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Abstract—The depiction of time-dependent vector fields is a central problem in scientific visualization. This article describes a

technique for generating animations of such fields where the motion of the streamlines to be visualized is given by a second “motion”

vector field. Each frame of our animation is a Line Integral Convolution of the original vector field with a time-varying input texture. The

texture is evolved according to the associated motion vector field via an automatically adjusted set of random particles. We

demonstrate this technique with examples from electromagnetism.
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1 INTRODUCTION

SINCE the introduction of the Line Integral Convolution
(LIC) technique [3], it has been possible to depict static

vector fields at an extraordinarily high spatial resolution.
Traditionally, such fields had been depicted at relatively
low spatial resolution using icons on a coarse grid or by
using a few streamlines or field lines selected to illustrate
important properties of the field. However, the LIC
technique produces a representation of the field that shows
its structural details at a resolution close to the resolution of
the display. The images generated by LIC have outstanding
resolution, but the random nature of the underlying texture
used in the algorithm make it difficult to extend the
technique to time-varying fields. Intuitively, we would like
to generate animation sequences of time-varying fields in
which every frame resembles the output of LIC for a static
vector field, while the time dependence of the vector field is
evident from the interframe coherence.

In this article, we describe a new technique, called
Dynamic Line Integral Convolution (DLIC), that extends
LIC to time-dependent fields in just this way, making it
possible to visualize the evolution of its streamlines. The
vector field is allowed to vary arbitrarily over time, with the
motion of its streamlines described by a second “motion”
vector field. Each rendered frame depicting the field is
obtained using the LIC technique. To produce an animation
of the field, we evolve the texture input to LIC in time in the
manner prescribed by the associated “motion” vector field.
The input texture is generatedby advecting adense collection
of particles over time and adjusting them to maintain the
appropriate level of detail. This produces an animated
sequence of images of the original field with the desired
properties—the time dependence of the field is evident from
frame to frame by the interframe coherence and the spatial
resolution is as detailed as in images created by LIC.

Though this new technique is applicable to any time-

dependent vector field for which we can also compute the

motion of the streamlines, we have developed the DLIC

method specifically for visualizing time-dependent electro-

magnetic fields. After describing the operation of DLIC, we

demonstrate its use with time-varying electromagnetic

fields in several different situations.

2 PREVIOUS WORK

Vector fields will be denoted functionally as a mapping

f : DD� TT ! RRn; ð1Þ

where DD � RRn is the domain of interest and TT is the time

interval. Although the techniques discussed here would

generalize to higher dimensions, from here on we will

assume that n ¼ 2. There are some cases where LIC is

appropriate for visualizing three-dimensional fields [3], but

often it is difficult to map all of the information to a two-

dimensional display and detail is obscured. The algorithms

discussed here frequently make use of numerical integra-

tors to solve first-order differential equations:

d��

du
¼ ff ��; tð Þ; �� 0ð Þ ¼ ��0: ð2Þ

The solution is called a streamline, which is an integral curve

in the vector field ff at a constant time t. To describe a

particular integral curve, we will use the symbol ��

parameterized in the following manner:

d

du
��u
t xx0ð Þ ¼ ff ��; tð Þ; ��0

t xx0ð Þ ¼ xx0: ð3Þ

This use of �� denotes an integral curve at a constant time t

seeded at xx0 with a parameter u. Additionally, we will use

the symbol �̂�̂�� to denote the same curve reparameterized by

its arc length s. That is,

d

ds
�̂�̂��s
t xx0ð Þ ¼ ff ��; tð Þ

ff ��; tð Þk k ; �̂�̂��
0
t xx0ð Þ ¼ xx0: ð4Þ
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2.1 Line Integral Convolution

The LIC technique is a very general, high-quality method

for visualizing static vector fields [3]. Although not
originally described in this way, the essence of LIC is the

integral operation introduced in [12]:

I xxð Þ ¼
Z

T �̂�̂��s xxð Þð Þ� sð Þds: ð5Þ

Here,T is a scalar field representing some input texture, and it

is convolved with the kernel � along the streamline curve
seeded at xx in a vector field ff , yielding the output intensity I.

Usually, the kernel � is chosen to be symmetric and have a
limited extent, for example, a box filter shape. This operation

can be approximated via a discrete convolution,

I xxð Þ ffi
X
k

T �̂�̂��k�s xxð Þ
� �

~�� k�sð Þ; ð6Þ

taken with a step size �s and a discrete convolution kernel
~��. The output pixel values are usually calculated by
averaging one or more output intensity samples. In LIC,

the scalar field T is initialized to random white noise,
producing an output that resembles particle streak images.

As a result of the convolution operation, the texture values
average together along the direction of the field to give a

highly correlated, slowly varying intensity. In contrast, the
texture values in the direction perpendicular to the field are
completely uncorrelated. Thus, the field streamlines can be

easily distinguished in the output pixel values.
An important improvement over the basic LIC algorithm

is an optimization called Fast Line Integral Convolution

(FLIC) [12], [13], which gives an order-of-magnitude
rendering speedup. The key to FLIC is the observation that

the output intensities of two points along a given streamline
are highly correlated. For example, with a discrete con-

volution kernel,

~�� k�sð Þ ¼
1

2Nþ1 ; for �N � k � N
0; for kj j > N;

�
ð7Þ

the difference in intensity between two points separated by

a distance �s is:

I �̂�̂���s xxð Þ
� �

� I xxð Þ ffi 1

2N þ 1
T �̂�̂�� Nþ1ð Þ�s xxð Þ
� �h

�T �̂�̂���N�s xxð Þ
� ��

:

ð8Þ

Thus, once we have the output intensity for a given point, we

can find the output intensity of the next point on the
streamline by a relatively inexpensive calculation. Applying

this result optimally, the sample points are determinedby the
streamlines we choose to follow. As samples are computed,

we accumulate the results in the output pixels lying closest to
the sample points. A good scheme is to randomly pick the

starting points for these incremental streamline computa-
tionswith a bias against pixelswithmany samples. Although

the cost of renderingan imagewith theoriginalLICalgorithm
is notprohibitivewith today’s computers, rendering anentire
animation sequence with LIC is extremely time consuming.

Making use of the FLIC optimization is therefore crucial for
dynamic visualizations.

2.2 Dynamic Visualizations

There have been a number of articles describing methods
for animating vector field images in the style of LIC. Several
papers describe methods to depict cyclic motion along
streamlines for static (or steady) vector flow fields [3], [4],
[5], [8], [15]. Since the vector field itself is not allowed to
vary in time, these methods do not allow us to visualize the
motion of streamlines themselves.

Extending the algorithms to time-dependent vector fields
is still an area of active inquiry. Most research in this area
has involved the visualization of unsteady fluid-flow
applications. Generally, methods for visualizing such fields
do so by simulating the fluid motion. For example, Forssell
and Cohen [4] describe a modification to LIC whereby
streaklines instead of streamlines are followed, where
streaklines are the set of points that pass through a seed
point when advected through time. Unfortunately, the
algorithm suffers from a number of coherence and accuracy
problems, which Shen and Kao [10], [11] point out. They
describe another algorithm, Unsteady Flow LIC, that
advects the input texture forward in time instead of
convolving it and feeds the output image back in as the
input for the next frame. This improves the coherence of the
animation both temporally and spatially.

Several other articles on visualizing time-dependent
vector flows focus on the texture advection process. Max
and Becker describe an algorithm for animating flow fields
by using texture-mapped triangles whose coordinates or
vertices are advected according to the flow. When the
texture has become warped beyond usefulness, the co-
ordinates and vertices are reset to their original values and
the effect is faded in gradually to eliminate sudden popping
[9]. Two papers by Jobard et al. describe methods for
directly advecting a texture, one using a Lagrangian-Eulerian
approach [7] and the other by making use of hardware
acceleration [6]. Both techniques blend several frames of the
advected texture together in order to introduce spatial
correlation in the images. In order to avoid loss of detail in
divergent regions, a small amount of random noise is
continuously added to the texture. Unfortunately, injecting
noise in a uniform fashion does not guarantee that the
texture will have an even degree of randomness over the
long run. Finally, Becker and Rumpf designed an algorithm
for visualizing flow fields via the texture transport of value
pairs. One coordinate varies perpendicular to the flow and
assigns a random intensity to a particular flow line, while
the other coordinate indicates the phase at which the flow
entered the texture domain by color-coding. Unfortunately,
this method also suffers from an inconsistent level of detail
across the texture [1].

In any case, these methods are not directly applicable to
electromagnetic visualizations because the assumption in
flow problems is that the only motion of the field is along the
direction of the field itself. For time-varying electromagnetic
fields, this is no longer the case—the “motion” of the electric
or magnetic field is generally not along the field lines. Thus,
visualizing time-varying electromagnetic fields presents a
somewhat different problem than that of visualizing fluid
flow since the vector field and the direction of motion of the
field lines are, in general, independent. In addition, unlike in
fluid flow models where we are interested in path lines or
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streaklines, in electromagnetism, we are interested in
visualizing the instantaneous field streamlines and how they
evolve over time.

3 DYNAMIC LINE INTEGRAL CONVOLUTION

3.1 Problem Formulation

We would like to visualize a dynamic vector field ff in full
generality, with ff being an arbitrary mapping from some
domain DD and a time interval TT to RR2. In addition, we
describe the evolution of the field ff via a motion vector
field dd, where the value of dd at a particular point in space
and time is the instantaneous velocity of the streamline at
the corresponding point of the vector field ff . Note that we
are not attempting to visualize motion in a velocity field ff ,
as is typically the case in computational fluid dynamics
(CFD), but rather the evolution of the streamlines in ff as
prescribed by dd. The field ff alone is not sufficient to
describe the situations we are interested in. For example,
consider the vector field ff ¼ x̂x̂xx, where the horizontal
streamlines are to translate vertically over time. We denote
this movement via a motion field such as dd ¼ vŷŷyy. As a
consequence, this algorithm may not be immediately
applicable to CFD, where we typically do not even have a
motion field dd.

Each image of the animation sequence must be an
accurate and detailed depiction of the vector field ff at a
particular time. We wanted the images to resemble those
produced by the LIC method, which achieves a very high
level of detail. When the animation is viewed as a sequence,
it should be clear how the streamlines evolve over time
from the interframe coherence. Though some regions of the
vector field may expand or contract over the course of the
animation, we would like the level of detail to remain high
throughout the image at all times. Finally, the rendering
algorithm must be fairly time-efficient since hundreds of
frames will need to be generated for a single sequence.

3.2 Algorithm Overview

In the following sections, we describe a new algorithm,
Dynamic Line Integral Convolution (DLIC), that animates a
time-varying vector field represented by the ff and dd fields
described above. The method consists of three major
components, as illustrated in Fig. 1. The sequence of
computations begins with the Particle Advection and Adjust-
ment stage, continues through the Texture Generation stage,
and finishes with the Fast Line Integral Convolution stage. In
the first stage, the algorithm tracks a large number of
particles as they evolve over time according to dd, auto-
matically consolidating excess particles and adding new
particle detail where needed. In the second stage, these
particles are used to generate an input texture, which in the

final stage is passed to a modified FLIC algorithm to
produce the output.

To conceptually understand what the algorithm is doing,
first we notice that the LIC technique can be naturally
extended to depend on a time-varying input texture:

I xx; tð Þ ¼
Z

T �̂�̂��st xxð Þ; t
� �

� sð Þds: ð9Þ

Ideally, at each time step, we would like this texture to
resemble the white noise used in LIC vector field
visualizations. This way, the resulting output will have as
high contrast as possible perpendicular to the streamlines.
At the same time, we need to make sure that the
correspondence between streamlines evolves from frame
to frame as prescribed by dd. We do this by warping the
input texture over successive time steps via the mapping
defined by dd. That is, as a first approximation for small �t,
we could use

T xx; tþ�tð Þ ¼ T xx� dd xx; tþ�tð Þ�t; tð Þ: ð10Þ

Unfortunately, since the texture is typically stored as a
discrete set of samples on an ordered grid, repeatedly
warping and filtering it over time results in a loss of detail.
In addition, the motion field dd may have divergent or
convergent regions, spreading out or compressing the
detail. Finally, the texture mapping falls apart at the edge
of the domainDD where the direction of motion given by dd is
pointing in.

To avoid these problems, instead of evolving the input
texture according to equation (10), the DLIC algorithm
tracks a large number of particles of random intensity,
roughly on the same order as the number of pixels in the
original input texture. As the particles move over time
according to dd, the algorithm continuously monitors and
adjusts their distribution to keep the level of detail roughly
the same. This is the Particle Advection and Adjustment stage,
which we describe in more detail below. At any instant of
time for which we want to generate a frame of the
animation, the texture at that time is generated by simply
drawing all of the particles onto it. This is the Texture
Generation stage. Once we have the texture for a given
frame, the FLIC method is applied to this texture to render
the streamlines at that time, in the Fast Line Integral
Convolution stage. Although it may seem that tracking a
large number of particles is expensive, its cost is substan-
tially less than the time required for FLIC to run.

Intuitively, since the particles that produce the input
texture advect according the motion field dd, the LIC
convolutions along the time-evolving streamlines of ff from
one frame to the next sample the same particles as they
move. Therefore, the streamlines of ff appear to move from
one frame to the next as we expect them to, that is,
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according to the motion field dd. Assuming we can maintain
a roughly uniform distribution of particles over the texture
and that their intensities are random and uncorrelated, the
texture input to FLIC at each point in time will look like
white noise. Therefore, each output image in the sequence
will individually have the same properties as a static LIC
rendering, but successive frames will have an interframe
coherence of streamlines that depicts their motion.

3.3 Particle Advection and Adjustment

We now give more details about each of these stages,
beginning with the particle stage. For each particle, we need
to maintain its two-dimensional position ppi and its
intensity ai. The particles’ positions need to have subpixel
accuracy in order to track them accurately, so we use
floating-point numbers to store them. Before the very first
frame is rendered, we need to generate a complete new set
of particles. To ensure a good distribution, we create one
particle at the center of output image pixel, jittered slightly.
The particle intensities are chosen randomly, ensuring that
the first texture is essentially white noise. Ideally, there
would be one particle used to generate each texture pixel,
but, in reality, the density varies over time depending how
the particle distribution evolves.

For each successive frame separated by time �t, the
particles are advected according to the motion field dd.
Though more sophisticated methods can certainly be
employed, for simplicity, we use a simple Euler integrator
to move the particles, that is:

ppi tþ�tð Þ ¼ ppi tð Þ þ dd ppi tð Þ; tð Þ�t: ð11Þ

In some applications, it may help to use a higher-order
integrator, but, in our examples, the particles do not move
very far over the time interval �t. Hence, any errors
between successive frames would be too small to notice,
especially after the LIC stage filters the results. Errors
accumulated over long periods of time are not perceived
since the streamlines themselves evolve quite a bit over that
time, creating and destroying detail along the way.

After the particles have been moved, we analyze the
distribution of the particles and make adjustments as
necessary. As a first step, we delete any particles that leave
the bounds of the texture in order to save computational
time, even though it is possible that the particles will return
at a later time. Next, we compute a texture coverage map,
which, in our implementation, is actually done in parallel
with the texture generation stage since they share some of
the same calculations. This “texture coverage” TC has the
same resolution as the input texture and is used to
determine how many particles cover each texture pixel.
The texture coverage is the result of a sum of convolutions
of the particles over the pixels, given by

TC xx; tð Þ ¼
X
i

ZZ
A xx� ppi tð Þ þ yyð Þ� yyð Þdyy: ð12Þ

Here, A yyð Þ describes the “shape” of the particle and � yyð Þ is
the response function of a texture pixel. This convolution
represents a fully general resampling of continuous
particles onto the discrete texture grid. The result of this
process is illustrated in Fig. 2.

To simplify the computation in our implementation, the
particles are given a square shape and the pixels have a
square, uniform response. In other words, A yyð Þ and � yyð Þ are
both 1 inside the unit square and 0 otherwise. This
simplification allows us to compute the contributions of the
particles very quickly via bilinear interpolation coefficients.

Using the texture coverage, we can easily find regions
where the particle density deviates significantly from the
norm. In our algorithm, we limit the per-pixel coverage to a
maximum of 2.0 and a minimum of 0.5 particles. When the
particle density in a pixel is too high by this definition, we
are tracking more particles than necessary, so our algorithm
consolidates several particles into a single particle. Since we
have computed both the texture coverage and the texture
itself at the same time, we know the intensity of the texture
pixel whose coverage exceeds the maximum. First, we
simply delete all the particles close to the pixel center that
would have contributed significantly to the pixel. Next, we
create a new particle located near the pixel center whose
intensity ai is equal to that of the texture, thus combining
the intensities of the old particles that produced that pixel.
This process is illustrated in Fig. 3. Although one would
expect to do some sort of center-of-mass averaging, this
simple method is sufficient for DLIC.

Where the particle density is too low by the above
definition, either the field motion is diverging, or the texture
has nomapping in that region (for example, at an edge of the
domain DD where the particles are moving in). In both cases,
we add new detail by creating completely new particles with
random intensities. In unmapped regions, the texture values
are not constrained in any way, so, without any additional
knowledge, we are clearly justified in assuming that white
noise fills those areas. When the field is diverging, however,
adding random detail may not seem reasonable. It turns out
that adding new, random particles is a very simple solution
that yields satisfactory results without exhibiting any
surprising appearances of new features in those regions. This
is because the number of particles created is generally small
compared to the number of particles averaged togetherwhen
the texture is fed through LIC. The particle creation process is
depicted in Fig. 4.

The two simple operations of consolidation and creation
described above succeed in maintaining a roughly uniform
distributionofparticles across the texture. The randomness in
their intensities results in a texture with uncorrelated white
noise, yielding good results when LIC is applied. There do
exist scenarioswhere theseparticle adjustment techniquesdo
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not work well, for example, with a motion field dd that is

uniformly contracting. In this case, particles average together
excessively, lowering the contrast of the texture. Although

new, high-contrast detail will be constantly created near the
edges, toward the center of contraction the texture (and

resulting output image)will appear grayed-out.Nonetheless,
in our experience, when we have applied these particle

adjustment methods to examples in electromagnetism, the
results were generally good.

3.4 Texture Generation

Similar to the texture coverage computation, the texture

image itself at any point in time is calculated from the
particles via a sum of convolutions of the particles scaled by

their intensities over the pixels, given by

T xx; tð Þ ¼
X
i

ZZ
aiA xx� ppi tð Þ þ yyð Þ� yyð Þdyy: ð13Þ

In our implementation, we use square profiles to simplify

the computation. As a result, the algorithm to compute the
texture simply iterates through the particles, summing the

bilinear contributions scaled by the particle intensity to the
four surrounding pixels. The result of this computation is

illustrated in Fig. 5.
If the particles are distributed evenly and their intensities

are random, the texture generated will resemble white
noise. However, since we allow the texture coverage to

range between 0.5 and 2.0 particles per pixel, the density of
particles will most likely not remain completely uniform.

Because the texture is computed as a sum over the particles,

the distribution of intensities in the texture will vary with
the density of particles. As it turns out, this is not a serious
problem because we constrain the coarse distribution of
particles, as described in the previous section. However, we
have tested various schemes to better adjust for the varying
particle density. One method is to divide the value of the
texture at each pixel by the texture coverage. This confines
the possible pixel intensities to the fixed range of ai:

T 0 xx; tð Þ ¼ T xx; tð Þ
TC xx; tð Þ : ð14Þ

Another method is to use the “square coverage” of each
pixel:

TS xx; tð Þ ¼
X
i

ZZ
A xx� ppi tð Þ þ yyð Þ� yyð Þdyy

� �2

T 0 xx; tð Þ ¼ T xx; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TS xx; tð Þ

p :

ð15Þ

This results in a texture with uniform variance. As it turns
out, none of these methods produce results that are
significantly better or worse than the others. In our
implementation, since we already compute the texture
coverage TC for the purpose of adjusting the particles, we
use this value to normalize the texture pixels.

3.5 Fast Line Integral Convolution

Once we have generated the texture for the current time
step from the particles, we use the LIC technique on the
texture, yielding an image of the streamlines. Care must be
taken to sample the image uniformly or the animation
sequence will exhibit temporal aliasing. The particle profiles
are first sampled to create the texture and then we resample
them a second time to produce the output image with LIC.
Ideally, we would sample the particles only once while
integrating along the streamlines, but this is difficult to do
efficiently. By creating the texture as an intermediary step,
we can speed up the computation tremendously, especially
when we make use of the FLIC optimization.

When implementing LIC, we have to choose which
points of the output intensity I xx; tð Þ to sample for each
output pixel. For good but extremely slow results, we could
take a large number of samples with a Gaussian distribution
around the pixel center. Sampling only once uniformly at
the pixel centers often produces identical results when the
input texture does not have too high a frequency extent. In
fact, for vector fields that vary slowly, we could prefilter the
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input texture with a Gaussian kernel to produce the same
effect as using such a kernel to sample the output intensity.
To avoid repeating artifacts, we can simply jitter the sample
points. Whatever sampling pattern is chosen, we need to be
consistent over the animation sequence, for any variation is
very disruptive to the motion. For example, jittering the
sample points should be done with a pseudorandom
number generator so that we can reproduce the same jitter
offsets for every frame. Prefiltering the input texture is a
good way to control the amount of frame-to-frame
sampling discrepancy.

Instead of sampling relative to the pixel centers, one
alternative is to sample according to the positions of the
particles we are tracking. This turns out to be especially
important when we use the FLIC method. By the nature of
the algorithm, we cannot choose all the output image
sample points. Instead, we pick seed points that are used as
starting points when following the streamlines incremen-
tally. If the same set of starting points is used for every
frame, then, as the particles and streamlines move, the
animation will exhibit temporal sampling artifacts. To avoid
this, we pick a random ordering of the particles and use
those as starting points. As the particles move over time
with the streamlines, so do the starting points, greatly
reducing the amount of temporal sampling artifacts. When
new particles are created, they are simply added randomly
to the end of the ordering to minimize the effect of their
sudden appearance. Particles that are deleted are simply
removed from the list. This method allows us to use FLIC to
render the animation sequence, which yields an order-of-
magnitude increase in computational speed.

4 APPLICATION TO ELECTROMAGNETISM

4.1 Computing the Field Line Motion

In order to apply DLIC to time-varying electromagnetic
fields, we need to compute the ff and dd vector fields. Note
that, though the fields are three-dimensional in nature, we
typically pick a planar “slice” to visualize using DLIC. The
ff fields are usually straightforward to compute from the
time-varying sources for the electric or magnetic fields by
applying the methods of classical electromagnetism. How-
ever, it is not as clear how to define the motion of the field
lines in electromagnetism and therefore how to compute the
motion field dd. Belcher and Olbert [2] give a (nonunique)
definition for the motion of the electromagnetic field lines
as the drift velocity of hypothetical low-energy test
monopoles placed in that field. For example, in quasi-static
magnetic fields, when we place low-energy test electric
charges in the magnetic field, it can be shown that they will
drift with a local velocity given by

vvdrift ¼
EE �BB

BB2
: ð16Þ

In this equation, EE is the electric field that arises due to the
time changing magnetic field BB. Note this motion is
perpendicular to the streamlines in BB. Similarly, in quasi-
static electric fields, when we place hypothetical low-energy
test magnetic monopoles in the electric field, it can be
shown that they will drift with a local velocity given by

vvdrift ¼ c2
EE �BB

EE2
; ð17Þ

where c is the speed of light. In this equation, BB is the
magnetic field that arises due to the time changing electric
field EE and electric charge motions.

In quasi-static situations, these definitions yield a natural
and physical interpretation of the motion of the electric or
magnetic field and of the field lines. In situations that are
not quasi-static (e.g., dipole radiation in the induction or
radiation zones), the drift velocities given above may
approach or even exceed the speed of light, so the simple
physical interpretation of field motion as the drift of test
monopoles breaks down. However, even in these cases, we
can still choose the velocity field defined by (16) or (17) as
the dd field. In fact, this choice for dd is still useful in that the
motion so defined is in the direction of electromagnetic
energy flow, parallel to the local Poynting vector. These
issues are discussed at length in Belcher and Olbert [2], and
we will not elaborate on them further here.

4.2 Examples

In addition to the image sequences presented in this article,
complete animations for the examples discussed below are
available on the web at: http://web.mit.edu/jbelcher/
www/DLIC.html.

Our first example of DLIC applied to electromagnetism
is for an electric charge moving against a uniform field. The
charge is initially moving against the field and, as time
progresses, the charge slows down, comes to rest, and then
reverses direction. Fig. 6 shows an LIC representation of the
ff field at one instant of time. We see that the electric field
lines of the point charge, although radially close to the
charge, are swept upward by the uniform electric field as
we move away from the charge. Fig. 7 shows an LIC
representation of the associated dd field at the same instant of
time. We see that, near the charge, the field lines move
vertically along with the movement of the charge. Far away
from the charge, in the region dominated by the uniform
field, the dd field causes the electric field lines to be “pushed”
apart horizontally as the charge moves downward. Both
these effects can be seen in the sequence of frames given in
Fig. 8, as well as in the animation. The evolution of the
uniform field lines is easy to interpret as they slide apart
and come together again. Notice that, even though the field
lines are compressed as the charge moves down, when they
expand again, detail is created to fill in the diverging
regions. The field lines near the charge, however, seem to
“wrap out” from the charge as it moves down, rather than
slide down with it as we would expect. It should be
understood that our dd field is a description of how test
charges would move in the field, which does not necessarily
correspond with how we would intuitively expect points
along a streamline to move.

Next, we turn to a quasi-static example in magneto-

statics. The field sources consist of a conducting, nonmag-

netic ring and a permanent magnetic dipole constrained to

move along the ring’s axis, with its dipole moment vector

pointing along the same axis. We drop the dipole from

above the center of the ring and, as it falls, the resultant

change in magnetic flux through the ring gives rise to eddy
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currents in the ring. These currents produce a magnetic

field that tends to retard the motion of the dipole. Fig. 9 and

Fig. 10 show two sequences of frames from an animation,

first when the dipole is about to fall through the ring and

second when the dipole has fallen through the ring. Though

the frame-to-frame coherence is evident in the sequences

from the evolution of its features, viewing the animation

gives the best understanding of how the field lines move.

Once again, even though the field lines around the magnet

are “squeezed” into the ring, as they expand once again

there is always enough detail created to ensure a high-

contrast field line representation.

One area where DLIC needs improving is in dealing with

singularities in the field. The animation of the falling

magnet shows minor flaws near the center of the dipole,

causing a slight flickering effect. Along the ring’s axis, the

motion field dd evaluates to zero, so the particles along the

center streamline do not move at all. In some senses, this is

the correct behavior since translating the streamline

vertically along itself does not affect its identity. Unfortu-

nately, as the center of the dipole falls, it overlaps a new set

of stationary particles every frame. The lack of correlation

between these particles is propagated visually to the radial

streamlines emanating from the dipole. One way to reduce

this flickering might be to diminish the amount that

particles near the singularity contribute to the streamline

convolution. Perhaps another way to solve this would be to

use a slightly different motion field dd that distributes

particles more naturally along the same streamline.

We now consider a non-quasi-static example. In this

example, we animate the electric field associated with an

electric dipole oscillating sinusoidally, including the induc-

tion and radiation zone fields. Fig. 11 shows a set of frames

from an animation sequence of the time-dependent electric

field of this oscillating dipole. The animation video is a

wonderful demonstration of the radiating effect of an

oscillating dipole and the interaction between the three

zones of electromagnetic behavior. The streamline patterns

retain their characteristics as they expand in a sphere from

the dipole center, while, at the same time, new detail is

being created continuously to fill the space. We can see a

small amount of incoherent behavior near the center of the

radiating wave. Once again, the dd field is partly at fault

because it evaluates to zero at such radii and, consequently,

the input texture does not move with the streamlines as it

should. Near the singularity, only a very small subset of

texture pixels are sampled, so any change in texture value is

immediately apparent.
This animation has been made periodic as a postproces-

sing step so that it can be looped seamlessly. Normally, this
is not possible with DLIC since entirely new, random
particles are created as the radiation expands away from the
dipole. Although both the ff and dd fields match at time
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Fig. 7. The motion vector field dd corresponding to Fig. 6.

Fig. 8. Five frames of a DLIC animation of an electric charge moving downward in a uniform electric field that points upward.

Fig. 6. The electric field configuration for an electric charge moving in a

uniform electric field which points upward.



intervals of the period T , the particles will have completely

different intensities ai. Fortunately, we can rectify this by

smoothly blending between pairs of images separated by

time T . That is, we first render the animation sequence over

a time T þ � , where � is some blending interval. We then

create a new animation sequence so that:
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Fig. 9. Six frames of a DLIC animation of a magnet about to fall through

a ring.
Fig. 10. Six frames of the magnet after falling through the conducting

ring.



I 0 xx; tð Þ ¼
� �ð Þ �I xx; tð Þ þ 1� �ð ÞI xx; T þ tð Þ½ �; 0 < � ¼ t

� < 1

I xx; tð Þ; otherwise:

� ð18Þ

The parameter � varies linearly from 0 to 1 over the time � ,
shifting from the image at time T þ t to the corresponding
image at time t. An additional function � �ð Þ is used to
renormalize the contrast of the blend. The overall result of
this process is an animation that can be looped since the end
frames now transition seamlessly into the beginning frames,
with no discontinuity in pattern.

5 SUMMARY

Given two vector fields ff and dd, where ff is the time-varying
vector field we would like to visualize and dd describes the
motion of the field lines in ff , the Dynamic Line Integral
Convolution algorithm described here produces a spatially
detailed animation depicting the time evolution of the field.
We track a large number of random particles that move
according to dd and use them to create the input texture for
FLIC. We are able to retain the high-contrast properties of
the input texture by adjusting the particles over time to
maintain a random distribution of intensities. Every frame
of the resulting animation is similar to the results of a static
LIC rendering and, together, the frames exhibit a temporal
correlation that depicts the time-evolution of the field lines.
In this paper, we have detailed the methods we use to
advect the particles and adjust their distribution, generate
the texture, and, finally, apply the FLIC algorithm to render
the frame.

Unfortunately, the workings of DLIC require a motion
field dd, which is not available in all dynamic vector field
applications. In actuality, this is a property of the visualiza-
tion problem itself. For example, in fluid dynamics, the
ff field characterizes both the direction and motion of the
field, while, in electrodynamics, ff only describes the
direction of the field, not its motion. For our purposes, we
chose to describe this motion via a secondary field dd. We
welcome further research into methods for representing
vector field dynamics in other applications.

The success of DLIC can be measured by how well the
animation sequences reflect the evolution of the sample
fields. For the examples in this article, all taken from
electromagnetism, the animations give a good understand-
ing of how the structure of the electromagnetic field evolves
with time, with the high spatial resolution characteristic of
LIC. Indeed, to our knowledge there is no other existing
method for depicting the time evolution of electromagnetic
fields at anything approaching this level of detail.

Although the animation sequences in this paper demon-
strate the successful application of DLIC to time-varying
vector fields, the algorithm could stand to be improved in
some areas. As described in the previous section, when
dealing with singularities, the frame-to-frame coherence is
not as robust as we would like, sometimes producing a
slight flickering near the singularity. Though part of the
reason is that the dd field does not advect particles near the
singularity as we would intuitively expect, it might be
possible for the algorithm to detect this problem and adapt
to it. It is also possible that a rendering algorithm different
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Fig. 11. Six frames of the DLIC animation of electric dipole radiation for a

sinusoidally varying electric dipole moment.



from FLIC, for example, one that scatters the texture values
to the output instead of collecting them via a convolution,
may produce higher quality results. Another area that
needs more exploration is the techniques used to advect the
particles and adjust their distribution. Although the simple
methods we have employed work well, there may be other
ways that produce even better results. Finally, although the
use of FLIC instead of LIC as the rendering core provides a
significant speedup, it is still very time-consuming to
render a lengthy sequence. Accelerating the computations
is highly desirable and would make it an even more
powerful tool for exploring the dynamics of time-varying
vector fields.
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