove this. Use this fact, along with the previous parts, to prove that

$$\frac{2^{nH(p)}}{(n+1)^d} \le |\mathcal{T}_p^n| \le 2^{nH(p)}.$$
(9)

(f) Pinsker's inequality (which you can use without proof) states that

$$D(q||p) \ge \frac{1}{2\ln 2} ||p - q||_1^2.$$
(10)

Combine this with the last two parts to prove that

$$p^{n}(\mathcal{T}_{q}^{n}) \leq e^{-n\frac{\|p-q\|_{1}^{2}}{2}}.$$
 (11)

(g) One consequence of (11) is a weak version of a Chernoff bound. Suppose that we have a coin with probability a of heads and probability 1 - a of tails. If we flip it n times show that the probability of $\geq nb$ heads for b > a decreases exponentially with n.

(h) We can also use types to define a sharper version of typical sets. Define

$$\mathcal{T}_{p,\delta}^n = \bigcup_{q: \|p-q\|_1 \le \delta} \mathcal{T}_q^n.$$
(12)

Prove that $1 - p^n(\mathcal{T}_{p,\delta}^n)$ is exponentially small for fixed p and fixed $\delta > 0$.

3. Unweighted Quantum Adversary Bound

In this problem, we will walk you through a simple version of the quantum adversary bound. Suppose we are given a quantum query algorithm to compute a function f(x)that, with the initial state $|0^n\rangle$ and an N-bit input x produces the output state $|\phi_x\rangle$ using T queries to the input. The input is specified by an oracle $O_x = \sum_{i=1}^{N} (-1)^{x_i} |i\rangle \langle i|$. The algorithm consists of a sequence of unitary transformations and calls to the oracle:

$$U = U_T O_x U_{T-1} O_x \dots U_1 O_x U_0.$$

- (a) Suppose that the input x is encoded in an additional N-qubit register. From the algorithm U, construct a unitary V such that $V |0^n\rangle \otimes |x\rangle = |\phi_x\rangle \otimes |x\rangle$. Your unitary should have the form $V = V_T O' V_{T-1} \dots V_1 O' V_0$, where V_t and O' are unitaries that act on the full n + N-qubit space. What are these matrices in terms of U_t and O_x ?
- (b) The advantage of writing the algorithm in this way is that we can work with superpositions over possible inputs. Let S be a set of input strings, and let the initial state be

$$|\psi_0\rangle = |0^n\rangle \otimes \sum_{x \in S} \alpha_x |x\rangle \,. \tag{13}$$

The final state after applying the algorithm V is

$$|\psi_T\rangle = \sum_{x \in S} \alpha_x |\phi_x\rangle \otimes |x\rangle.$$
(14)

Find the N-qubit reduced density matrices ρ_0 and ρ_T describing the input (i.e. second) register of $|\psi_0\rangle$ and $|\psi_T\rangle$. (In general, we will denote the reduced state of this register at time t, i.e. immediately after the application of V_t , by ρ_t).

(c) Now, suppose that the algorithm computes f on all inputs with probability of error $\leq \epsilon$, and choose two inputs x, y such that $f(x) \neq f(y)$. Recall from the trace distance problem (TD4.4) on pset 1a that this implies that

$$|\langle \phi_x | \phi_y \rangle| \le 2\sqrt{\epsilon(1-\epsilon)}.$$
(15)

Show that

$$|\langle x|\rho_T |y\rangle| \le 2\sqrt{\epsilon(1-\epsilon)} |\alpha_x| |\alpha_y|.$$
(16)

(d) Choose sets X, Y such that $f(x) \neq f(y)$ for all $x \in X, y \in Y$. Let $S = X \cup Y$ and set the weights $\alpha_x = \frac{1}{\sqrt{2|X|}}$ for $x \in X$ and $\alpha_y = \frac{1}{\sqrt{2|Y|}}$ for $y \in Y$. Further suppose that there exists a relation $R \subseteq X \times Y$ such that for every $x \in X$, there exist at least m different $y \in Y$ such that $(x, y) \in R$, and for every $y \in Y$, there exist at least m' different $x \in X$ such that $(x, y) \in R$. For each timestep, define $S_t = \sum_{(x,y)\in R} |\langle x| \rho_t | y \rangle|$. Show that

$$S_0 - S_T \ge \left(\frac{1}{2} - \sqrt{\epsilon(1-\epsilon)}\right)\sqrt{mm'}.$$
(17)

(e) Now suppose the relation R from the previous part has the further property that for every $x \in X$ and $i \in [N]$, there exist at most ℓ values $y \in Y$ such that $(x, y) \in R$ and $x_i \neq y_i$. Likewise, for every $y \in Y$ and $i \in [N]$, there exist at most ℓ' values $x \in X$ such that $(x, y) \in R$ and $x_i \neq y_i$. It turns out that for any two successive timesteps t, t + 1, the difference $S_{t+1} - S_t$ is upper bounded by

$$|S_{t+1} - S_t| \le \sqrt{\ell\ell'}.\tag{18}$$

(proving this is not a required part of this problem - but you are encouraged to try).

Conclude that any algorithm to compute f with error $\leq 1/3$ must make at least $\Omega(\sqrt{\frac{mm'}{\ell\ell'}})$ queries. Use this to deduce that it takes at least $\Omega(\sqrt{N})$ queries to compute the OR function. Specify your choice of X, Y, and R.

(f) Suppose $f : \{0, 1\}^N \to \{0, 1\}$ is a symmetric function meaning that f(x) depends only on the Hamming weight $k = |x| = x_1 + \ldots + x_N$. In other words f(x) = g(|x|)for some function $g : \{0, 1, \ldots, N\} \to \{0, 1\}$. Suppose that $g(k^*) \neq g(k^* + 1)$

for some k^* . Prove that the quantum query complexity of f is lower bounded by

$$Q(f) = \Omega(\sqrt{(N - k^*)(k^* + 1)}).$$
(19)

What bound do you get for the MAJORITY function? (MAJORITY is 1 if $|x| \ge N/2$ and 0 if |x| < N/2.)