Q. Inf. Science 11 (6.443/8.371/18.436) — Spring 2018

Assignment 5b - written part
Due: Monday, May 7, 2018 at 5pm

1. Simultaneous block-diagonalization of two reflections
Let II4,IIp be two projectors onto subspaces of a d-dimensional space, let Ry :=
2114 — 14, Rp := 2Ilg — I; be the corresponding reflections, and let S := —R4Rp be
their product (up to a phase). Let a = trIl4,b = tr Iz and choose orthonormal sets
of vectors |a1), ..., |a.),|B1),- .-, |B) such that

a b
Ma=) lai) (sl s =) |6 (5 (1)
i=1 i=1
Let D be the a x b matrix with entries D;; = (;|5;). Let the singular value decompo-
sition of D be
D= d;l;) (ri. (2)

This problem will relate the singular values of D to the spectrum of S.

(a) Define isometries Vy = >0 o) (i| and Vg = 320, |8;) (i]. Express 114,15, D in
terms of V4, V. Show that the subspace spanned by {V4 |l;) , Vg |r;)} is invariant
under the action of both II4 and Ilp.

(b) From the previous part we know that S is block diagonal with block ¢ corre-
sponding to the space spanned by {V4|l;), Vg |r;)}. Find the eigenvalues of S
corresponding to these blocks. When do we get a rank-1 matrix? (Hint: consider
an orthonormal basis for Span{Vy4 |l;) , Vi |r;)} and write down S in terms of these
bases.)

(c) Oblivious amplitude amplification. Suppose we know how to perform a unitary
U on m + n qubits such that there exist linear operators V, W such that for any
¥) € C*,
U10™) [9) = sin(0) [07) V' [¢0) + cos(0)W |4) . (3)
Here V is a 2™ x 2" unitary matrix, W is a 2™ x 2" isometry and ((0"|® Ion)W =
0. We can think of V' as the desired evolution and W as some unwanted evolution;
i.e. our goal is to map [¢) to V' [¢). One way to do this is to perform U and measure
the first m qubits, keeping the outcomes where we obtain 0™. However this has
probability of success only sin?(f) and upon failure can damage the state.

Instead we will construct two reflections:

Ry = (Iam —2]0™) (0™]) @ I3 (4)
Ry =U'RLU. (5)

What are the eigenvalues of S = —R4Rp? (Hint: use part b) How can we apply
powers of S to increase our chances of obtaining V' [¢)?
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Describe qualitatively what happens if we drop the assumption that VW are
isometries? (However, note that (3) and the fact that U is unitary will still
impose some constraints on the possible choices of V, W)

2. Types. Given a sequence z" = x1,2,...,%, € [d|" and a symbol a € [d], let
N(a|x™) be the number of occurrences of a in z™. The type (or empirical probability
distribution) of z" is the distribution that results from choosing a random letter from
", i.e. Pm(a) = N(a|z™)/n. Here we use P, to denote the type of z". Let P,
denote the set of all possible types of sequences in [d]"; equivalently P, is the set
of probability distributions on [d] whose entries are integer multiples of 1/n. Let
T, :={a" : Py = p}. Note that

n n!
M= = . 6
7 <np> np1!npa! - - npqg! (©)

(a) List the elements of P3 when d = 3.

(b) Prove the upper bound
[Pal < (n+ 1) (7)

(c) Prove that for z™ € T,
pHa") = play) - pla,) = 2@ -

(d) For types p,q € P,, compute p"(7") where we use the notation p"(S) to mean
Y nes PM(x™). Express your answer in terms of H(q) = >, q(x)log(1/q(z)) and

D(qllp) = >_, q(z)log(q(x)/p(x)) .

e urns out that p akes on its maximum value (as a function of ¢) when
It t t that p"(7,") tak it i 1 functi f h
g = p. You do not need to prove this. Use this fact, along with the previous

parts, to prove that

2nH(p) )
< |7 < nH ]
(n—l—l)d_|p|_2 (9)

(f) Pinsker’s inequality (which you can use without proof) states that
Dlgllp) > 3o llp — all (10)
qlp) = 21n 2 P —qj-
Combine this with the last two parts to prove that

_llp—al?

(T <e ™ = (11)

(g) One consequence of (11) is a weak version of a Chernoff bound. Suppose that we
have a coin with probability a of heads and probability 1 — a of tails. If we flip it
n times show that the probability of > nb heads for b > a decreases exponentially
with n.
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We can also use types to define a sharper version of typical sets. Define

Ts= U T (12)

q:llp—qll1 <8

Prove that 1 — p"(7%) is exponentially small for fixed p and fixed ¢ > 0.

3. Unweighted Quantum Adversary Bound

In this problem, we will walk you through a simple version of the quantum adversary
bound. Suppose we are given a quantum query algorithm to compute a function f(z)
that, with the initial state |0") and an N-bit input  produces the output state |@,)

using 1" queries to the input. The input is specified by an oracle O, = ZZ]\LI (—1)*

i) (i|.

The algorithm consists of a sequence of unitary transformations and calls to the oracle:

(a)

U=UrO,Up_,0, ...U,0,Uy.

Suppose that the input x is encoded in an additional N-qubit register. From the
algorithm U, construct a unitary V' such that V' |0") ® |z) = |¢,) ® |z). Your
unitary should have the form V = VyO'Vy_;...ViO'Vy, where V; and O are
unitaries that act on the full n + N-qubit space. What are these matrices in
terms of U; and O,7?

The advantage of writing the algorithm in this way is that we can work with
superpositions over possible inputs. Let S be a set of input strings, and let the

initial state be
o) = 0") @) g |) . (13)
zesS

The final state after applying the algorithm V' is

r) =3 ae [6a) © |a) (14)

€S

Find the N-qubit reduced density matrices py and pr describing the input (i.e. sec-
ond) register of |1y) and |17). (In general, we will denote the reduced state of
this register at time ¢, i.e. immediately after the application of V;, by p;).

Now, suppose that the algorithm computes f on all inputs with probability of
error < ¢, and choose two inputs x,y such that f(z) # f(y). Recall from the
trace distance problem (TD4.4) on pset la that this implies that

[(Peldy) | < 2v/e(1 =€) (15)

Show that

| lprly) | < 27 el = €)ooyl (16)
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Choose sets X, Y such that f(z) # f(y) forallz € X,y € Y. Let S = X UY
and set the weights a, = —2— for z € X and a, = —2— for y € Y. Further

suppose that there exists a relation R C X x Y such that for every x € X, there
exist at least m different y € Y such that (z,y) € R, and for every y € Y, there
exist at least m’ different x € X such that (x,y) € R. For each timestep, define

St = Z:(:r,y)eR | (z| p¢ |y) |- Show that

So— Sr > (% — Ve(l —e)Vmm. (17)

Now suppose the relation R from the previous part has the further property that
for every © € X and i € [N], there exist at most ¢ values y € Y such that
(z,y) € R and z; # y;. Likewise, for every y € Y and i € [N], there exist at most
¢ values x € X such that (z,y) € R and x; # ;. It turns out that for any two
successive timesteps t,t + 1, the difference S;;1 — S; is upper bounded by

S0 — Si| < Ve (18)

(proving this is not a required part of this problem - but you are encouraged to
try).
Conclude that any algorithm to compute f with error < 1/3 must make at least

Q(y/2m) queries. Use this to deduce that it takes at least Q(v/N) queries to

compute the OR function. Specify your choice of X, Y, and R.

Suppose f: {0,1}¥ — {0,1} is a symmetric function meaning that f(z) depends
only on the Hamming weight k& = |z| = x;+...4+zy. In other words f(z) = g(|z|)
for some function g : {0,1,..., N} — {0,1}. Suppose that g(k*) # g(k* + 1)

for some k*. Prove that the quantum query complexity of f is lower bounded by

QUf) = AV (N — k) (k* +1)). (19)

What bound do you get for the MAJORITY function? (MAJORITY is 1 if
|z] > N/2 and 0 if |2| < N/2.)




